首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Quinolone alkaloids, found abundantly in the roots of bael (Aegle marmelos), possess various biological activities and have recently gained attention as potential lead molecules for novel drug designing. Here, we report the characterization of a novel Type III polyketide synthase, quinolone synthase (QNS), from A. marmelos that is involved in the biosynthesis of quinolone alkaloid. Using homology-based structural modeling, we identify two crucial amino acid residues (Ser-132 and Ala-133) at the putative QNS active site. Substitution of Ser-132 to Thr and Ala-133 to Ser apparently constricted the active site cavity resulting in production of naringenin chalcone from p-coumaroyl-CoA. Measurement of steady-state kinetic parameters demonstrates that the catalytic efficiency of QNS was severalfold higher for larger acyl-coenzymeA substrates as compared with smaller precursors. Our mutagenic studies suggest that this protein might have evolved from an evolutionarily related member of chalcone synthase superfamily by mere substitution of two active site residues. The identification and characterization of QNS offers a promising target for gene manipulation studies toward the production of novel alkaloid scaffolds.  相似文献   

2.
拥有Ⅰ型聚羟基脂肪酸酯(PHA)合酶基因的嗜水气单胞菌CGMCC0911株可利用月桂酸而不能利用葡萄糖作为碳源积累PHBHHx。将氯霉素抗性基因(Cm)插入到该基因中,获得带有I型PHA合酶断裂基因(phaC::Cm)的自杀质粒pFH10。自杀质粒pFH10通过接合作用转入嗜水气单胞菌CGMCC0911株中并发生体内同源重组,Cm被整合到基因组上,获得Ⅰ型PHA合酶缺失突变株。DNA序列测定证明了这一结果。GC分析表明,突变株不再产生PHBHHx,但却可利用月桂酸或葡萄糖积累中长链PHA,明显表明野生型嗜水气单胞菌基因组中存在另一个编码Ⅱ型PHA合酶的基因,且只有Ⅰ型PHA合酶被钝化后,这个功能被隐藏的Ⅱ型PHA合酶才可在细胞中发挥作用。  相似文献   

