共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine 5′-Triphosphate Release and Membrane Collapse in Glycerol-Requiring Mutants of Bacillus subtilis 下载免费PDF全文
Glycerol-requiring mutants of Bacillus subtilis could not sporulate in nutrient sporulation medium even when additional glycerol was added from the beginning of growth. Sporulation could be partially restored either by the frequent addition of small amounts of glycerol during the developmental period or by the single addition of both 10 mM glycerol and 10 mM malate. But sporulation could be completely restored by the addition of 50 mM glycerol-phosphate from the beginning. At the end of growth of the glycerol mutants in nutrient sporulation medium, the cell membrane collapsed and separated from the cell wall, and much of the cellular adenosine 5'-triphosphate was released into the medium. These observations were made in two glycerol mutants, one derived from strain 168 containing glycerol-teichoic acid in the cell wall and the other derived from strain W23 containing ribitol-teichoic acid. 相似文献
2.
Changes in Menaquinone Concentration During Growth and Early Sporulation in Bacillus subtilis 总被引:8,自引:7,他引:1 下载免费PDF全文
In two strains of Bacillus subtilis, menaquinone-7 has been shown to reach maximal cellular concentrations during early stationary phase. These concentration changes closely parallel the previously reported concentration changes in the cytochromes. 相似文献
3.
Bacillus subtilis polynucleotide phosphorylase 3′-to-5′ DNase activity is involved in DNA repair 下载免费PDF全文
Paula P. Cardenas Begoa Carrasco Humberto Sanchez Gintaras Deikus David H Bechhofer Juan C Alonso 《Nucleic acids research》2009,37(12):4157-4169
In the presence of Mn2+, an activity in a preparation of purified Bacillus subtilis RecN degrades single-stranded (ss) DNA with a 3′ → 5′ polarity. This activity is not associated with RecN itself, because RecN purified from cells lacking polynucleotide phosphorylase (PNPase) does not show the exonuclease activity. We show here that, in the presence of Mn2+ and low-level inorganic phosphate (Pi), PNPase degrades ssDNA. The limited end-processing of DNA is regulated by ATP and is inactive in the presence of Mg2+ or high-level Pi. In contrast, the RNase activity of PNPase requires Mg2+ and Pi, suggesting that PNPase degradation of RNA and ssDNA occur by mutually exclusive mechanisms. A null pnpA mutation (ΔpnpA) is not epistatic with ΔrecA, but is epistatic with ΔrecN and Δku, which by themselves are non-epistatic. The addA5, ΔrecO, ΔrecQ (ΔrecJ), ΔrecU and ΔrecG mutations (representative of different epistatic groups), in the context of ΔpnpA, demonstrate gain- or loss-of-function by inactivation of repair-by-recombination, depending on acute or chronic exposure to the damaging agent and the nature of the DNA lesion. Our data suggest that PNPase is involved in various nucleic acid metabolic pathways, and its limited ssDNA exonuclease activity plays an important role in RecA-dependent and RecA-independent repair pathways. 相似文献
4.
Measurement of adenosine 5′-triphosphate (ATP) in coke waste activated sludge can provide a simple method for estimating the levels of viable microbes in the sludge. However, the presence of inhibitors such as phenol in the sludge interferes when the luciferin-luciferase method is used to measure ATP. These inhibiting substances can be removed from the sludge before extraction of ATP by washing the cells with dilute sodium dodecyl sulfate. 相似文献
5.
The distribution, fluctuation, and short-term transport of total microbial biomass (measured as adenosine 5′-triphosphate [ATP]) was investigated in a large salt marsh creek. Hourly samples were collected synoptically for 25 h from 10 boats positioned across the 320-m width of the creek. Samples were collected from three depths ranging from 0.2 to 8.0 m. Hourly data obtained from each station were graphed, plotting depth against ATP. Subsequently, interpolated ATP values were generated for every one-tenth depth from the surface to the bottom with the use of an 11-point proportional divider. A total of 2,750 values were generated, and a mean value of 0.865 mg of ATP per m3 was determined. Maximum levels of ATP were found at high tide and minimal values were found at low tide. The distribution of ATP concentrations was found to be complex, with no suggestion of vertical stratification; however, horizontal divisions were apparent. ATP values corrected for direction of flow or velocity indicated two ebb-directed channels; however, when considered in total, there was a net import of ATP through the interface. The total import of ATP for this 25-h sampling period was calculated to be 3.58 kg, corresponding to a net transport of 39.8 mg of ATP per s through the cross section. Results suggest that detailed characterization of a creek transect in terms of ATP or any similar parameter requires the simultaneous measurements of both the concentration of the parameter in question and the velocity at the time and point from which the sample was taken. 相似文献
6.
