共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Electrotonic cancellation of transmural electrical gradients in the left ventricle in man 总被引:4,自引:0,他引:4
Taggart P Sutton P Opthof T Coronel R Kallis P 《Progress in biophysics and molecular biology》2003,82(1-3):243-254
Myocardial cells isolated from different depths of the ventricular wall show substantial differences in action potential duration. Whether these electrophysiological differences are present in vivo when the cells are well coupled is a subject of ongoing controversy. This article provides a brief review and includes experimental evidence derived from patients undergoing cardiac surgery. 相似文献
3.
Li X Xu Z Li S Rozanski GJ 《American journal of physiology. Heart and circulatory physiology》2005,288(3):H1417-H1424
Oxidative stress and the resulting change in cell redox state are proposed to contribute to pathogenic alterations in ion channels that underlie electrical remodeling of the diseased heart. The present study examined whether K(+) channel remodeling is controlled by endogenous oxidoreductase systems that regulate redox-sensitive cell functions. Diabetes was induced in rats by streptozotocin, and experiments were conducted after 3-5 wk of hyperglycemia. Spectrophotometric assays of ventricular tissue extracts from diabetic rat hearts revealed divergent changes in two major oxidoreductase systems. The thioredoxin (TRX) system in diabetic rat heart was characterized by a 52% decrease in TRX reductase (TRXR) activity from control heart (P < 0.05), whereas TRX activity was 1.7-fold greater than control heart (P < 0.05). Diabetes elicited similar changes in the glutaredoxin (GRX) system: glutathione reductase was decreased 35% from control level (P < 0.05), and GRX activity was 2.5-fold greater than in control heart (P < 0.05). The basal activity of glucose-6-phosphate dehydrogenase, which generates NADPH required by the TRX and GRX systems, was not altered by diabetes. Voltage-clamp studies showed that the characteristically decreased density of the transient outward K(+) current (I(to)) in isolated diabetic rat myocytes was normalized by in vitro treatment with insulin (0.1 microM) or the metabolic activator dichloroacetate (1.5 mM). The effect of these agonists on I(to) was blocked by inhibitors of glucose-6-phosphate dehydrogenase. Moreover, inhibitors of TRXR, which controls the reducing activity of TRX, also blocked upregulation of I(to) by insulin and dichloroacetate. These data suggest that K(+) channels underlying I(to) are regulated in a redox-sensitive manner by the TRX system and the remodeling of I(to) that occurs in diabetes may be due to decreased TRXR activity. We propose that oxidoreductase systems are an important repair mechanism that protects ion channels and associated regulatory proteins from irreversible oxidative damage. 相似文献
4.
Kontogeorgis A Li X Kang EY Feig JE Ponzio M Kang G Kaba RA Wit AL Fisher EA Morley GE Peters NS Coetzee WA Gutstein DE 《American journal of physiology. Heart and circulatory physiology》2008,295(5):H1905-H1916
Gap junction redistribution and reduced expression, a phenomenon termed gap junction remodeling (GJR), is often seen in diseased hearts and may predispose toward arrhythmias. We have recently shown that short-term pacing in the mouse is associated with changes in connexin43 (Cx43) expression and localization but not with increased inducibility into sustained arrhythmias. We hypothesized that short-term pacing, if imposed on murine hearts with decreased Cx43 abundance, could serve as a model for evaluating the electrophysiological effects of GJR. We paced wild-type (normal Cx43 abundance) and heterozygous Cx43 knockout (Cx43+/-; 66% mean reduction in Cx43) mice for 6 h at 10-15% above their average sinus rate. We investigated the electrophysiological effects of pacing on the whole animal using programmed electrical stimulation and in isolated ventricular myocytes with patch-clamp studies. Cx43+/- myocytes had significantly shorter action potential durations (APD) and increased steady-state (Iss) and inward rectifier (I(K1)) potassium currents compared with those of wild-type littermate cells. In Cx43+/- hearts, pacing resulted in a significant prolongation of ventricular effective refractory period and APD and significant diminution of Iss compared with unpaced Cx43+/- hearts. However, these changes were not seen in paced wild-type mice. These data suggest that Cx43 abundance plays a critical role in regulating currents involved in myocardial repolarization and their response to pacing. Our study may aid in understanding how dyssynchronous activation of diseased, Cx43-deficient myocardial tissue can lead to electrophysiological changes, which may contribute to the worsened prognosis often associated with pacing in the failing heart. 相似文献
5.
