共查询到20条相似文献,搜索用时 24 毫秒
1.
Sphingolipids are known to play a significant physiological role in cell growth, cell differentiation, and critical signal transduction pathways. Recent studies have demonstrated a significant role of sphingolipids and their metabolites in the pathogenesis of myocardial ischemia-reperfusion injury. Our laboratory has investigated the cytoprotective effects of N,N,N-trimethylsphingosine chloride (TMS), a stable N-methylated synthetic sphingolipid analogue on myocardial and hepatic ischemia-reperfusion injury in clinically relevant in vivo murine models of ischemia-reperfusion injury. TMS administered intravenously at the onset of ischemia reduced myocardial infarct size in the wild-type and obese (ob/ob) mice. Following myocardial I/R, there was an improvement in cardiac function in the wild-type mice. Additionally, TMS also decreased serum liver enzymes following hepatic I/R in wild-type mice. The cytoprotective effects did not extend to the ob/ob mice following hepatic I/R or to the db/db mice following both myocardial and hepatic I/R. Our data suggest that although TMS is cytoprotective following I/R in normal animals, the cytoprotective actions of TMS are largely attenuated in obese and diabetic animals which may be due to altered signaling mechanisms in these animal models. Here we review the therapeutic role of TMS and other sphingolipids in the pathogenesis of myocardial ischemia-reperfusion injury and their possible mechanisms of cardioprotection. 相似文献
2.
Tumor necrosis factor-alpha pretreatment is protective in a rat model of myocardial ischemia-reperfusion injury. 总被引:9,自引:0,他引:9
L J Eddy D V Goeddel G H Wong 《Biochemical and biophysical research communications》1992,184(2):1056-1059
We have demonstrated that tumor necrosis factor-alpha (TNF-alpha) pretreatment protected the rat heart from ischemia-reperfusion injury. This effect was monitored by assaying for lactate dehydrogenase (LDH), an enzyme whose release correlates with loss of cell membrane integrity. Intact hearts removed from rats pretreated with TNF-released significantly lower amounts of LDH compared to control hearts after 20 min. of total global ischemia followed by reperfusion. Hearts from TNF-alpha-pretreated animals contained higher levels of manganous superoxide dismutase (MnSOD) mRNA than hearts from untreated rats. Because oxygen free radicals have been implicated as a major cause of reperfusion damage and the function of MnSOD is to detoxify superoxide anions in the mitochondria, a possible protective mechanism for TNF-alpha may be to induce expression of MnSOD in the heart and thus confer resistance to oxygen free radicals generated during reperfusion. 相似文献
3.
Myocardial ischemia-reperfusion (IR) injury is a major contributor to the morbidity and mortality associated with coronary artery disease. Muscular exercise is a countermeasure to protect against IR-induced cardiac injury in both young and old animals. Specifically, regular bouts of endurance exercise protect the heart against all levels of IR-induced injury. Proposed mechanisms to explain the cardioprotective effects of exercise include alterations in coronary circulation, expression of endoplasmic reticulum stress proteins, increased cyclooxygenase-2 activity, induction of myocardial heat shock proteins, improved cardiac antioxidant capacity, and/or elevation of ATP-sensitive potassium channels on both the sarcolemmal and the mitochondrial inner membranes. Moreover, it seems possible that other, yet to be defined, mechanisms of exercise-induced cardioprotection may also exist. Of the known putative cardioprotective mechanisms, current evidence suggests that elevated myocardial levels of antioxidants and increased expression of sarcolemmal ATP-sensitive potassium channels are both contributors to exercise-induced cardioprotection against IR injury. At present, it is unclear if these two protective mediators act independently or interact to contribute to exercise-induced cardioprotection. Understanding the molecular basis for exercise-induced cardioprotection will provide the required knowledge base to develop therapeutic approaches to protect the heart during an IR insult. 相似文献
4.
