首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quorum sensing is a global gene-regulatory mechanism in bacteria that enables individual bacterial cells to communicate and coordinate their population behaviors. Quorum sensing is central to the pathogenesis of many bacterial pathogens including Pseudomonas aeruginosa and therefore has been exploited as a target for developing novel antipathogenic drugs. In P. aeruginosa , three intertwined quorum-sensing systems, las, rhl , and the 2-alkyl-4(1 H )-quinolone system, which includes the Pseudomonas quinolone signal (PQS), control virulence factor production, and pathogenesis processes. Previously, we obtained a mutant with diminished expression of the phzA1B1C1D1E1F1G1 operon that is involved in the production of virulence factor phenazine compounds. In this study, the mutant was further characterized, and evidence indicating that the disrupted gene PA1196 in the mutant is a potential regulator of the rhl and PQS systems is presented. PA1196 positively controls the expression of the rhl and PQS systems and affects bacterial motility and multiple virulence factor expression via the quorum-sensing systems. This adds an important new player in the complex quorum-sensing network in P. aeruginosa .  相似文献   

2.
Quorum-sensing systems that have been widely identified in bacteria play important roles in the regulation of bacterial multicellular behavior by which bacteria sense population density to control various biological functions, including virulence. One characteristic of the luxIR quorum-sensing genes is their diverse and discontinuous distribution among proteobacteria. Here we report that the spnIR quorum-sensing system identified in the enterobacterium Serratia marcescens strain SS-1 is carried in a transposon, TnTIR, which has common characteristics of Tn3 family transposons and is mobile between chromosomes and plasmids of different enterobacterial hosts. SpnIR functions in the new host and was shown to negatively regulate the TnTIR transposition frequency. This finding may help reveal the horizontal transfer and evolutionary mechanism of quorum-sensing genes and alter the way that we perceive regulation of bacterial multicellular behavior.  相似文献   

3.
Today, we find ourselves in an urgent need for novel antibacterial drugs, as many important human pathogens have acquired multiple antibiotic resistance factors. Among those, Staphylococcus aureus and S. epidermidis play a major role as the leading sources of nosocomial infections. Recently, it has been suggested to develop therapeutics that attack bacterial virulence rather than kill bacteria. Such drugs are called "antipathogenic" and are believed to reduce the development of antibiotic resistance. Specifically, cell-density-dependent gene regulation (quorum-sensing) in bacteria has been proposed as a potential target. While promising reports exist about quorum-sensing blockers in gram-negative bacteria, the use of the staphylococcal quorum-sensing system as a drug target is now seen in an increasingly critical way. Inhibition of quorum-sensing in Staphylococcus has been shown to enhance biofilm formation. Furthermore, down-regulation or mutation of the Staphylococcus quorum-sensing system increases bacterial persistence in device-related infection, suggesting that interference with quorum-sensing would enhance rather than suppress this important type of staphylococcal disease. The chemical nature and biological function of another proposed staphylococcal quorum-sensing inhibitor, named "RIP", are insufficiently characterized. Targeting quorum-sensing systems might in principle constitute a reasonable way to find novel antibacterial drugs. However, as outlined here, this approach requires careful investigation in every specific pathogen and type of infection.  相似文献   

4.
Recent advances in studying the quorum-sensing systems, which regulate gene expression depending on population density, are reviewed. Low-molecular-weight acyl derivatives of L-homoserine lactone (N-AHL) freely diffuse through cell membranes and determine cell-to-cell communications in bacteria. The quorum-sensing systems have first been found to regulate bioluminescence in marine bacteria Photobacterium (Vibrio) fischeri and Vibrio harveyi. Such systems are widespread and control expression of genes for virulence factors, proteases, antibiotics, etc., in various Gram-negative bacteria, including plant, animal, and human pathogens. Quorum sensing is a prominent example of social behavior in bacteria, as signal exchange among individual cells allows the entire population to choose an optimal way of interaction with the environment and with higher organisms.  相似文献   