Summary The passive electrical properties of neonatal rat heart cells grown in monolayer cultures were determined. Hyperpolarizing current pulses were injected through one microelectrode via an active bridge circuit. Membrane voltage displacements caused by the injected current pulses were measured at various distances from the first with a second microelectrode. Using a modified least-squares method the experimental results were fitted to a Bessel function, which is the steady-state solution of the differential equation describing the relation between membrane voltage caused by current injection and interelectrode distance in a very large and very thin plane cell. Best fit was obtained with a space constant of 360 m and an internal resistivity of 500 cm. From these figures, specific membrane resistance was calculated to be 1,300 cm2, assuming all current to leave through the upper surface of the monolayer.The time constant of the membrane was measured from the time course of the current-induced membrane voltage displacements. From its value of 1.7 msec a membrane capacity of 1.3 F/cm2 was calculated.From these results and some literature data on nexus distribution (A. W. Spira,J. Ultrastruct. Res.
34:409, 1971) specific nexus resistance was calculated to range between 0.25 and 1.25 cm2, depending on the amount of folding of the intercalated discs. The results suggest that spread of activation in monolayer cultures of heart cells by means of local circuit currents is very likely. 相似文献
6.
Carlos L Del Rio Patrick I McConnell Monica Kukielka Roger Dzwonczyk Bradley D Clymer Michael B Howie George E Billman 《Journal of applied physiology》2008,104(2):386-393
Passive electrical remodeling following myocardial infarction (MI) is well established. These changes can alter electrotonic loading and trigger the remodeling of repolarization currents, a potential mechanism for ventricular fibrillation (VF). However, little is known about the role of passive electrical markers as tools to identify VF susceptibility post-MI. This study investigated electrotonic remodeling in the post-MI ventricle, as measured by myocardial electrical impedance (MEI), in animals prone to and resistant to VF. MI was induced in dogs by a two-stage left anterior descending (LAD) coronary artery ligation. Before infarction, MEI electrodes were placed in remote (left circumflex, LCX) and infarcted (LAD) myocardium. MEI was measured in awake animals 1, 2, 7, and 21 days post-MI. Subsequently, VF susceptibility was tested by a 2-min LCX occlusion during exercise; 12 animals developed VF (susceptible, S) and 12 did not (resistant, R). The healing infarct had lower MEI than the normal myocardium. This difference was stable by day 2 post-MI (287 +/- 32 Omega vs. 425 +/- 62 Omega, P < 0.05). Significant differences were observed between resistant and susceptible animals 7 days post-MI; susceptible dogs had a wider electrotonic gradient between remote and infarcted myocardium (R: 89 +/- 60 Omega vs. S: 180 +/- 37 Omega). This difference increased over time in susceptible animals (252 +/- 53 Omega at 21 days) due to post-MI impedance changes on the remote myocardium. These data suggest that early electrotonic changes post-MI could be used to assess later arrhythmia susceptibility. In addition, passive-electrical changes could be a mechanism driving active-electrical remodeling post-MI, thereby facilitating the induction of arrhythmias. 相似文献
7.