Myocardial ischemia-reperfusion (I/R) injury is thought to have its detrimental role in coronary heart disease (CHD), which is considered as the foremost cause of death all over the world. However, molecular mechanism in the progression of myocardial I/R injury is still unclear. The goal of this study was to investigate the expression and function of microRNA-140 (miR-140) in the process of myocardial I/R injury. The miR-140 expression level was analyzed in the myocardium with I/R injury and control myocardium using quantitative real-time polymerase chain reaction. Then the relation between the level of miR-140 and YES proto-oncogene 1 (YES1) was also investigated via luciferase reporter assay. Assessment of myocardial infarct size measurement of serum myocardial enzymes and electron microscopy analysis were used for analyzing the effect of miR-140 on myocardial I/R injury. We also used Western blot analysis to examine the expression levels of the mitochondrial fission–related proteins, Drp1 and Fis1. miR-140 is downregulated, and YES1 is upregulated after myocardial I/R injury. Overexpression of miR-140 could reduce the increase related to myocardial I/R injury in infarct size and myocardial enzymes, and it also could inhibit the expression of proteins related to mitochondrial morphology and myocardial I/R-induced mitochondrial apoptosis by targeting YES1. Taken together, these findings may provide a novel insight into the molecular mechanism of miR-140 and YES1 in the progression of myocardial I/R injury. MiR-140 might become a promising therapeutic target for treating myocardial I/R injury. 相似文献
5.
Liliang Shu Wanzhe Zhang Gongcheng Huang Chen Huang Xiaohua Zhu Gang Su Jing Xu 《Journal of cellular physiology》2019,234(6):9274-9282
The aim of the current study was to investigate the effects and the underlying mechanisms of troxerutin on myocardial cell apoptosis during ischemia-reperfusion (I/R) injury. Hypoxia/reoxygenation (H/R) model in neonatal rat cardiomyocytes, and I/R model in rats, were established following troxerutin preconditioning. The quantitative real-time polymerase chain reaction analysis was performed to examine the messenger RNA miR-146a-5p expression in cardiomyocytes and myocardial tissues. Hemodynamic parameters and serum creatine kinase, lactate dehydrogenase, tumor necrosis factor-α, and interleukin-10 were evaluated. Infarct size was examined by 2,3,5-triphenyltetrazolium chloride staining. Besides, myocardial apoptosis was detected by terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assay. Western blot analysis was performed to determine the protein levels of caspase-3, Bax, and Bcl-2. The results showed that, troxerutin decreased rat cardiomyocyte apoptosis during H/R injury. Furthermore, the antiapoptotic effect of troxerutin against I/R injury was mediated by miR-146a-5p downregulation. In vivo experiments suggested that troxerutin alleviated myocardial I/R injury in rats via inhibition of miR-146a-5p. In conclusion, troxerutin exerted cardioprotective effects during I/R injury by downregulating miR-146a-5p. 相似文献
6.
Ischemia-reperfusion injury (IRI) has been recognized as a serious problem for therapy of cardiovascular diseases. Calcium regulation appears to be an important issue in the study of IRI. This article reviews calcium regulation in myocardial and vascular IRI, including the calcium overload and calcium sensitivity in IRI. This review is focused on the key players in Ca(2+) handling in IRI, including membrane damage resulting in increase in Ca(2+) influx, reverse-mode of Na(+)-Ca(2+) exchangers leading to increased Ca(2+) entry, the decreased activity of sarcoplasmic reticulum (SR) Ca(2+)-ATPase causing SR Ca(2+) uptake dysfunction, and increased activity of Rho kinase. These key players in Ca(2+) homeostasis will provide promising strategies and potential targets for therapy of cardiovascular IRI. 相似文献
7.
8.
依达拉奉通过JNK对大鼠离体心肌缺血再灌注损伤的保护作用 总被引:1,自引:0,他引:1
目的:研究依达拉奉(Edaravone)对大鼠离体心肌缺血再灌注损伤的保护作用.方法:将54只SD大鼠随机分为3组,包括对照组(control group),缺血再灌注组(I/R group),依达拉奉组(Ed group).灌注液为K-H液,37℃下建立心肌缺血再灌注模型,预灌注15min,缺血30min,再灌注40 min,分别测量①复灌20和40min时心功能指标:心率(HR)、左室收缩压(LVDP)、左室舒张末压(LVEDP)、心室内压最大变化速率(±dp/dtmax),②复灌20和40 min时肌酸激酶(CK)和乳酸脱氢酶(LDH)活性,③复灌40 min时超氧化物歧化酶(SOD)活性和和丙二醛(MDA)浓度,④复灌40min时心肌梗死面积,⑤复灌40min时心肌组织中JNK的磷酸化水平.结果:①依达拉奉组的±dp/dtmax明显回升(P<0.05),同时LVEDP、LVDP等指标也有明显改善(P<0.05);②再灌注40min时,与缺血再灌注组比,依达拉奉明显降低LDH和CK;③依达拉奉能显著降低MDA浓度,同时提高SOD水平(P<0.05);④依达拉奉组心肌梗死面积小于缺血再灌注组(P<0.05);⑤依达拉奉降低缺血心肌组织中磷酸化JNK的水平(P<0.05).结论:依达拉奉可以改善缺血心肌的血流动力学,增加心肌收缩力,减少心肌梗死面积;能发挥清除氧自由基,扭转氧化与抗氧化平衡系统失调的作用;其对离体心肌缺血再灌注的保护作用可能与JNK途径密切相关. 相似文献
9.