5.
The rpoS gene which encodes a stationary phase sigma factor has been identified and characterised from the rhizosphere-colonising plant growth-promoting Pseudomonas putida strain WCS358. The predicted protein sequence has extensive homologies with the RpoS proteins form other bacteria, in particular with the RpoS sigma factors of the fluorescent pseudomonads. A genomic transposon insertion in the rpoS gene was constructed, these mutants were analysed for their ability to produce siderophore (iron-transport agent) and the autoinducer quorum-sensing molecules called homoserine lactones (AHL). It was determined that RpoS was not involved in the regulation of siderophore and AHL production, synthesis of these molecules is important for gene expression at stationary phase. P. putida WCS358 produces at least three different AHL molecules.  相似文献   

6.
《Biophysical journal》2022,121(12):2398-2410
Quorum sensing is a bacterial cell-cell communication process that regulates gene expression. The search and binding of the autoinducer molecule (AHL)-bound LuxR-type proteins to specific sites on DNA in quorum-sensing cells in Gram-negative bacteria is a complex process and has been theoretically investigated based on a discrete-state stochastic approach. It is shown that several factors such as the rate of formation of the AHL-bound LuxR protein within the cells and its dissociation to freely diffusing AHL, the diffusion of the latter in and out of the cells, positive feedback loops, and the cell population density play important roles in the protein target search and can control the gene regulation processes. Physical-chemical arguments to explain these observations are presented. Our calculations of the dynamic properties are also supplemented by Monte Carlo computer simulations. Our theoretical model provides physical insights into the complex mechanisms of protein target search in quorum-sensing cells.  相似文献   

7.
Reviewed are recent advances in studying the quorum-sensing systems, which regulate gene expression depending on population density. Low-molecular-weight acyl derivatives of L-homoserine lactone (N-AHL) freely diffuse through cell membranes and determine cell-to-cell communication in bacteria. The quorum-sensing systems have first been found to regulate bioluminescence in marine bacteria Photobacterium(Vibrio) fischeriand Vibrio harveyi. Such systems are widespread and control expression of genes for virulence factors, proteases, antibiotics, etc., in various Gram-negative bacteria, including plant, animal, and human pathogens. Quorum sensing is a prominent example of social behavior in bacteria, as signal exchange among individual cells allows the entire population to choose an optimal way of interaction with the environment and with higher organisms.  相似文献   

8.
Quorum sensing is widely recognized as an efficient mechanism to regulate expression of specific genes responsible for communal behavior in bacteria. Several bacterial phenotypes essential for the successful establishment of symbiotic, pathogenic, or commensal relationships with eukaryotic hosts, including motility, exopolysaccharide production, biofilm formation, and toxin production, are often regulated by quorum sensing. Interestingly, eukaryotes produce quorum-sensing-interfering (QSI) compounds that have a positive or negative influence on the bacterial signaling network. This eukaryotic interference could result in further fine-tuning of bacterial quorum sensing. Furthermore, recent work involving the synthesis of structural homologs to the various quorum-sensing signal molecules has resulted in the development of additional QSI compounds that could be used to control pathogenic bacteria. The creation of transgenic plants that express bacterial quorum-sensing genes is yet another strategy to interfere with bacterial behavior. Further investigation on the manipulation of quorum-sensing systems could provide us with powerful tools against harmful bacteria.  相似文献   

9.
Messing with Bacterial Quorum Sensing   总被引:7,自引:0,他引:7       下载免费PDF全文
Quorum sensing is widely recognized as an efficient mechanism to regulate expression of specific genes responsible for communal behavior in bacteria. Several bacterial phenotypes essential for the successful establishment of symbiotic, pathogenic, or commensal relationships with eukaryotic hosts, including motility, exopolysaccharide production, biofilm formation, and toxin production, are often regulated by quorum sensing. Interestingly, eukaryotes produce quorum-sensing-interfering (QSI) compounds that have a positive or negative influence on the bacterial signaling network. This eukaryotic interference could result in further fine-tuning of bacterial quorum sensing. Furthermore, recent work involving the synthesis of structural homologs to the various quorum-sensing signal molecules has resulted in the development of additional QSI compounds that could be used to control pathogenic bacteria. The creation of transgenic plants that express bacterial quorum-sensing genes is yet another strategy to interfere with bacterial behavior. Further investigation on the manipulation of quorum-sensing systems could provide us with powerful tools against harmful bacteria.  相似文献   