McGowan BS Scott CB Mu A McCormick RJ Thomas DP Margulies KB 《American journal of physiology. Heart and circulatory physiology》2003,284(6):H2061-H2068
To date, no study has assessed the degree of similarity between left ventricular (LV) reverse remodeling and atrophic remodeling. Stable LV hypertrophy was induced by creation of an arteriovenous fistula (AVF) in Lewis rats (32 days). LV unloading was induced by heterotopic transplantation of normal (NL-HT) and/or hypertrophic (AVF-HT) hearts (7 days). We compared indexes of remodeling in AVF, NL-HT, and AVF-HT groups with those of normal controls. LV unloading induced decreases in cardiomyocyte size in NL-HT and AVF-HT hearts. NL-HT and AVF-HT LV were both characterized by relative increases in collagen concentration that were largely a reflection of decreases in myocyte volume. NL-HT and AVF-HT LV were associated with similar increases in matrix metalloproteinase (MMP-2 and -9) zymographic activity, without change in the abundance of the tissue inhibitors of the MMPs. In contrast, AVF-HT, but not NL-HT, was associated with a dramatic increase in collagen cross-linking. Our findings suggest an overall similarity in the response of the normal and hypertrophic LV to surgical unloading. However, the dramatic increase in collagen cross-linking after just 1 wk of unloading suggests a potential difference in the dynamics of collagen metabolism between the two models. Further studies will be required to determine the precise molecular mechanisms responsible for these differences in extracellular matrix regulation. However, with respect to these and related issues, heterotopic transplantation of hypertrophied hearts will be a useful small animal model for defining mechanisms of myocyte-matrix interactions during decreased loading conditions. 相似文献
8.
9.
Altered pressure in the developing left ventricle (LV) results in altered morphology and tissue material properties. Mechanical stress and strain may play a role in the regulating process. This study showed that confocal microscopy, three-dimensional reconstruction, and finite element analysis can provide a detailed model of stress and strain in the trabeculated embryonic heart. The method was used to test the hypothesis that end-diastolic strains are normalized after altered loading of the LV during the stages of trabecular compaction and chamber formation. Stage-29 chick LVs subjected to pressure overload and underload at stage 21 were reconstructed with full trabecular morphology from confocal images and analyzed with finite element techniques. Measured material properties and intraventricular pressures were specified in the models. The results show volume-weighted end-diastolic von Mises stress and strain averaging 50–82 % higher in the trabecular tissue than in the compact wall. The volume-weighted-average stresses for the entire LV were 115, 64, and 147 Pa in control, underloaded, and overloaded models, while strains were 11, 7, and 4 %; thus, neither was normalized in a volume-weighted sense. Localized epicardial strains at mid-longitudinal level were similar among the three groups and to strains measured from high-resolution ultrasound images. Sensitivity analysis showed changes in material properties are more significant than changes in geometry in the overloaded strain adaptation, although resulting stress was similar in both types of adaptation. These results emphasize the importance of appropriate metrics and the role of trabecular tissue in evaluating the evolution of stress and strain in relation to pressure-induced adaptation. 相似文献
10.
Simko F Matúsková J Lupták I Pincíková T Krajcírovicová K Stvrtina S Pomsár J Pelouch V Paulis L Pechánová O 《Physiological research / Academia Scientiarum Bohemoslovaca》2007,56(Z2):S25-S32
Aldosterone receptor antagonist, spironolactone, has been shown to prevent remodeling of the heart in several models of left ventricular hypertrophy. The aim of the present study was to determine whether the treatment with spironolactone can prevent hypertension, reduction of tissue nitric oxide synthase activity and left ventricular (LV) and aortic remodeling in N(G)-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Four groups of rats were investigated: control, spironolactone (200 mg/kg), L-NAME (40 mg/kg) and L-NAME + spironolactone (in corresponding dosage). Animals were studied after 5 weeks of treatment. The decrease of NO-synthase activity in the LV and kidney was associated with the development of hypertension and LV hypertrophy, with increased DNA concentration in the LV, and remodeling of the aorta in the L-NAME group. Spironolactone prevented the inhibition of NO-synthase activity in the LV and kidney and partially attenuated hypertension and LVH development and the increase in DNA concentration. However, remodeling of the aorta was not prevented by spironolactone treatment. We conclude that the aldosterone receptor antagonist spironolactone improved nitric oxide production and partially prevented hypertension and LVH development without preventing hypertrophy of the aorta in NO-deficient hypertension. The reactive growth of the heart and aorta seems to be controlled by different mechanisms in L-NAME-induced hypertension. 相似文献
11.