Thirunavukkarasu M Penumathsa SV Juhasz B Zhan L Cordis G Altaf E Bagchi M Bagchi D Maulik N 《American journal of physiology. Heart and circulatory physiology》2006,291(2):H820-H826
A novel niacin-bound, chromium-based energy formula (EF; InterHealth Nutraceuticals, Benicia, CA) has been developed in conjunction with D-ribose, caffeine, ashwagandha extract (containing 5% withanolides), and selected amino acids. We have assessed the efficacy of oral administration of EF (40 mg x kg body wt(-1) x day(-1)) in male and female rats over a period of 90 consecutive days on the cardiovascular and pathophysiological functions in an isolated rat heart model. After 30, 60, and 90 days of treatment with EF, the hearts of male and female rats were subjected to 30 min of global ischemia followed by 2 h of reperfusion and were measured for myocardial ATP, creatine phosphate (CP), phosphorylated AMP kinase (p-AMPK), and heat shock proteins. Myocardial ATP and CP levels were increased in both male and female rats after EF treatment compared with the controls. Western blot analyses were performed to quantify the expression of stress-related proteins such as heat shock proteins (HSP-70, -32, and -25) and are found to be increased in both male and female rats after EF treatment. The p-AMPK level, which is a sensor for the energy state in various cell types, was also found to be increased after treatment with EF in both male and female rats. Aortic flow, maximum first derivative of developed pressure, left ventricular developed pressure, and infarct size were observed after ischemia-reperfusion and found to be significantly improved in EF-treated rats compared with control animals. Thus EF demonstrated long-term safety as well as exhibiting significant cardioprotective ability during ischemia and reperfusion injury by increased energy production, improved cardiac function, and reduced infarct size. 相似文献
10.
The effects of labedipinedilol-A, a novel dihydropyridine-type calcium channel blocker with alpha-/beta-adrenoceptor blocking activities, on myocardial infarct size, apoptosis and necrosis in the rat after myocardial ischemia/reperfusion (45 min/120 min) were investigated. Ten minutes prior to left coronary artery occlusion, rats were treated with vehicle or labedipinedilol-A (0.25 or 0.5 mg/kg, i.v.). In the vehicle group, myocardial ischemia-reperfusion induced creatine kinase (CK) release and caused cardiomyocyte apoptosis, as evidenced by DNA ladder formation and terminal dUTP deoxynucleotidyltransferase nick end-labeling (TUNEL) staining. Treatment with labedipinedilol-A (0.25 or 0.5 mg/kg) reduced infarct size significantly compared to vehicle group (18.75+/-0.65% and 8.27+/-0.29% vs. 41.72+/-0.73%, P<0.01). Labedipinedilol-A also reduced the CK, CK-MB, lactate dehydrogenase (LDH) and troponin T levels in blood. In addition, labedipinedilol-A (0.5 mg/kg) significantly decreased TUNEL positive cells from 19.21+/-0.52% to 9.73+/-0.81% (P<0.01), which is consistent with absence of DNA ladders in the labedipinedilol-A group. Moreover, labedipinedilol-A pretreatment also decreased calcium content in ischemic-reperfused myocardial tissue. In conclusion, these results demonstrate that labedipindielol-A, through reduction of calcium overload and apoptosis, exerts anti-infarct effect during myocardial ischemia-reperfusion and would be useful clinically in the prevention of acute myocardial infarction. 相似文献
11.
The source(s) of reactive partially reduced oxygen species associated with myocardial ischemia/reperfusion injury remain unclear and controversial. Myoglobin has not been viewed as a participant but is present in relatively high concentrations in heart muscle and, even under normal conditions, undergoes reactions that generate met (Fe3+) species and also superoxide, hydrogen peroxide, and other oxidants, albeit slowly. The degree to which the decrease in pH and the freeing of copper ions, as well as the variations in pO2 associated with ischemia and reperfusion increase the rates of such myoglobin reactions has been investigated. Solutions of extensively purified myoglobin from bovine heart in 50 mM sodium phosphate buffer were examined at 37 degrees C. Sufficiently marked rate increases were observed to indicate that reactions of myoglobin can indeed contribute substantially to the oxidant stress associated with ischemia/reperfusion injury in myocardial tissues. These findings provide additional targets for therapeutic interventions. 相似文献
12.