10.
Quorum sensing is a process of chemical communication that bacteria use to monitor cell density and coordinate cooperative behaviors. Quorum sensing relies on extracellular signal molecules and cognate receptor pairs. While a single quorum-sensing system is sufficient to probe cell density, bacteria frequently use multiple quorum-sensing systems to regulate the same cooperative behaviors. The potential benefits of these redundant network structures are not clear. Here, we combine modeling and experimental analyses of the Bacillus subtilis and Vibrio harveyi quorum-sensing networks to show that accumulation of multiple quorum-sensing systems may be driven by a facultative cheating mechanism. We demonstrate that a strain that has acquired an additional quorum-sensing system can exploit its ancestor that possesses one fewer system, but nonetheless, resume full cooperation with its kin when it is fixed in the population. We identify the molecular network design criteria required for this advantage. Our results suggest that increased complexity in bacterial social signaling circuits can evolve without providing an adaptive advantage in a clonal population.  相似文献   

11.
Let LuxS speak up in AI-2 signaling   总被引:8,自引:0,他引:8  
Quorum sensing is a process of bacterial cell-cell communication that uses small diffusible molecules to coordinate diverse behaviors in response to population density. The only quorum-sensing system shared by Gram-positive and Gram-negative bacteria involves the production of autoinducer-2 (AI-2). The AI-2 synthase LuxS is widely distributed among the Bacteria, which suggests that AI-2 is a language for interspecies communication. However, LuxS is also an integral component of the activated methyl cycle in bacteria. LuxS-based quorum sensing has been intensively studied in the past decade, mostly in relation to the AI-2 molecule and the downstream effects of luxS knockouts; few studies have focused on the gene and protein activity itself. Ongoing attempts to dissect the metabolic and signaling roles of LuxS leave little doubt that unraveling the regulation of luxS expression and cellular LuxS activity is the key to understanding LuxS-based quorum sensing.  相似文献   

12.
Quorum sensing in plant-associated bacteria   总被引:1,自引:0,他引:1  
  相似文献   

13.
Down-regulation of quorum-sensing based pathways is an important but yet poorly understood process in bacterial gene regulation. In this study, we show that the gene regulator plnC not only acts as an activator gene in the quorum-sensing based bacteriocin production in Lactobacillus plantarum C11, but it also concurrently codes for truncated forms that were shown to repress bacteriocin production. By amino acid N-terminal sequencing and DNA sequence analysis, the truncated species of PlnC are believed to be translated from alternative start codons located in the so-called receiver domain of the regulator. To analyse the structure–function relationship of truncated species of PlnC, we performed a series of systematic truncation mutations: ten in the receiver domain, one in the hinge region and two in the C-terminal DNA-binding domain. It was revealed that any truncation mutation containing a disrupted receiver domain together with an intact DNA-binding domain displayed a repressive effect on bacteriocin production. Such a gene repression mechanism mediated by truncated regulators was also found in two other quorum-sensing based bacteriocin systems (spp in L. sakei LTH673 and NC8-pln in L. plantarum NC8), suggesting that this mode of repression might represent a common means applied by bacteria to down-regulate certain quorum-sensing based pathways. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Cell-to-cell communication in bacteria is mediated by quorum-sensing systems (QSS) that produce chemical signal molecules called autoinducers (AI). In particular, LuxS/AI-2-dependent QSS has been proposed to act as a universal lexicon that mediates intra- and interspecific bacterial behavior. Here we report that the model organism Bacillus subtilis operates a luxS-dependent QSS that regulates its morphogenesis and social behavior. We demonstrated that B. subtilis luxS is a growth-phase-regulated gene that produces active AI-2 able to mediate the interspecific activation of light production in Vibrio harveyi. We demonstrated that in B. subtilis, luxS expression was under the control of a novel AI-2-dependent negative regulatory feedback loop that indicated an important role for AI-2 as a signaling molecule. Even though luxS did not affect spore development, AI-2 production was negatively regulated by the master regulatory proteins of pluricellular behavior, SinR and Spo0A. Interestingly, wild B. subtilis cells, from the undomesticated and probiotic B. subtilis natto strain, required the LuxS-dependent QSS to form robust and differentiated biofilms and also to swarm on solid surfaces. Furthermore, LuxS activity was required for the formation of sophisticated aerial colonies that behaved as giant fruiting bodies where AI-2 production and spore morphogenesis were spatially regulated at different sites of the developing colony. We proposed that LuxS/AI-2 constitutes a novel form of quorum-sensing regulation where AI-2 behaves as a morphogen-like molecule that coordinates the social and pluricellular behavior of B. subtilis.  相似文献   