Holgate ST 《Molecular biotechnology》2002,22(2):179-189
Asthma is a chronic inflammatory disorder of the airways interacting with altered structure and function of the formed elements
including smooth muscle. While atopy and polarization of the airway T-cell response toward a Th-2 phenotype are important
factors in asthma pathogenesis, there is increasing realization that remodeling events are also important. Evidence is presented
that inflammation and altered airway structure in asthma interact through the epithelium and underlying mesenchyme. As in
other chronic inflammatory disorders, a dynamic interplay between mediators, cytokines, and growth factors provides a broader
base on which to identify novel preventative and therapeutic strategies in asthma. 相似文献
12.
Effect of simvastatin on remodeling of the left ventricle and aorta in L-NAME-induced hypertension 总被引:6,自引:0,他引:6
Simko F Matuskova J Luptak I Krajcirovicova K Kucharska J Gvozdjakova A Babal P Pechanova O 《Life sciences》2004,74(10):1211-1224
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors have been shown to prevent or reverse hypertrophy of the LV in several models of left ventricular hypertrophy. The aim of the present study was to determine whether treatment with simvastatin can prevent hypertension, reduction of tissue nitric oxide synthase activity and left ventricular (LV) remodeling in NG-nitro-L-arginine methyl ester(L-NAME)-induced hypertension. Four groups of rats were investigated: control, simvastatin (10 mg/kg), L-NAME (40 mg/kg) and L-NAME + simvastatin (in corresponding doses). Animals were sacrificed and studied after 6 weeks of treatment. The decrease of NO-synthase activity in the LV, kidney and brain was associated with hypertension, LV hypertrophy and fibrosis development and remodeling of the aorta in the L-NAME group. Simvastatin attenuated the inhibition of NO-synthase activity in kidney and brain, partly prevented hypertension development and reduced the concentration of coenzyme Q in the LV. Nevertheless, myocardial hypertrophy, fibrosis and enhancement of DNA concentration in the LV, and remodeling of the aorta were not prevented by simultaneous simvastatin treatment in the L-NAME treated animals.We conclude that the HMG-CoA reductase inhibitor simvastatin improved nitric oxide production and partially prevented hypertension development, without preventing remodeling of the left ventricle and aorta in NO-deficient hypertension. 相似文献
13.
Yu-Jun Lai Chung-Lieh Hung Ray-Ching Hong Ya-Ming Tseng Cheng-I Lin Yu-Shien Ko Cheng-Ho Tsai Hung-I Yeh 《Journal of biomedical science》2011,18(1):72
Background
Long-term heavy alcohol drinkers are prone to the development of cardiac arrhythmia. To understand the mechanisms, we evaluated the cardiac structural and electrophysiological changes in mice chronically drinking excessive alcohol. 相似文献14.
Cancer induces cardiomyocyte remodeling and hypoinnervation in the left ventricle of the mouse heart
Mühlfeld C Das SK Heinzel FR Schmidt A Post H Schauer S Papadakis T Kummer W Hoefler G 《PloS one》2011,6(5):e20424
Cancer is often associated with cachexia, cardiovascular symptoms and autonomic dysregulation. We tested whether extracardiac cancer directly affects the innervation of left ventricular myocardium. Mice injected with Lewis lung carcinoma cells (tumor group, TG) or PBS (control group, CG) were analyzed after 21 days. Cardiac function (echocardiography), serum levels of TNF-α and Il-6 (ELISA), structural alterations of cardiomyocytes and their innervation (design-based stereology) and levels of innervation-related mRNA (quantitative RT-PCR) were analysed. The groups did not differ in various functional parameters. Serum levels of TNF-α and Il-6 were elevated in TG. The total length of axons in the left ventricle was reduced. The number of dense core vesicles per axon profile was reduced. Decreased myofibrillar volume, increased sarcoplasmic volume and increased volume of lipid droplets were indicative of metabolic alterations of TG cardiomyocytes. In the heart, the mRNA level of nerve growth factor was reduced whereas that of β1-adrenergic receptor was unchanged in TG. In the stellate ganglion of TG, mRNA levels of nerve growth factor and neuropeptide Y were decreased and that of tyrosine hydroxylase was increased. In summary, cancer induces a systemic pro-inflammatory state, a significant reduction in myocardial innervation and a catabolic phenotype of cardiomyocytes in the mouse. Reduced expression of nerve growth factor may account for the reduced myocardial innervation. 相似文献
15.