Shirai K Watanabe K Ma M Wahed MI Inoue M Saito Y Suresh PS Kashimura T Tachikawa H Kodama M Aizawa Y 《Molecular and cellular biochemistry》2005,277(1-2):137-142
Myocardial ischemia-reperfusion (MI/R) has been implicated in the induction of inducible nitric oxide synthase (iNOS) that leads to increase production of nitric oxide (NO). Recently, excessive production of NO has been involved in causing myocardial injury. In our in vivo model, we examined the effects of aminoguanidine (AMG), a known iNOS inhibitor, on percentage infarct size in anaesthetized rats. A total of 14 rats were equally divided into two groups (n = 7 in each group). To produce myocardial necrosis, the left main coronary artery was occluded for 30 min, followed by 120 min of reperfusion, in anesthetized rats. AMG (200 mg kg−1) was given intravenously 10 min before occlusion. The volume of infarct size and the risk zone were determined by planimentry of each tracing and multiplying by the slice thickness. Infarct size was normalized by expressing it as a percentage of the area at risk. Hemodynamic parameters were measured via the left carotid artery. Compared to MI/R group, whereas AMG administration elevated mean arterial blood pressure, statistically reduced the myocardial infarct size (21± 1 and 14± 4%, respectively) and infract size/risk zone (53± 3 and 37± 5%, respectively) in rat model of ischemia-reperfusion. In conclusion, this study indicates that iNOS inhibitor, AMG, show reduction in NO’s side effect in I/R injury. 相似文献
13.
Antioxidants in myocardial ischemia-reperfusion injury: therapeutic potential and basic mechanisms 总被引:11,自引:0,他引:11
Marczin N El-Habashi N Hoare GS Bundy RE Yacoub M 《Archives of biochemistry and biophysics》2003,420(2):222-236
Oxidative stress is a constant threat to all living organisms and an immense repertoire of cellular defense systems is being employed by most pro- and eukaryotic systems to eliminate or to attenuate oxidative stress. Ischemia and reperfusion is characterized by both a significant oxidative stress and characteristic changes in the antioxidant defense. By focusing on this antioxidant response of the cardiovascular system in the setting of ischemia-reperfusion injury, the aim of this review was threefold. First, based on recent animal experiments and clinical studies we shall discuss how endogenous antioxidants respond to oxidative stress during ischemia-reperfusion injury and highlight the results of recent trials on the ability of antioxidants to modulate ischemia-reperfusion injury. In this aspect, we will particularly focus on the emerging concept that various lines of antioxidant defenses do not act individually but are linked to each other in a systematic relationship as part of an antioxidant network. It is well known that enzymatic mechanisms are important components of the endogenous antioxidant repertoire; however, the relative importance of the different enzyme systems and isoforms has been much debated. The second part will focus on recent suggestions attributing a potentially key role of mitochondrial MnSOD in cardiac ischemia-reperfusion injury. Finally, the third part of the review will critically examine how endogenous antioxidants might regulate the complex signal transduction pathways of cellular activation with particular attention to the NF-kappaB and MAPK systems that appears to determine outcome of injury, survival, and adaptation. 相似文献
14.
Wang M Baker L Tsai BM Meldrum KK Meldrum DR 《American journal of physiology. Endocrinology and metabolism》2005,288(2):E321-E326
The myocardium generates inflammatory mediators during ischemia-reperfusion (I/R), and these mediators contribute to cardiac functional depression and apoptosis. The great majority of these data have been derived from male animals and humans. Sex has a profound effect over many inflammatory responses; however, it is unknown whether sex affects the cardiac inflammatory response to acute myocardial I/R. We hypothesized the existence of inherent sex differences in myocardial function, expression of inflammatory cytokines, and activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway after I/R. Isolated rat hearts from age-matched adult males and females were perfused (Langendorff), and myocardial contractile function was continuously recorded. After I/R, myocardium was assessed for expression of TNF-alpha, IL-1beta, and IL-6 (RT-PCR, ELISA); IL-1alpha and IL-10 mRNA (RT-PCR); and activation of p38 MAPK (Western blot). All indexes of postischemic myocardial function [left ventricular developed pressure, left ventricular end-diastolic pressure, and maximal positive (+dP/dt) and negative (-dP/dt) values of the first derivative of pressure] were significantly improved in females compared with males. Compared with males, females had decreased myocardial TNF-alpha, IL-1beta, and IL-6 (mRNA, protein) and decreased activation of p38 MAPK pathway. These data demonstrate that hearts from age-matched adult females are relatively protected against I/R injury, possibly due to a diminished inflammatory response. 相似文献
15.
