首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
1. Analogues of ethanolamine and choline were incubated with different labelled precursors of phospholipids and isolated hepatocytes and the effects on phospholipid synthesis were studied. 2. 2-Aminopropan-1-ol and 2-aminobutan-1-ol were the most efficient inhibitors of [(14)C]ethanolamine incorporation into phospholipids, whereas the incorporation of [(3)H]choline was inhibited most extensively by NN-diethylethanolamine and NN-dimethylethanolamine. 3. When the analogues were incubated with [(3)H]glycerol and hepatocytes, the appearance of (3)H in unnatural phospholipids indicated that they were incorporated, at least in part, via CDP-derivatives. The distribution of [(3)H]glycerol among molecular species of phospholipids containing 2-aminopropan-1-ol and 1-aminopropan-2-ol was the same as in phosphatidylethanolamine. In other phospholipid analogues the distribution of (3)H was more similar to that in phosphatidylcholine. 4. NN-Diethylethanolamine stimulated both the conversion of phosphatidylethanolamine into phosphatidylcholine and the incorporation of [Me-(14)C]methionine into phospholipids. Other N-alkyl- or NN-dialkyl-ethanolamines also stimulated [(14)C]methionine incorporation, but inhibited the conversion of phosphatidylethanolamine into phosphatidylcholine. This indicates that phosphatidyl-NN-diethylethanolamine is a poor methyl acceptor, in contrast with other N-alkylated phosphatidylethanolamines. 5. These results on the regulation of phospholipid metabolism in intact cells are discussed with respect to the possible control points. They also provide guidelines for future experiments on the manipulation of phospholipid polar-headgroup composition in primary cultures of hepatocytes.  相似文献   

2.
The methylation steps in the biosynthesis of phosphatidylcholine by castor bean (Ricinus communis L.) endosperm have been studied by pulse-chase labeling. Endosperm halves were incubated with [methyl-(14)C]S-adenosyl-l-methionine, [2-(14)C]ethanolamine, [(14)C]ethanolamine phosphate, or [(14)C]serine phosphate. The kinetics of appearance were followed in the free, phospho-, and phosphatidyl-bases. The initial methylation utilized ethanolamine as a substrate to form methylethanolamine, which was then converted to dimethylethanolamine, choline, and phosphomethylethanolamine. Subsequent methylations occurred at the phospho-base and, to a lesser extent, the phosphatidyl-base levels, after which the radioactivity either remained constant or decreased in these compounds and accumulated in phosphatidylcholine. Although the precursors tested did support the synthesis of choline, the kinetics of the labeling make them unlikely to be the major sources of free choline to be utilized for the nucleotide pathway. A model with two pools of choline is proposed, and the implications of these results for the pathways leading to phosphatidylcholine biosynthesis are discussed.  相似文献   

3.
1. Incorporation of [Me-14C]choline and [2-14C]ethanolamine into lipids was studied in germinating soya bean (Glycine max L.) seeds. The precursors are only incorporated into phosphatidylcholine and into phosphatidylethanolamine respectively. 2. Base-labelling via a phospholipase-D type of reaction was eliminated as a significant factor. 3. Cyclo heximide inhibited labelling of phosphatidylcholine from [Me-14C]choline but did not affect labelling of the aqueous choline pool. It had no effect on [2-14C]ethanolamine uptake or incorporation into phosphatidylethanolamine. 4. Hemicholinium-15 at 10mM concentrations decreased uptake and lipid labelling from the both bases. 5. There was no evidence for base competition. 6. The endogenous pool of choline was much larger than that of ethanolamine, which resulted in higher specific radioactivities for phosphatidyl-ethanolamine than for phosphatidylcholine. 7. The results can be interpreted as indicating that the kinase and phosphoryltransferase enzymes of the CDP-base pathways are separate for each phospholipid.  相似文献   