3.
Type III polyketide synthases (PKSs) synthesize a variety of aromatic polyketides in plants, fungi, and bacteria. The bacterial genome projects predicted that probable type III PKS genes are distributed in a wide variety of gram-positive and -negative bacteria. The gram-positive model microorganism Bacillus subtilis contained the bcsA-ypbQ operon, which appeared to encode a type III PKS and a methyltransferase, respectively. Here, we report the characterization of bcsA (renamed bpsA, for Bacillus pyrone synthase, on the basis of its function) and ypbQ, which are involved in the biosynthesis of aliphatic polyketides. In vivo analysis demonstrated that BpsA was a type III PKS catalyzing the synthesis of triketide pyrones from long-chain fatty acyl-coenzyme A (CoA) thioesters as starter substrates and malonyl-CoA as an extender substrate, and YpbQ was a methyltransferase acting on the triketide pyrones to yield alkylpyrone methyl ethers. YpbQ thus was named BpsB because of its functional relatedness to BpsA. In vitro analysis with histidine-tagged BpsA revealed that it used broad starter substrates and produced not only triketide pyrones but also tetraketide pyrones and alkylresorcinols. Although the aliphatic polyketides were expected to localize in the membrane and play some role in modulating the rigidity and properties of the membrane, no detectable phenotypic changes were observed for a B. subtilis mutant containing a whole deletion of the bpsA-bpsB operon.Type III polyketide synthases (PKSs), represented by a plant chalcone synthase (CHS), are the condensing enzymes that catalyze the synthesis of aromatic polyketides in plants, fungi, and bacteria (2). CHS catalyzes the decarboxylative condensation of p-coumaroyl-coenzyme A (p-coumaroyl-CoA), called a starter substrate, with three malonyl-CoAs, called extender substrates, and synthesizing a tetraketide intermediate. The synthesized tetraketide intermediate was cyclized and aromatized by CHS and resulted in naringenin chalcone. Like CHS, most of the type III PKSs catalyze the condensation of a starter substrate with several molecules of an extender substrate and cyclization. There are many type III PKSs that differ in these specificities.Until recently, type III PKSs were discovered only from plants. In 1999, the first bacterial type III PKS, RppA, was discovered. RppA catalyzes the condensation of five malonyl-CoAs to synthesize 1,3,6,8-tetrahydroxynaphthalene, which is a precursor of hexahydroxyperylenequinone melanin in the actinomycete Streptomyces griseus (4). Since then, the genome projects of various bacteria have revealed that type III PKSs are widely distributed in a variety of bacteria. For example, ArsB and ArsC, both of which are type III PKSs in Azotobacter vinelandii, catalyze the synthesis of alkylresorcinols and alkylpyrones, respectively, which are essential for encystment as the major lipids in the cyst membrane (5). In S. griseus, the srs operon consisting of srsA, srsB, and srsC is responsible for the synthesis of methylated phenolic lipids derived from alkylresorcinols and alkylpyrones (6). The function of each of the operon members is that SrsA is a type III PKS responsible for the synthesis of phenolic lipids alkylresorcinol and alkylpyrones, SrsB is a methyltransferase acting on the phenolic lipids to yield alkylresorcinol methyl ethers, and SrsC is a hydroxylase acting on the alkylresorcinol methyl ethers. The phenolic lipids synthesized by the Srs enzymes confer resistance to β-lactam antibiotics (6). Therefore, it is suggested that phenolic lipids play an important role as minor components in the biological membrane in various bacteria. In fact, srsAB- and srsABC-like operons are distributed widely in both gram-positive and -negative bacteria (see Fig. S1 in the supplemental material). However, most of these type III PKSs have not been characterized.Bacillus subtilis is one of the best-characterized gram-positive bacteria. BcsA, which stands for bacterial chalcone synthase, was annotated as a homologue of type III PKS in B. subtilis (3). As described in this paper, however, this annotation needs correction. We renamed the gene bpsA (for Bacillus pyrone synthase). Moreover, the functional unknown gene ypbQ is located next to bpsA. YpbQ, consisting of 168 amino acid residues, contained an isoprenylcysteine carboxyl methyltransferase (ICMT) domain of the ICMT family members, which are unique membrane proteins that are involved in the posttranslational modification of oncogenic proteins (23). Therefore, the bpsA and ypbQ genes were predicted to form an operon, just like srsA and srsB in the srs operon in S. griseus. We therefore named ypbQ, a thus-far functionally unknown gene, bpsB.In this study, we characterized the functions of BpsA and BpsB by in vivo and in vitro experiments. The in vivo experiments revealed that the overexpression of bpsA in B. subtilis led to the production of triketide pyrones, and the co-overexpression of bpsA and bpsB led to the production of triketide pyrone methyl ethers. The in vitro analysis showed that BpsA produced triketide pyrones and a small amount of tetraketide pyrones and tetraketide resorcinols from long-chain fatty acyl CoA thioesters as starter substrates and malonyl-CoA as an extender substrate. Therefore, BpsA is a type III PKS that is responsible for the synthesis of alkylpyrones, and BpsB is a methyltransferase that acts on the alkylpyrones to yield alkylpyrone methyl ethers. BpsB is the first enzyme found to methylate alkylpyrones. Furthermore, we attempted to analyze the biological function of the aliphatic polyketides by disrupting the bpsA and bpsB genes, but no distinct phenotypic changes were detected under laboratory conditions.  相似文献   

4.
This study investigated the apparent genetic redundancy in the biosynthesis of polyhydroxyalkanoates (PHAs) in the Rhodospirillum rubrum genome revealed by the occurrence of three homologous PHA polymerase genes (phaC1, phaC2, and phaC3). In vitro biochemical assays established that each gene product encodes PHA polymerase. A series of single, double, and triple phaC deletion mutants were characterized with respect to PHA production and growth capabilities on acetate or hexanoate as the sole carbon source. These analyses establish that phaC2 contributes the major capacity to produce PHA, even though the PhaC2 protein is not the most efficient PHA polymerase biocatalyst. In contrast, phaC3 is an insignificant contributor to PHA productivity, and phaC1, the PHA polymerase situated in the PHA biosynthetic operon, plays a minor role in this capability, even though both of these genes encode PHA polymerases that are more efficient enzymes. These observations are consistent with the finding that PhaC1 and PhaC3 occur at undetectable levels, at least 10-fold lower than that of PhaC2. The monomers in the PHA polymer produced by these strains establish that PhaC2 is responsible for the incorporation of the C5 and C6 monomers. The in vitro characterizations indicate that heteromeric PHA polymerases composed of mixtures of different PhaC paralogs are more efficient catalysts, suggesting that these proteins form complexes. Finally, the physiological role of PHA accumulation in enhancing the fitness of R. rubrum was indicated by the relationship between PHA content and growth capabilities of the genetically manipulated strains that express different levels of the PHA polymer.  相似文献   