15.
16.
Legume-nodulating bacteria (rhizobia) usually produce N-acyl homoserine lactones, which regulate the induction of gene expression in a quorum-sensing (or population-density)-dependent manner. There is significant diversity in the types of quorum-sensing regulatory systems that are present in different rhizobia and no two independent isolates worked on in detail have the same complement of quorum-sensing genes. The genes regulated by quorum sensing appear to be rather diverse and many are associated with adaptive aspects of physiology that are probably important in the rhizosphere. It is evident that some aspects of rhizobial physiology related to the interaction between rhizobia and legumes are influenced by quorum sensing. However, it also appears that the legumes play an active role, both in terms of interfering with the rhizobial quorum-sensing systems and responding to the signalling molecules made by the bacteria. In this article, we review the diversity of quorum-sensing regulation in rhizobia and the potential role of legumes in influencing and responding to this signalling system.  相似文献   

17.
The communication or quorum-sensing signal molecules (QSSM) are specialized molecules used by numerous gram-negative bacterial pathogens of animals and plants to regulate or modulate bacterial virulence factor production. In plant-associated bacteria, genes encoding the production of these signal molecules, QSSMs, were discovered to be linked with the phenotype of bacterium, because mutation of these genes typically disrupts some behaviors of bacteria. There are other regulator genes which respond to the presence of signal molecule and regulate the production of signal molecule as well as some virulence factors. The synthesis and regulator genes (collectively called quorum-sensing genes hereafter) are repressed in low bacterial population but induced when bacteria reach to high cell density. Multiple regulatory components have been identified in the bacteria that are under control of quorum sensing. This review describes different communication signal molecules, and the various chemical, physical and genomic factors known to synthesize signals. Likewise, the role of some signal-degrading enzymes or compounds and the interaction of QSSMs with eukaryotic metabolism will be discussed here.  相似文献   

18.
The communication or quorum-sensing signal molecules (QSSM) are specialized molecules used by numerous gram-negative bacterial pathogens of animals and plants to regulate or modulate bacterial virulence factor production. In plant-associated bacteria, genes encoding the production of these signal molecules, QSSMs, were discovered to be linked with the phenotype of bacterium, because mutation of these genes typically disrupts some behaviors of bacteria. There are other regulator genes which respond to the presence of signal molecule and regulate the production of signal molecule as well as some virulence factors. The synthesis and regulator genes (collectively called quorum-sensing genes hereafter) are repressed in low bacterial population but induced when bacteria reach to high cell density. Multiple regulatory components have been identified in the bacteria that are under control of quorum sensing. This review describes different communication signal molecules, and the various chemical, physical and genomic factors known to synthesize signals. Likewise, the role of some signal-degrading enzymes or compounds and the interaction of QSSMs with eukaryotic metabolism will be discussed here.  相似文献   

19.
细菌群体感应系统研究进展及其应用   总被引:2,自引:0,他引:2  
细菌能自发产生、释放一些特定的信号分子,并能感知其浓度变化,调节微生物的群体行为,这一调控系统称为群体感应。细菌群体感应参与包括人类、动植物病原菌致病力在内的多种生物学功能的调节。本文综述了细菌群体感应的最新研究进展,并阐述了其在生物技术领域的应用前景。  相似文献   

20.
Cell-density-dependent gene regulation by quorum-sensing systems has a crucial function in bacterial physiology and pathogenesis. We demonstrate here that the Staphylococcus aureus agr quorum-sensing regulon is divided into (1) control of metabolism and PSM cytolysin genes, which occurs independently of the small regulatory RNA RNAIII, and (2) RNAIII-dependent control of additional virulence genes. Remarkably, PSM expression was regulated by direct binding of the AgrA response regulator. Our findings suggest that quorum-sensing regulation of PSMs was established before wide-ranging control of virulence was added to the agr regulon, which likely occurred by development of the RNAIII-encoding region around the gene encoding the PSM delta-toxin. Moreover, the agr regulon in the community-associated methicillin-resistant S. aureus MW2 considerably differed from that previously determined using laboratory strains. By establishing a two-level model of quorum-sensing target gene regulation in S. aureus, our study gives important insight into the evolution of virulence control in this leading human pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号