4.
The effects of ethanolamine, choline, and different fatty acids on phospholipid synthesis via the CDP-ester pathways were studied in isolated rat intestinal villus cells. The incorporation of [14C]glucose into phosphatidylethanolamine was stimulated severalfold by the addition of ethanolamine and long-chained unsaturated fatty acids, while the addition of lauric acid inhibited the incorporation of radioactivity into phosphatidylethanolamine. At concentrations of ethanolamine higher than 0.2 mM, phosphoethanolamine accumulated, but the concentrations of CDP-ethanolamine and the incorporation of radioactivity into phospatidylethanolamine did not increase further. The incorporation of [14C]glucose into phosphatidylcholine responded in a way similar to that of phosphatidylethanolamine, except that a 10-fold higher concentration of choline was required for maximal stimulation. CCC inhibited the incorporation of choline into phosphatidylcholine. In contrast with hepatocytes, villus cells did not form phosphatidylcholine via phospholipid N-methylation. The data indicate that, in intestinal villus cells, the cytidylyltransferase reactions are rate limiting in the synthesis of phosphatidylethanolamine and probably also of phosphatidylcholine. The availability of diacylglycerol and its fatty acid composition may also significantly affect the rate of phospholipid synthesis.  相似文献   

5.
The effect of norepinephrine on phosphatidylcholine and phosphatidylethanolamine formation was investigated in short-term incubations with freshly isolated rat hepatocytes. In the presence of dl-propranolol, norepinephrine decreases the incorporation of [methyl-14C]choline into phosphatidylcholines in a dose-dependent manner. At a concentration of 50 microM, norepinephrine (plus 20 microM propranolol) inhibits the incorporation of [methyl-14C]choline over a wide range of choline concentrations (59% inhibition at 5 microM choline; 34% inhibition at 1 mM choline). Norepinephrine also decreases the incorporation rates of [1-14C]palmitic acid and [1-14C]oleic acid into phosphatidylcholines. The effect of norepinephrine is mediated through an alpha-adrenergic receptor. Norepinephrine (plus propranolol) does not decrease the uptake or phosphorylation rate of [methyl-14C]choline. Pulse-label and pulse-chase studies indicate that the conversion rate of phosphocholine to CDP-choline, catalyzed by CTP:phosphocholine cytidylyltransferase, is diminished by norepinephrine. In contrast with the inhibitory effect of norepinephrine on phosphatidylcholine synthesis, this hormone stimulates the formation of phosphatidylethanolamines from [1,2-14C]ethanolamine. This increased incorporation rate is apparent at ethanolamine concentrations above 25 microM. A combination of norepinephrine and propranolol decreases, however, the synthesis of phosphatidylcholines from [1,2-14C]ethanolamine. The results indicate that alpha-adrenergic regulation dissociates the synthesis of phosphatidylcholines from that of phosphatidylethanolamines.  相似文献   

6.
The effect of ethanol (ETOH) on the incorporation of [14C]oleic acid (18:1) into lipid in human monocyte-like U937 cells was investigated. With increasing time of exposure to ETOH, the percentage of the label distributed into neutral lipid (NL) declined from 35 per cent (3 h) to 10 per cent (24 h) accompanied by increased incorporation into phospholipid (PL). [14C] 18 : 1 was preferentially incorporated into triglyceride (TG) and phosphatidylcholine (PC), comprising over 65 per cent and 50 per cent of the label associated with NL and PL, respectively. Low concentrations of ETOH (⩽ 1·0 per cent; v/v) had no effect. At concentrations greater than 1·5 per cent, there was enhanced incorporation into TG and diacylglycerol (DAG) in a 24-h incubation period, while at 16 h the label in phosphatidylethanolamine (PE) was decreased. The effect of ETOH on the CDP-choline or ethanolamine pathway was examined by monitoring the incorporation of [3H]choline or [14C]ethanolamine into PC or PE, respectively. At low concentrations ETOH had no effect on either choline uptake or the incorporation into PC. Higher concentrations (≥ 1·5 per cent) for 3 and 6 h resulted in a slightly decreased choline uptake, and the reduction (40–50 per cent) of incorporation into PC suggests that the CDP-choline pathway was inhibited. There was a similar inhibition of the incorporation of [14C]ethanolamine into PE. When the cells were incubated for 3 h in the presence of 2 per cent ETOH and with labelled 18 : 1 and PL-base, the ratios of incorporation (base/18 : 1) into PC and PE fractions decreased, indicating that the major inhibition lay in blockage of the availability of the base moiety for PL formation. Analysis of the distribution of the label into metabolites revealed that ETOH inhibited the conversion of [14C] ethanolamine into [14C]phosphorylethanolamine. The reduction in incorporation was not due to the enhanced breakdown of base-labelled PL. Our results indicate that ETOH has an inhibitory effect on the CDP-choline or ethanolamine pathway.  相似文献   