16.
Lourenço AP Roncon-Albuquerque R Brás-Silva C Faria B Wieland J Henriques-Coelho T Correia-Pinto J Leite-Moreira AF 《American journal of physiology. Heart and circulatory physiology》2006,291(4):H1587-H1594
In monocrotaline (MCT)-induced pulmonary hypertension (PH), only the right ventricle (RV) endures overload, but both ventricles are exposed to enhanced neuroendocrine stimulation. To assess whether in long-standing PH the left ventricular (LV) myocardium molecular/contractile phenotype can be disturbed, we evaluated myocardial function, histology, and gene expression of autocrine/paracrine systems in rats with severe PH 6 wk after subcutaneous injection of 60 mg/kg MCT. The overloaded RV underwent myocardial hypertrophy (P < 0.001) and fibrosis (P = 0.014) as well as increased expression of angiotensin-converting enzyme (ACE) (8-fold; P < 0.001), endothelin-1 (ET-1) (6-fold; P < 0.001), and type B natriuretic peptide (BNP) (15-fold; P < 0.001). Despite the similar upregulation of ET-1 (8-fold; P < 0.001) and overexpression of ACE (4-fold; P < 0.001) without BNP elevation, the nonoverloaded LV myocardium was neither hypertrophic nor fibrotic. LV indexes of contractility (P < 0.001) and relaxation (P = 0.03) were abnormal, however, and LV muscle strips from MCT-treated compared with sham rats presented negative (P = 0.003) force-frequency relationships (FFR). Despite higher ET-1 production, BQ-123 (ET(A) antagonist) did not alter LV MCT-treated muscle strip contractility distinctly (P = 0.005) from the negative inotropic effect exerted on shams. Chronic daily therapy with 250 mg/kg bosentan (dual endothelin receptor antagonist) after MCT injection not only attenuated RV hypertrophy and local neuroendocrine activation but also completely reverted FFR of LV muscle strips to positive values. In conclusion, the LV myocardium is altered in advanced MCT-induced PH, undergoing neuroendocrine activation and contractile dysfunction in the absence of hypertrophy or fibrosis. Neuroendocrine mediators, particularly ET-1, may participate in this functional deterioration. 相似文献
17.
Simko F Potácová A Pelouch V Paulis L Matúsková J Krajcírovicová K Pechánová O Adamcová M 《Physiological research / Academia Scientiarum Bohemoslovaca》2007,56(Z2):S55-S62
N(G)-nitro-L-arginine-methyl ester (L-NAME)-induced hypertension is associated with protein remodeling of the left ventricle. The aim of the study was to show, whether aldosterone receptor blocker spironolactone and precursor of NO-production L-arginine were able to reverse the protein rebuilding of the left ventricle. Six groups of male Wistar rats were investigated: control 4 (4 weeks placebo), L-NAME (4 weeks L-NAME), spontaneous-regression (4 weeks L-NAME + 3 weeks placebo), spironolactone-regression (4 weeks L-NAME + 3 weeks spironolactone), L-arginine-regression (4 weeks L-NAME + 3 weeks arginine), control 7 (7 weeks placebo). L-NAME administration induced hypertension, hypertrophy of the left ventricle (LV), and the increase of metabolic and contractile as well as soluble and insoluble collagenous protein concentration. The systolic blood pressure and relative weight of the LV decreased in all three groups with regression, while the most prominent attenuation of the LVH was observed after spironolactone treatment. In the spontaneous-regression and L-arginine-regression groups the concentrations of individual proteins were not significantly different from the control value. However, in the spironolactone-regression group the concentration of metabolic, contractile and insoluble collagenous proteins remained significantly increased in comparison with the control group. The persistence of the increased protein concentration in the spironolactone group may be related to the more prominent reduction of myocardial water content by spironolactone. 相似文献
18.