5.
6.
Seven strains of sulfate-reducing bacteria (SRB) were tested for the accumulation of polyhydroxyalkanoates (PHAs). During growth with benzoate Desulfonema magnum accumulated large amounts of poly(3-hydroxybutyrate) [poly(3HB)]. Desulfosarcina variabilis (during growth with benzoate), Desulfobotulus sapovorans (during growth with caproate), and Desulfobacterium autotrophicum (during growth with caproate) accumulated poly(3HB) that accounted for 20 to 43% of cell dry matter. Desulfobotulus sapovorans and Desulfobacterium autotrophicum also synthesized copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyvalerate when valerate was used as the growth substrate. Desulfovibrio vulgaris and Desulfotalea psychrophila were the only SRB tested in which PHAs were not detected. When total DNA isolated from Desulfococcus multivorans and specific primers deduced from highly conserved regions of known PHA synthases (PhaC) were used, a PCR product homologous to the central region of class III PHA synthases was obtained. The complete pha locus of Desulfococcus multivorans was subsequently obtained by inverse PCR, and it contained adjacent phaE(Dm) and phaC(Dm) genes. PhaC(Dm) and PhaE(Dm) were composed of 371 and 306 amino acid residues and showed up to 49 or 23% amino acid identity to the corresponding subunits of other class III PHA synthases. Constructs of phaC(Dm) alone (pBBRMCS-2::phaC(Dm)) and of phaE(Dm)C(Dm) (pBBRMCS-2::phaE(Dm)C(Dm)) in various vectors were obtained and transferred to several strains of Escherichia coli, as well as to the PHA-negative mutants PHB(-)4 and GPp104 of Ralstonia eutropha and Pseudomonas putida, respectively. In cells of the recombinant strains harboring phaE(Dm)C(Dm) small but significant amounts (up to 1.7% of cell dry matter) of poly(3HB) and of PHA synthase activity (up to 1.5 U/mg protein) were detected. This indicated that the cloned genes encode functionally active proteins. Hybrid synthases consisting of PhaC(Dm) and PhaE of Thiococcus pfennigii or Synechocystis sp. strain PCC 6308 were also constructed and were shown to be functionally active.  相似文献   

7.
Recombinant strains of Ralstonia eutropha PHB 4, which harbored Aeromonas caviae polyhydroxyalkanoates (PHA) biosynthesis genes under the control of a promoter for R. eutropha phb operon, were examined for PHA production from various alkanoic acids. The recombinants produced poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] from hexanoate and octanoate, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxypentano ate) [P(3HB-co-3HV-co-3HHp)] from pentanoate and nonanoate. One of the recombinant strains, R. eutropha PHB 4/pJRDBB39d3 harboring ORF1 and PHA synthase gene of A. caviae (phaC(Ac)) accumulated copolyesters with much more 3HHx or 3HHp fraction than the other recombinant strains. To investigate the relationship between PHA synthase activity and in vivo PHA biosynthesis in R. eutropha, the PHB- 4 strains harboring pJRDBB39d13 or pJRDEE32d13 were used, in which the heterologous expression of phaC(Ac) was controlled by promoters for R. eutropha phb operon and A. caviae pha operon, respectively. The PHA contents and PHA accumulation rates were similar between the two recombinant strains in spite of the quite different levels of PHA synthase activity, indicating that the polymerization step is not the rate-determining one in PHA biosynthesis by R. eutropha. The molecular weights of poly(3-hydroxybutyrate) produced by the recombinant strains were also independent of the levels of PHA synthase activity. It has been suggested that a chain-transfer agent is generated in R. eutopha cells to regulate the chain length of polymers.  相似文献   