The dimorphic fungus Mucor racemosus was found to contain the cyclic nucleotide guanosine 3′,5′-monophosphate (cGMP). Approximately equivalent amounts of the compound were found in ungerminated spores, yeastlike cells, and mycelia. Germinating spores contained severalfold higher amounts of cGMP than the other cell forms. cGMP levels did not change significantly during the morphogenetic conversion of yeast to mycelia. Added exogenous cGMP or the dibutyryl derivative did not influence cell morphology in any way and did not alter the effect that cyclic adenosine 3′,5′-monophosphate has upon cell morphology. 相似文献
7.
Microscopic Counting and Adenosine 5′-Triphosphate Measurement in Determining Microbial Growth in Soils 下载免费PDF全文
A microscopic technique utilizing dispersion of fungal hyphae in a Waring blender, filtration through membrane filters (Nucleopore Corp.), and counting on a fluorescence microscope was developed for counting fungal hyphal biomass. Nonfluorescent staining techniques of the soil-filter preparation did not give quantitative recoveries. Water-soluble aniline blue, which binds to the β-1,3-glucans of the fungal cell wall, made visualization of the hyphae by fluorescence possible. A range of fungi added to soil were quantitatively recovered. Adenosine 5′-triphosphate (ATP) was extracted from soil by lysis of the organisms with CHCl3 in NaHCO3, which prevented adsorption of the organic phosphorus to the soil colloids. Centrifugation and removal of CHCl3 was followed by dilution with pH 7.8 tris(hydroxymethyl)aminomethane buffer. ATP concentrations were measured by using the luciferase-luciferin light reaction. Since NaHCO3 interfered to some extent with this reaction, the standards were made up in equivalent mixtures of tris(hydroxymethyl)aminomethane buffer and NaHCO3. Recovery of ATP was rapid and quantitative in a range of soils. Measurement of the ATP and bacterial and fungal numbers in an incubated soil showed that fungal and bacterial population increases were delayed by phosphorus deficiency. Microbial populations were not affected at a later date. The ATP content of the soil system was reduced by phosphorus deficiency throughout the incubation period. This indicated that ATP could be altered without major changes in the microbial populations. 相似文献
8.
H. J. J. Nijkamp 《Journal of bacteriology》1969,100(2):585-593
Derepression of the synthesis of inosine 5′-monophosphate (IMP) dehydrogenase and of xanthosine 5′-monophosphate (XMP) aminase in pur mutants of Escherichia coli which are blocked in the biosynthesis of adenine nucleotides and guanine nucleotides differs in two ways from derepression in pur mutants blocked exclusively in the biosynthesis of guanine nucleotides. (i) The maximal derepression is lower, and (ii) a sharp decrease in the specific activities of AMP dehydrogenase and XMP aminase occurs, following maximal derepression. From the in vivo and in vitro experiments described, it is shown that the lack of adenine nucleotides in derepressed pur mutants blocked in the biosynthesis of adenine and guanine nucleotides is responsible for these two phenomena. The adenine nucleotides are shown to play an important regulatory role in the biosynthesis of guanosine 5′-monophosphate (GMP). (i) They induce the syntheses of IMP dehydrogenase and XMP aminase. (The mechanism of induction may involve the expression of the gua operon.) (ii) They appear to have an activating function in IMP dehydrogenase and XMP aminase activity. The physiological importance of these regulatory characteristics of adenine nucleotides in the biosynthesis of GMP is discussed. 相似文献
9.
Adenine Nucleotide Changes Associated with the Initiation of Sporulation in Bacillus subtilis 总被引:7,自引:3,他引:4 下载免费PDF全文
At the end of the exponential growth phase of Bacillus subtilis, there is a decrease in the energy level of the cell, whether expressed as adenosine triphosphate concentration or adenylate energy charge. Phosphate limitation of exponentially growing cells produces a similar decrease in the energy level of the cell, and sporulation is derepressed in the presence of 10 mM glucose. A reduction in the tryptophan concentration of the medium during phosphate limitation of the tryptophan auxotroph B. subtilis 168 prevented the decrease in energy charge. Cells do not sporulate under these conditions. Energy charge values of 0.30 to 0.35 found during sporulation do not lead to cell death. 相似文献
10.