7.
1. The effects of thyrotrophin in vitro on the incorporation of [(14)C]-glucose, -glycerol, -palmitate and -oleate into the lipids of thyroid tissue were examined. 2. Thyrotrophin increased the incorporation of these (14)C-labelled precursors into phosphatidylinositol specifically. 3. Thyrotrophin also increased the proportion of (14)C radioactivity from labelled glucose, glycerol, palmitate and oleate incorporated into the 1,2-diglycerides. 4. The addition of thyrotrophin to thyroid slices for 10min., after 2hr. of prelabelling with [(14)C]glycerol, also increased the proportion of (14)C radioactivity incorporated into the 1,2-diglyceride fraction. 5. After incubation of thyroid tissue with [1-(14)C]palmitate, thyrotrophin caused a two- to three-fold increase in the specific radioactivity of palmitate isolated from phosphatidylinositol and 1,2-diglycerides. In contrast, the specific radioactivity of palmitate isolated from the choline and ethanolamine phosphoglycerides, 1,3-diglycerides and triglycerides was not increased by thyrotrophin.  相似文献   

8.
The synthesis of platelet activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) was studied in rabbit peritoneal polymorphonuclear neutrophils. Upon stimulation with ionophore A23187 and Ca2+, these cells are able to incorporate [3H]acetate or 1-O-[3H]alkyl-2-lyso-sn-glycero-3-phosphocholine into platelet activating factor. Under the same incubation conditions, however, the cells do not synthesize platelet activating factor from [14C]hexadecanol, which is an immediate precursor of O-alkyl chains in the de novo pathway. In the absence of ionophore, [14C] hexadecanol is incorporated into 1-O-alkyl-2-acyl-sn-glycerol-3-phosphate and subsequently into the 1-O-alkyl-linked choline and ethanolamine phosphoglyceride pools. However, in the presence of ionophore, [14C] hexadecanol incorporation is limited to phosphatidic acid, perhaps due to the inhibition of choline phosphotransferase. These findings provide strong evidence that platelet activating factor is synthesized by a deacylation-reacylation mechanism. Upon stimulation, these cells can utilize both plausible substrates of this pathway to make the final product, while under the same conditions it appears that a key step of the de novo pathway is inhibited.  相似文献   

9.
Previous studies suggest that the steps of the CDP- choline pathway of phosphatidylcholine synthesis are tightly linked in a so-called metabolon. Evidence has been presented that only choline that enters cells through the choline transporter, and not phosphocholine administered to cells by membrane permeabilization, is incorporated into phosphatidylcholine. Here, we show that [(14)C]phosphocholine derived from the lysosomal degradation of [(14)C]choline-labeled sphingomyelin is incorporated as such into phosphatidylcholine in human and mouse fibroblasts. Low density lipoprotein receptor-mediated endocytosis was used to specifically direct [(14)C]sphingomyelin to the lysosomal degradation pathway. Free labeled choline was not found either intracellularly or in the medium, not even when the cells were energy-depleted. Deficiency of lysosomal acid phosphatases in mouse or alkaline phosphatase in human fibroblasts did not affect the incorporation of lysosomal [(14)C]sphingomyelin-derived [(14)C]phosphocholine into phosphatidylcholine, supporting our finding that phosphocholine is not degraded to choline prior to its incorporation into phosphatidylcholine. Inhibition studies and analysis of molecular species showed that exogenous [(3)H]choline and sphingomyelin-derived [(14)C]phosphocholine are incorporated into phosphatidylcholine via a common pathway of synthesis. Our findings provide evidence that, in fibroblasts, phosphocholine derived from sphingomyelin is transported out of the lysosome and subsequently incorporated into phosphatidylcholine without prior hydrolysis of phosphocholine to choline. The findings do not support the existence of a phosphatidylcholine synthesis metabolon in fibroblasts.  相似文献   

10.
The Ca2+ dependent incorporation of [14C]ethanolamine, L-[14C]serine and [14C]choline into phosphatidylethanolamine, phosphatidylserine and phosphatidylcholine, respectively, were investigated in membrane preparations from rat heart. The ethanolamine and serine base-exchange enzyme-catalyzed reactions were associated with the sarcolemma and sarcoplasmic reticulum. There was a 17.2-fold and 6.8-fold enrichment, respectively, of the serine and the ethanolamine base-exchange enzyme activities in the sarcolemma compared to the starting whole homogenate. The sarcoplasmic reticulum was enriched in the ethanolamine and serine base-exchange enzyme activities. The choline base-exchange enzyme activity of all membranes fractions was negligible compared to the ethanolamine or serine base-exchange enzyme activities. The apparent Km for the ethanolamine and serine base-exchange enzyme in sarcolemma was 14 microM and 25 microM, respectively. The pH optimum for these base-exchange activities was 7.5-8.0. There was a dependence upon Ca2+ for these reactions with a 1 or 4 mM concentration required for maximal activity. The properties of the sarcoplasmic reticulum base-exchange enzymes were similar to the sarcolemmal base-exchange enzymes.  相似文献   