Hochhauser E Kivity S Offen D Maulik N Otani H Barhum Y Pannet H Shneyvays V Shainberg A Goldshtaub V Tobar A Vidne BA 《American journal of physiology. Heart and circulatory physiology》2003,284(6):H2351-H2359
The role of the proapototic Bax gene in ischemia-reperfusion (I/R) injury was studied in three groups of mice: homozygotic knockout mice lacking the Bax gene (Bax(-/-)), heterozygotic mice (Bax(+/-)), and wild-type mice (Bax(+/+)). Isolated hearts were subjected to ischemia (30 min, 37 degrees C) and then to 120 min of reperfusion. The left ventricular developed force of Bax-deficient vs. Bax(+/+) hearts at stabilization and at 120 min of reperfusion was 1,411 +/- 177 vs. 1,161 +/- 137 mg and 485 +/- 69 vs. 306 +/- 68 mg, respectively. Superior cardiac function of Bax(-/-) hearts after I/R was accompanied by a decrease in creatine kinase release, caspase 3 activity, irreversible ischemic injury, and the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cardiomyocytes. Electron microscopic evaluation revealed reduced damage to mitochondria and the nuclear chromatin structure in Bax-deficient mice. In the Bax(+/-) hearts, the damage markers were moderate. The superior tolerance of Bax knockout hearts to I/R injury recommends this gene as a potential target for therapeutic intervention in patients with severe and intractable myocardial ischemia. 相似文献
16.
Štefan Tóth Mikuláš Pomfy Peter Wohlfahrt Stanislava Pingorová Ján Kišš Peter Baláž Slavomír Rokošný Roman Beňačka Jarmila Veselá 《Biologia》2007,62(4):491-497
Apoptosis is a form of programmed cell death that plays an important role in small intestine ischemia-reperfusion (IR) injury.
The aim of this study was to determine the total proportion of apoptotic cell death (apoptotic index) following injury induced
by ischemia and during various subsequent reperfusion periods, total histopathological status and the intestine regeneration
dynamics after the IR injury. Experimental animals, Wistar rats (n = 45) were divided into three experimental and one control groups. In the experimental groups 1 h ischemia was followed by
1, 4 and 24 h reperfusion. Intestinal ischemia was induced by superior mesenteric artery (SMA) occlusion. Segments of jejunum
were stained with hematoxylin and eosin and studied immunohistochemically using M30 CytoDEATH and in situ TUNEL methods for apoptosis detection. Our experimental data showed that: (i) apoptosis is an important form of cell death
in the small intestine after IR injury induced by SMA occlusion; (ii) maximum levels of histopathological damage and apoptotic
index of mucosa occurred after 1 h ischemia and 1 h of reperfusion; and (iii) mucosa possesses great regeneration ability.
The lowest levels of histopathological damage and apoptotic index were observed in the group with 1 h ischemia and 24 h reperfusion
where, however, the highest mitotic index was present. 相似文献
17.
It is well established that reperfusion of heart is the optimal method for salvaging ischemic myocardium, however, the success of this therapy could be limited by reperfusion injury, which is involved in inflammatory responses. High density lipoprotein (HDL) has an anti-inflammatory function and can protect the heart from ischemia-reperfusion (I/R) injury. In this study, we investigated the cardioprotective role of apolipoprotein A-I (ApoA-I), the major apolipoprotein of HDL, in I/R injury. Using rats subjected to myocardial I/R by ligation of left anterior descending coronary artery (LAD), we found that administration of ApoA-I (20 mg/kg, iv) before the onset of reperfusion of myocardial infarction can significantly reduce serum creatine kinase (CK) levels (62.1+/-13.8%, p<0.01) and heart TNF-alpha as well as IL-6 levels, compared with saline controls (40.4+/-14.7%, 44+/-9.8%, p<0.01 respectively). Moreover, ApoA-I treatment suppresses the expression of ICAM-1 on endothelium, thus diminishing neutrophil adherence, transendothelial migration, and the subsequent myocyte injury. We concluded that ApoA-I could effectively protect rat heart from I/R injury. 相似文献
18.