8.
The gene encoding trichodiene synthase (Tri5), a sesquiterpene synthase from the fungus Fusarium sporotrichioides, was used to transform tobacco (Nicotiana tabacum). Trichodiene was the sole sesquiterpene synthase product in enzyme reaction mixtures derived from unelicited transformant cell-suspension cultures, and both trichodiene and 5-epi-aristolochene were observed as reaction products following elicitor treatment. Immunoblot analysis of protein extracts revealed the presence of trichodiene synthase only in transformant cell lines producing trichodiene. In vivo labeling with [3H]mevalonate revealed the presence of a novel trichodiene metabolite, 15-hydroxytrichodiene, that accumulated in the transformant cell-suspension cultures. In a trichodiene-producing transformant, the level of 15-hydroxytrichodiene accumulation increased after elicitor treatment. In vivo labeling with [14C]acetate showed that the biosynthetic rate of trichodiene and 15-hydroxytrichodiene also increased after elicitor treatment. Incorporation of radioactivity from [14C]acetate into capsidiol was reduced following elicitor treatment of a trichodiene-producing transformant as compared with wild type. These results demonstrate that sesquiterpenoid accumulation resulting from the constitutive expression of a foreign sesquiterpene synthase is responsive to elicitation and that the farnesyl pyrophosphate present in elicited cells can be utilized by a foreign sesquiterpene synthase to produce high levels of novel sesquiterpenoids.  相似文献   

9.
10.
Through an inactivation experiment followed by complementation, the gerGTII gene was previously characterized as a chalcosyltransferase gene involved in the biosynthesis of dihydochalcomycin. The glycosyltransferase gerGTI was identified as a deoxyallosyltransferase required for the glycosylation of D-mycinose sugar. This 6-deoxyhexose sugar was converted to mycinose, via bis-O-methylation, following attachment to the polyketide lactone during dihydrochalcomycin biosynthesis. Gene sequence alignment of gerGTI to several glycosyltransferases revealed a consensus sequence motif that appears to be characteristic of the enzymes in this sub-group of the glycosyltransferase family. To characterize its putative function, genetic disruption of gerGTI in the wild-type strain Streptomyces sp. KCTC 0041BP and in the gerGTII-deleted mutant (S. sp. ΔgerGTII), as well as complementation of gerGTII in S. sp. ΔgerGTII-GTI, were carried out, and the products were analyzed by LC/MS. S. sp. ΔgerGTII-GTI mutant produced dihydrochalconolide macrolide. S. sp. ΔgerGTI and S. sp. ΔgerGTII-GTI complementation of gerGTII yielded dihydrochalconolide without the mycinose sugar. The intermediate shows that gerGTI encodes a deoxyallosyltransferase that acts after gerGTII.  相似文献   

11.
By in vitro evolution experiment, we have first succeeded in acquiring higher active mutants of a synthase that is a key enzyme essential for bacterial synthesis of biodegradable polyester, polyhydroxyalkanoate (PHA). Aeromonas caviae FA440 synthase, termed PhaCAc, was chosen as a good target for evolution, since it can synthesize a PHA random copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate [P(3HB-co-3HHx)] that is a tough and flexible material compared to polyhydroxybutyrate (PHB) homopolyester. The in vitro enzyme evolution system consists of PCR-mediated random mutagenesis targeted to a limited region of the phaCAc gene and screening mutant enzymes with higher activities based on two types of polyester accumulation system by using Escherichia coli for the synthesis of PHB (by JM109 strain) (S. Taguchi, A. Maehara, K. Takase, M. Nakahara, H. Nakamura, and Y. Doi, FEMS Microbiol. Lett. 198:65-71, 2001) and of P(3HB-co-3HHx) {by LS5218 [fadR601 atoC(Con)] strain}. The expression vector for the phaCAc gene, together with monomer-supplying enzyme genes, was designed to synthesize PHB homopolyester from glucose and P(3HB-co-3HHx) copolyester from dodecanoate. Two evolved mutant enzymes, termed E2-50 and T3-11, screened through the evolution system exhibited 56 and 21% increases in activity toward 3HB-coenzyme A, respectively, and consequently led to enhanced accumulation (up to 6.5-fold content) of P(3HB-co-3HHx) in the recombinant LS5218 strains. Two single mutations in the mutants, N149S for E2-50 and D171G for T3-11, occurred at positions that are not highly conserved among the PHA synthase family. It should be noted that increases in the 3HHx fraction (up to 16 to 18 mol%) were observed for both mutants compared to the wild type (10 mol%).  相似文献   