11.
Increasing concentrations of CDP-choline progressively inhibit the measured incorporation of CDP-[2-14C]ethanolamine into phosphatidylethanolamine catalysed by the ethanolaminephosphotransferase present in endoplasmic-reticulum membranes isolated from castor-bean endosperm cells. This inhibition parallels that observed during CDP-[Me-14C]choline incorporation and suggests that a single enzyme utilizes both these substrates.  相似文献   

12.
Acetylcholine and choline release was measured by using an automated and modified version of the chemiluminescence technique of Israel & Lesbats [(1981) Neurochem. Int. 3, 81-90]. A comparison of acetylcholine and choline release from synaptosomes demonstrated that acetylcholine release was K+-stimulated and inhibited by the Ca2+ ionophore A23187 and cyanide. Choline release, however, did not vary markedly under different conditions, suggesting that it is not associated with acetylcholine release at the nerve ending. Total acetylcholine synthesis in synaptosomal preparations was measured concurrently with the incorporation of [14C]acetyl and [3H]choline moieties by using the chemiluminescence method. Under sub-optimal glucose concentrations or in the absence of treatment of the synaptosomes with the acetylcholinesterase inhibitor phospholine, the incorporation of radioactivity exceeded total synthesis, indicating that cycling between acetylcholine and its precursors may occur. After treatment with phospholine, acetyl-group incorporation from D-[U-14C]glucose occurred without dilution of the precursor at optimal (1.0 mM) and low (0.1 mM) glucose concentrations; however, at very low (0.01 mM) glucose concentrations, dilution by a small endogenous pool occurred. [14C]Acetyl incorporation into acetylcholine was compared with various metabolic parameters. A closer correlation was observed between [14C]acetyl-group incorporation into acetylcholine and the calculated acetyl-carrier efflux from the mitochondria than with the calculated pyruvate-dehydrogenase-complex flux. The results are discussed with respect to the regulation of acetylcholine concentrations at the synapse and the mechanism whereby turnover occurs.  相似文献   

13.
Glycinebetaine synthesis from [methyl-14C]choline and [1,2-14C]ethanolamine in leaf disks of Avicennia marina, was increased by salt stress (250 and 500 mM NaCl). After 18 h incubation with [methyl-14C]choline, phosphocholine and CO(2) were found to be heavily labelled. Phosphocholine contained 39% of the total radioactivity taken up by non-salinised (control) leaf disks and 15% of the total for salinised leaf disks stressed with 500 mM NaCl. Eighteen and 49% of the radioactivity absorbed by control and salinised disks, respectively, were released as CO(2). Metabolic studies of [1,2-14C]ethanolamine revealed that the radioactivity taken up by the leaf disks was recovered as the following compounds after 18 h: phosphorylated compounds (mainly phosphoethanolamine, phosphodimethylethanolamine and phosphocholine) (40-50%); choline (1-2%); glycinebetaine (3-5%); lipids (20-28%); CO(2) (6-10%). Unlike glycinebetaine, incorporation into phosphorylated compounds and lipids were reduced by salt stress. Incorporation of [methyl-14C]S-adenosyl-L-methionine (SAM) into choline, phosphocholine and glycinebetaine in leaf disks was stimulated by salt stress. In vitro activities of adenosine kinase and adenosine nucleosidase, which are implicated in stimulating the SAM regeneration cycle, increased after the leaf disks were incubated with 250 and 500 mM NaCl for 18 h. Changes in metabolism involving choline and glycinebetaine due to salt stress are discussed.  相似文献   