Zhai P Eurell TE Cotthaus R Jeffery EH Bahr JM Gross DR 《American journal of physiology. Heart and circulatory physiology》2000,279(6):H2766-H2775
We investigated the effects of estrogen on global myocardial ischemia-reperfusion injury in rats that were ovariectomized (Ovx), sham-operated, or ovariectomized and then given 17beta-estradiol (E(2)beta) supplementation (Ovx+E(2)beta). Hearts were excised, cannulated, perfused with and then immersed in chilled (4 degrees C) cardioplegia solution for 30 min, and then retrogradely perfused with warm (37 degrees C), oxygenated Krebs-Henseleit bicarbonate buffer for 120 min. The coronary flow rate, first derivative of left ventricular pressure, and nitrite production were all significantly lower in Ovx than in sham-operated or Ovx+E(2)beta hearts. However, coronary flow rates or nitrate production were not consistently different throughout the entire reperfusion period. Ca(2+) accumulated more in Ovx rat hearts than in sham-operated or Ovx+E(2)beta hearts, and mitochondrial respiratory function was lower in Ovx hearts than in hearts from the other two groups. Marked interstitial edema and contraction bands were seen in hematoxylin-eosin-stained sections of Ovx rat hearts but not in hearts from either of the other groups. Hematoxylin-basic fuchsin-picric acid-stained sections revealed fewer viable myocytes in hearts from the Ovx group than from the sham or Ovx+E(2)beta group. Transmission electron microscopy demonstrated more severely damaged mitochondria and ultrastructural damage to myocytes in Ovx rat hearts. Our results indicate that estrogen plays a cardioprotective role in global myocardial ischemia-reperfusion injury in female rats. 相似文献
19.
The purpose of this study is to examine the antiarrhythmic and antioxidant effects of tamoxifen, one of the selective estrogen
modulators, in ovariectomized rats subjected to myocardial ischemia-reperfusion (I/R) injury. A month after ovariectomy, rats
were divided into four groups: (I) ovariectomized controls without any treatment, (II) ovariectomized rats treated with vehicle
dimethylsulfoxide (DMSO), (III)–(IV) ovariectomized rats treated with tamoxifen 1 or 10 mg/kg,sc daily for 14 days. To produce
arrhythmia, the left main coronary artery was occluded for 7 min, followed by 7 min of reperfusion. The blood pressure (BP),
heart rate (HR), electrocardiography (ECG) was recorded before and during the ischemia-reperfusion period. The blood levels
of malondialdehyde (MDA), creatine kinase (CK), glutathione (GSH), glutathione peroxidase (GSH-Px), glutathione reductase
(GR), and catalase (CAT) were measured after the rats were killed. Tamoxifen reduced the incidence of ventricular tachycardia
(VT) on ischemia and reperfusion as well as the incidence and duration of reversible ventricular fibrillation (VF) on reperfusion.
I/R injury caused a significant fall in GSH, GSH-Px as well as an increase in MDA and CK levels in the control group when
compared to tamoxifen treated groups. The changes in levels of CAT and GR were however, not significant. In conclusion, our
findings suggest that tamoxifen has cardioprotective effects against I/R injury in rats, likely its antioxidant properties. 相似文献
20.
Chandrasekar B Nelson JF Colston JT Freeman GL 《American journal of physiology. Heart and circulatory physiology》2001,280(5):H2094-H2102
The life-prolonging effects of calorie restriction (CR) may be due to reduced damage from cumulative oxidative stress. Our goal was to determine the long-term effects of moderate dietary CR on the myocardial response to reperfusion after a single episode of sublethal ischemia. Male Fisher 344 rats were fed either an ad libitum (AL) or CR (40% less calories) diet. At age 12 mo the animals were anaesthetized and subjected to thoracotomy and a 15-min left-anterior descending coronary artery occlusion. The hearts were reperfused for various periods. GSH and GSSG levels, nuclear factor-kappaB (NF-kappaB) DNA binding activity, cytokine, and antioxidant enzyme expression were assessed in the ischemic zones. Sham-operated animals served as controls. Compared with the AL diet, chronic CR limited oxidative stress as seen by rapid recovery in GSH levels in previously ischemic myocardium. CR reduced DNA binding activity of NF-kappaB. The kappaB-responsive cytokines interleukin-1beta and tumor necrosis factor-alpha were transiently expressed in the CR group but persisted longer in the AL group. Furthermore, expression of manganese superoxide dismutase, a key antioxidant enzyme, was significantly delayed in the AL group. Collectively these data indicate that CR significantly attenuates myocardial oxidative stress and the postischemic inflammatory response. 相似文献