Stability of the Adenosine 5′-Triphosphate Pool in Coxiella burnetii: Influence of pH and Substrate 总被引:1,自引:4,他引:1 下载免费PDF全文
The ability of Coxiella burnetii to couple oxidation of metabolic substrates to adenosine 5'-triphosphate (ATP) synthesis in axenic reaction buffers was examined. Pyruvate, succinate, and glutamate were catabolized and incorporated at the highest rates of 11 substrates tested. Glutamate oxidation, however, resulted in the greatest stability of the ATP pool and highest intracellular ATP levels over a 48-h period. At pH 4.5, the optimum for metabolism by C. burnetii, glutamate oxidation resulted in maintenance of the ATP pool at a concentration of approximately 0.7 nmol of ATP per mg of dry weight over a 96-h period. In the absence of substrate, ATP declined by 96 h to less than 0.01 nmol/mg of dry weight. When cells were maintained at pH 7.0 in the presence or absence of glutamate, ATP pools were considerably more stable, presumably due to the minimal metabolic activity displayed by C. burnetii at pH 7. The stability of the ATP pool reflected viability as there was greater than an 8-log decrease in viable C. burnetii after incubation for 7 days at pH 4.5 in the absence of glutamate. Viability was retained in the presence of glutamate at pH 4.5 or 7.0 in the absence of any added substrate. The stability of the ATP pool was due to endogenous synthesis of ATP coupled to substrate oxidation as shown by depression of ATP levels in the presence of inhibitors of electron transport or oxidative phosphorylation. In addition, the adenylate energy charge increased from an initial value of 0.57 to 0.73 during glutamate oxidation with a concomitant rise in the total adenylate pool size. C. burnetii therefore appears able to regulate endogenous ATP levels in response to substrate availability and pH, thus effecting a conservation of metabolic energy in neutral or alkaline environments. Such a mechanism has been proposed to play a role in the resistance of C. burnetii to environmental conditions and subsequent activation upon entry into the phagolysosome in which this organism replicates. 相似文献
11.
Use of Adenosine 5′-Triphosphate as an Indicator of the Microbiota Biomass in Rumen Contents 下载免费PDF全文
A number of techniques were tested for their efficiency in extracting adenosine 5′-triphosphate (ATP) from strained rumen fluid (SRF). Extraction with 0.6 N H2SO4, using a modification of the procedure described by Lee et al. (1971), was the most efficient and was better suited for extracting particulate samples. Neutralized extracts could not be stored frozen before assaying for ATP because large losses were incurred. The inclusion of internal standards was necessary to correct for incomplete recovery of ATP. The ATP concentration in rumen contents from a cow receiving a ration of dried roughage (mainly alfalfa hay) ranged from 31 to 56 μg of ATP per g of contents. Approximately 75% of the ATP was associated with the particulate material. The ATP was primarily of microbial origin, since only traces of ATP were present in the feed and none was found in “cell-free” rumen fluid. Fractionation of the bacterial and protozoal populations in SRF resulted in the isolation of an enriched protozoal fraction with a 10-fold higher ATP concentration than that of the separated rumen bacteria. The ATP pool sizes of nine functionally important rumen bacteria during the exponential phase of growth ranged from 1.1 to 17.6 μg of ATP per mg of dry weight. This information indicates that using ATP as a measure of microbial biomass in rumen contents must be done with caution because of possible variations in the efficiency of extraction of ATP from rumen contents and differences in the concentration of ATP in rumen microbes. 相似文献
12.
Blockade of the adrenergic receptors or the injection of Bordetella pertussis vaccine prevented the normal hyperglycemic response of CFW mice to exogenous cyclic 3',5'-adenosine phosphate (3',5'-AMP). The cyclic nucleotide was also ineffective in offsetting the histamine hypersensitivity of the beta-adrenergically blocked and the pertussis-sensitized groups. These observations suggest that the autonomic malfunction occurs at a point(s) subsequent to release of 3',5'-AMP. Neither the hyperglycemic effect of epinephrine or 3',5'-AMP, or both, nor the histamine sensitivity of pertussis-pretreated animals was influenced by the subcutaneous administration of theophylline. 相似文献
13.
14.
Homoserine dehydrogenase in dialyzed cell extracts of Bacillus subtilis 168 was studied, particularly with regard to inhibition, repression, and level of activity as a function of stage of development (growth and sporulation). It was assayed in the "forward direction" using L-aspartic semialdehyde and NADPH as substrates. Of the potentials inhibitors tested, only cysteine and NADP were found to be effective. Both L- and D-cysteine were equally effective. Therefore, the physiological significance of cysteine as an inhibitor is somewhat questionable. Amino acids involved in repression of homoserine dehydrogenase included methionine, isoleucine, possibly threonine, and one or more unidentified components of Casamino acids. The specific activity of homoserine dehydrogenase was highest during the exponential phase of growth and declined steadily during the stationary phase of growth. The low specific activity during late sporulation may favor preferential funnelling of L-aspartic semialdehyde into the lysine pathway, where it is needed for synthesis of large amounts of dipicolinic acid and diaminopimelic acid. 相似文献
15.