14.
Abstract— The calcium-dependent incorporation of l -[3-3H]serine and [1,2-14C]ethanol-amine into the phospholipid of isolated subcellular fractions from chick brain was studied and the properties of incorporation were examined. The microsomal fraction was found to possess the highest rate of incorporation and was able to convert under optimal conditions about 120 nmol of labelled serine and 220 nmol of ethanolamine/g of fresh brain microsomes/h. The requirement for Ca2+ ion appeared to be absolute. Mg2+ ion caused a gradual reduction in the existing enzymic activity, only when pre-incubated with microsomes and labelled bases before adding Ca2+ ion. The incorporation of serine and ethanolamine was actively inhibited by Hg2+, Co2+, Cu2+ and Mn2+ ions, and was abolished by ethylenediamine tetra-acetate treatment. Ethanolamine, but not choline, inositol or carnitine, competitively inhibited serine incorporation, while d -serine had slight effect. Conversely, l -serine inhibited competitively the incorporation of ethanolamine. The greater part of the incorporated serine (85 per cent) was localized in microsomal phosphatidylserine, while a small percentage was found in phosphatidylethanolamine. Similarly, 90 per cent of the incorporated ethanolamine was confined to phosphatidylethanolamine and a small percentage was found in the plasmalogen derivative. The mechanism of serine and ethanolamine incorporation was investigated. The results are compared with those published for similar mammalian and non-mammalian systems.  相似文献   

15.
Although harderian glands are rich in neutral glycerolipids with ether bonds, less than 20% of the choline glycerophospholipids have ether bonds in the white and pink portions of the adult rabbit harderian gland. Only 6% of these are plasmalogens while 94% are alkylacyl glycerophosphocholines. The ethanolamine glycerophospholipids include 37% with ether bonds in both white and pink portions. In the white portion 96% are plasmalogens but only 19% are plasmalogens in the pink portion. The microsomal ethanolaminephosphotransferase (EC 2.7.8.1) is more active with diacylglycerols than with alkylacylglycerols. The microsomal cholinephosphotransferase (EC 2.7.8.2) is equally active with both diradylglycerols. Particularly with microsomes from the pink portion, the apparent Km values for CDPethanolamine and CDPcholine are ower in the presence of alkylacylglycerols than in the presence of diacylglycerols. The incorporation of radioactivity from CDP[14C]ethanolamine and CDP[14C]choline into ethanolamine and choline plasmalogens was increased several-fold by addition of alkylacylglycerols but was not increased substantially by addition of diacylglycerols.  相似文献   

16.
The thrombin-dependent enrichment of alkenylacyl ethanolamine phosphoglyceride in [14C]eicosapentaenoic acid [( 14C]EPA) was demonstrated and compared with [3H]arachidonic acid [( 3H]AA) following the simultaneous prelabelling of individual human platelet phospholipids with these two fatty acids. The alkenylacyl, diacyl, and alkylacyl classes of ethanolamine phosphoglycerides (PE) were separated by thin-layer chromatography as their acetylated derivatives after hydrolysis of the parent phospholipid with phospholipase C. The ratios of [3H]/[14C] for the increased radioactivity appearing in alkenylacyl PE following 60 and 120 s of thrombin stimulation were the same as the corresponding ratio (2.0) found in the choline phosphoglycerides (PC) from control (unstimulated) platelets. These results suggest no significant selectivity between EPA and AA in the thrombin-stimulated transfer of these fatty acids from diacyl PC to alkenylacyl PE. The present findings may possibly bear some relevance to the altered platelet reactivity and (or) decreased thromboxane A2 formation observed in human subjects following the ingestion of marine lipid containing EPA.  相似文献   

17.
Mudd SH  Datko AH 《Plant physiology》1989,90(1):296-305
The results of experiments in which intact plants of Lemna paucicostata were labeled with either l-[(3)H(3)C]methionine, l-[(14)CH(3)]methionine, or [1,2-(14)C]ethanolamine support the conclusion that growth in concentrations of choline of 3.0 micromolar or above brings about marked decreases in the rate of biosynthesis of methylated forms of ethanolamine (normally present chiefly as phosphatidylcholine, with lesser amounts of choline and phosphocholine). The in vivo locus of the block is at the committing step in the biosynthetic sequence at which phosphoethanolamine is methylated by S-adenosylmethionine to form phosphomethylethanolamine. The block is highly specific: flow of methyl groups originating in methionine continues into S-adenosylmethionine, S-methylmethionine, the methyl moieties of pectin methyl ester, and other methylated metabolites. When choline uptake is less than the total that would be synthesized by control plants, phosphoethanolamine methylation is down-regulated to balance the uptake; total plant content of choline and its derivatives remains essentially constant. At maximum down-regulation, phosphoethanolamine methylation continues at 5 to 10% of normal. A specific decrease in the total available activity of AdoMet: phosphoethanolamine N-methyltransferase, as well as feedback inhibition of this enzyme by phosphocholine, and prevention of accumulation of phosphoethanolamine by down-regulation of ethanolamine synthesis may each contribute to effective control of phosphoethanolamine methylation. This down-regulation may necessitate major changes in S-adenosylmethionine metabolism. Such changes are discussed.  相似文献   