Luodonpää M Rysä J Pikkarainen S Tenhunen O Tokola H Puhakka J Marttila M Vuolteenaho O Ruskoaho H 《Regulatory peptides》2003,111(1-3):153-159
Xenin is a 25 amino acid peptide produced by specific endocrine cells of the duodenal mucosa. Xenin has multiple biological actions in the gastrointestinal tract. It modulates intestinal motility, affects exocrine pancreatic secretion, and gastric secretion of acid. In the present investigation, we studied plasma concentration of xenin in volunteers after modified sham feeding and after meals of different composition. Plasma xenin concentrations were determined by radioimmunoassay in unextracted plasmas and after acidic extraction using C-18 Sep-Pak chromatography and after neutral extraction using affinity filtration. Both extraction methods were followed by C 18 r.p. HPLC chromatography. Xenin plasma concentrations in unextracted and in extracted plasma rose significantly after modified sham feeding when the food was brought to the volunteers from another room immediately before sham feeding started. When the volunteers had the opportunity to observe the preparation of the meal, xenin plasma concentrations during fasting were high and no further rise was observed after sham feeding. Isocaloric feeding resulted in elevated xenin concentrations in unextracted plasma and after high-pressure liquid chromatography. The methods of extraction, acidic or neutral, did not affect the results. CONCLUSION: Cephalic factors, investigated by modified sham feeding, stimulate release of xenin into the circulation. Xenin may participate in the central nervous regulation of gastrointestinal function. 相似文献
19.
B. Fritz W. Küster Karen Helene Ørstavik Anna Naumova Jürgen Spranger Helga Rehder 《Human genetics》1998,103(4):441-449
We report on a female with mental and motor retardation, facial dysmorphism, abnormal pigmentation reminiscent to hypomelanosis
of Ito (HI), and karyotypic mosaicism involving a small supernumerary marker chromosome. The marker chromosome was defined
by fluorescence in situ hybridisation (FISH) as a ring X chromosome with breakpoints in the juxtacentromeric region. FISH
analysis showed that the ring does not include the XIST locus at the X-inactivation centre and, therefore, may not be subject to X inactivation. X-inactivation studies with the
HUMARA (human androgen receptor) and FMR1 assay showed a skewed X-inactivation pattern (85:15) with preferential inactivation of the paternal X chromosome. These results
are discussed with respect to the role of functional disomy of Xp in the pathogenesis of HI.
Received: 16 February 1998 / Accepted: 17 July 1998 相似文献
20.
Single ventricular myocytes of adult mice were prepared by enzymatic dissociation for voltage clamp experiments with the one suction pipette dialysis method. After blocking the Na current by 10(-4) mol/l TTX early outward currents (IEO) with incomplete inactivation could be elicited by clamping from -50 mV to test potentials (VT) positive to -30 mV. Interfering Ca currents were very small (less than 0.6 nA at VT = 0 mV). The approximation of IEO by the q4r-model showed a pronounced decrease in the time constant of activation (tau q) to more positive potentials. At 50 ms test pulses the time course of the incomplete inactivation could be described by two exponentials and a constant. The time constant of the fast exponential (tau r1) showed a slight decline towards more positive test potentials (8.1 +/- 1.0 ms at -10 mV; 5.8 +/- 1.2 ms at +50 mV, mean +/- SD, n = 5) whereas the time constant of the slow exponential (tau r2) was voltage independent (41.1 +/- 7.9 ms, mean +/- SD, n = 5). The contributions of the fast exponential and the pedestal increased towards positive test potentials. The Q10 value for the time constants of activation and fast inactivation was 2.36 +/- 0.19 and 2.51 +/- 0.09 (mean +/- SD, n = 3), respectively. After an initial delay the recovery of IEO at a recovery potential of -50 mV could be fitted monoexponentially with a time constant of 16.3 +/- 2.9 ms (mean +/- SD, n = 3). The time course of the onset of inactivation determined with the double pulse protocol was slower than the decay at the same potential, and could be described as sum of a fast (tau = 18.4 +/- 6.0 ms) and a slow (tau = 62.1 +/- 19.9ms, mean +/- SD, n = 3) exponential. IEO could be blocked completely by 1 mmol/l 4-aminopyridine at potentials up to +20 mV. Stronger depolarizations had an unblocking effect. 相似文献