16.
Inhibition of Ribonuclease II of Escherichia coli by Sodium Ions, Adenosine-5′-Triphosphate, and Transfer Ribonucleic Acid 下载免费PDF全文
Ribonuclease II action on polyuridylate is competitively inhibited by transfer ribonucleic acid and noncompetitively inhibited by sodium ions. At low substrate levels, adenosine-5'-triphosphate is also inhibitory. 相似文献
17.
Uncoupling of Protein and Ribonucleic Acid Synthesis by 5′,5′,5′-Trifluoroleucine in Salmonella typhimurium 总被引:1,自引:1,他引:1 下载免费PDF全文
The addition of 5',5',5'-trifluoroleucine (fluoroleucine) to leucine auxotrophs of Salmonella typhimurium permitted protein but not ribonucleic acid (RNA) synthesis to continue after leucine depletion. The uncoupling of the formation of these macromolecules by fluoroleucine was apparent if RNA and protein synthesis was measured either by the uptake of radioactive precursors or by direct chemical determinations. The analogue did not appear to be an inhibitor of RNA formation, since it was as effective as leucine in permitting RNA synthesis in a leucine auxotroph upon the addition of small amounts of chloramphenicol. In contrast to these data, fluoroleucine allowed continued protein and RNA formation in a leucine auxotroph of Escherichia coli strain W. In addition, contrary to the results obtained with S. typhimurium, the analogue replaced leucine for repression of the leucine bio-synthetic enzymes as well as the isoleucine-valine enzymes. We propose that these ambivalent effects of fluoroleucine on repression and RNA and protein synthesis in the two strains are due to differences in the ability of the analogue to attach to the various species of leucine transfer RNA. 相似文献
18.
1. ADP, ATP and GDP inhibited the phosphotransferase activity, the release of cyclic nucleotides from RNA, of ribonuclease. No significant inhibition was elicited by pyrimidine 5'-nucleoside diphosphates, CDP and UDP. 2. Inhibition by ADP, AMP, adenosine, adenine, NAD and NADP was insignificant at the concentrations tested. Small inhibition was observed with high concentrations of AMP and only when soluble RNA was the substrate. 3. Inhibition by ADP was found to be ;uncompetitive'. 4. Results seem to indicate that at least for optimum inhibition the polyphosphate of the purine nucleoside is essential. They further suggest that the inhibitor acts by combining with the enzyme only when the enzyme is bound to the substrate. 相似文献
19.
The stability of the 1:1 complex of sodium ion with the dianion of guanosine 5′-monophosphate has been determined by means of a potentiometric titration employing a specific ion electrode. The stability constant for the reaction Na+ + 5′-GMP2- Na(5′-GMP)- was found to be 2.85 ± 0.36 M-1 at 5°C and an ionic strength of 1.1 ± 0.1 M. Although 5′-GMP forms ordered self-structures at high concentration in the presence of sodium ions, in dilute solution and at low sodium ion concentrations the Na+ binding is weak and typical of that for other nucleotides. 相似文献
20.
Thomas J. Albert Jason Norton Markus Ott Todd Richmond Kate Nuwaysir Emile F. Nuwaysir Klaus-Peter Stengele Roland D. Green 《Nucleic acids research》2003,31(7):e35
Light-directed synthesis of high-density microarrays is currently performed in the 3′→5′ direction due to constraints in existing synthesis chemistry. This results in the probes being unavailable for many common types of enzymatic modification. Arrays that are synthesized in the 5′→3′ direction could be utilized to perform parallel genotyping and resequencing directly on the array surface, dramatically increasing the throughput and reducing the cost relative to existing techniques. In this report we demonstrate the use of photoprotected phosphoramidite monomers for light-directed array synthesis in the 5′→3′ direction, using maskless array synthesis technology. These arrays have a dynamic range of >2.5 orders of magnitude, sensitivity below 1 pM and a coefficient of variance of <10% across the array surface. Arrays containing >150 000 probe sequences were hybridized to labeled mouse cRNA producing highly concordant data (average R2 = 0.998). We have also shown that the 3′ ends of array probes are available for sequence-specific primer extension and ligation reactions. 相似文献