18.
1. Nuclei from rat liver incubated with S-adenosyl[methyl-(14)C]methionine incorporated radioactivity into RNA and into lipid and protein. 2. All of the labelled RNA was extracted from the nuclei with trichloroacetic acid at 90 degrees C. 3. The [(14)C]methyl-group incorporation into the hot-trichloroacetic acid extract was 30% inhibited by the addition of actinomycin D (100mug/mg of DNA) or by the omission of CTP, GTP and UTP. 4. Assuming that the main substrate for this triphosphate-dependent methylation was newly synthesized precursor rRNA containing one methyl group/30 uridylate residues, it was calculated that approx. 60% of the [(14)C]UMP incorporated under similar conditions represented precursor rRNA synthesis. 5. In agreement with this, low concentrations of actinomycin D (approx. 1mug/mg of DNA) sufficient to abolish the triphosphate-dependent incorporation of [(14)C]methyl group inhibited 68% of the [(14)C]UMP incorporation. 6. The incorporation of [(14)C]UMP by nuclei from starved animals decreased progressively with increasing periods of starvation, whereas the triphosphate-dependent [(14)C]methyl-group incorporation was not further decreased after 1 day of starvation. 7. This suggests that precursor rRNA synthesis decreased within 1 day whereas other species of RNA were affected only after longer periods of starvation.  相似文献   

19.
The incorporation of radioactivity from [1,2-34C]choline, [1,2-34C]ethanolamine, [3-14C]serine and [methyl-14C]methionine into lipids was studied in growing cultures of Crithidia fasciculata. Lecithin was formed both from choline and by the methylation of phosphatidylethanolamine. Mono- and dimethylphosphatidylethanolamines were present in no more than trace amounts. Growth of the protozoa in media containing choline (1 mM) did not decrease synthesis by the methylation pathway. Phosphatidylethanolamine was formed from ethanolamine. Radioactivity from serine also was present in both phosphatidylethanolamine and lecithin; however, the presumed intermediate, phosphatidylserine, could not be detected.  相似文献   

20.
Comparative studies were undertaken on the in vivo and in vitro incorporation of [14C] ethanolamine, [3H] methionine and [14C] S-adenosyl-methionine into phosphatidylethanolamine (PhE) and phosphatidylcholine (PhC) of rat liver and brain. It was observed that brain can synthesize de novo PhC from PhE via the transmethylation pathway, however synthesis rates were (1) markedly lower than those of liver and (2) decreased significantly with age. In the choline-containing lipids more than 95% of the radioactivity was found in PhC. Studies on the localization of the radioactivity in PhC following the intracranial injection of [3H] methionine or [14C] ethanolamine revealed that both precursors are incorporated almost exclusively into the choline moiety of this phospholipid. There was significant labeling of PhC only when the precursors were administered intracranially and much less incorporation was observed with the systemic routes. Thus following the intravenous administration of [14C] ethanolamine, the specific radioactivities of liver PhE and PhC were up to 75 times as high as those of brain and 4 to 5 times as high in the organs of the 20-day old as those of the adult. In contrast, when this precursor was administered intracranially the specific radioactivities of both phospholipids in liver were only twice as high as those of brain. Although the short-and long-term time-course studies on the in vivo incorporation of [14C] ethanolamine and [3H] methionine into PhC of both organs could suggest a precursor-product relationship between the biosynthesis of this phospholipid in liver and brain, this apparent relationship could also be due to the high turnover of PhE in liver, with half-life of 2.87 hr, and its low turnover in brain, with half-life of 10.7 days. The present findings on the low rate of formation of PhC from PhE in brain coupled with the fact that this conversion declines sharply with age, especially when the isotopes are administered systemically, could explain the observation of previous investigators that the brain cannot synthesize its own choline and thus it must derive its choline from exogenous sources such as lipid-choline. It was concluded that the brain can synthesize its own choline; however it remains also dependent on liver and dietary choline which are probably transported into the brain as free choline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号