12.
The complexes Al(acac)3 (1) (acac = 2,4-pentanedionate) and Al(malt)3 (malt = 3-hydroxy-2-methyl-4-pyronate) (2) react with dl--dipalmitoylphosphatidylcholine (DPPC) under a 1:1 molar ratio in CDCl3 at 37 °C, as shown by the substantial release of ligands (20–50%) from the metal coordination sphere (1H-NMR), by evident changes in the 1H-NMR spectrum of DPPC in the reaction mixture and by the appearance of a 31P-NMR signal due to metal-coordinated DPPC. 31P-NMR spectra reveal that both 1 and 2 also react with DPPC in water, in the presence of 1% Triton X-100 and Tris buffer. Under these conditions, 1 and 2 do not react with ghosts from human erythrocytes. On the contrary, the far less hydrolytically stable complex Al(lact)3 (lact = lactate) appears to be reactive under identical conditions, as shown by 31P-NMR spectra.  相似文献   

13.
Loo CY  Lee WH  Tsuge T  Doi Y  Sudesh K 《Biotechnology letters》2005,27(18):1405-1410
Palm kernel oil, palm olein, crude palm oil and palm acid oil were used for the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] by a mutant strain of Wautersia eutropha (formerly Ralstonia eutropha) harboring the Aeromonas caviae polyhydroxyalkanoate (PHA) synthase gene. Palm kernel oil was an excellent carbon source for the production of cell biomass and P(3HB-co-3HHx). About 87% (w/w) of the cell dry weight as P(3HB-co-3HHx) was obtained using 5 g palm kernel oil/l. Gravimetric and microscopic analyses further confirmed the high PHA content in the recombinant cells. The molar fraction of 3HHx remained constant at 5 mol % regardless of the type and concentration of palm oil products used. The small amount of 3HHx units was confirmed by 13C NMR analysis. The number average molecular weight (Mn) of the PHA copolymer produced from the various palm oil products ranged from 27 0000 to 46 0000 Da. The polydispersity was in the range of 2.6–3.9.  相似文献   

14.
Brown algal phlorotannins are structural analogs of condensed tannins in terrestrial plants and, like plant phenols, they have numerous biological functions. Despite their importance in brown algae, phlorotannin biosynthetic pathways have been poorly characterized at the molecular level. We found that a predicted type III polyketide synthase in the genome of the brown alga Ectocarpus siliculosus, PKS1, catalyzes a major step in the biosynthetic pathway of phlorotannins (i.e., the synthesis of phloroglucinol monomers from malonyl-CoA). The crystal structure of PKS1 at 2.85-Å resolution provided a good quality electron density map showing a modified Cys residue, likely connected to a long chain acyl group. An additional pocket not found in other known type III PKSs contains a reaction product that might correspond to a phloroglucinol precursor. In vivo, we also found a positive correlation between the phloroglucinol content and the PKS III gene expression level in cells of a strain of Ectocarpus adapted to freshwater during its reacclimation to seawater. The evolution of the type III PKS gene family in Stramenopiles suggests a lateral gene transfer event from an actinobacterium.  相似文献   

15.
Trotsenko  Yu. A.  Belova  L. L. 《Microbiology》2000,69(6):635-645
Recent data on the biosynthesis of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and its regulation in bacteria are reviewed, with special emphasis on the properties and regulation of the relevant enzymes and their genes. Some conditions promoting the synthesis of PHB and PHBV by natural, mutant, and recombinant producers are considered.  相似文献   

16.
I型聚酮合酶(PKSI)的模块型分子结构组织方式非常适合于组合生物合成研究.结构域和模块通过二级组织方式构成了PKSI的催化单元,其它结构多肽则作为“支架”.在“支架”上对结构域和模块两个水平进行突变、替换、插入、缺失等基因操作形成重组PKS,可以理性设计并获得复杂多样的新活性或高活性的聚酮化合物.利用PKSI进行组合生物合成以期获得新聚酮化合物的研究迄今已有约25年,但是目前仍不能够对PKS进行完美的理性设计,快速合成目标活性的新聚酮化合物.PKS中的酰基转移酶结构域的研究在PKS的组合生物合成研究中一直发挥着重要作用.本文结合本课题组的研究基础,对AT结构域的结构、功能及在组合生物合成研究中的最新研究成果作以分析总结.  相似文献   

17.
The clinical application of macromolecular Gd(III) complexes as MRI contrast agents is impeded by their slow excretion and potential toxicity due to the release of Gd(III) ions caused by the metabolism of the agents. A polymer Gd(III) chelate conjugate with a cleavable spacer has been designed to solve this problem. Poly(l-glutamic acid)-cystamine-[Gd(III)-DOTA] was prepared by the conjugation of DOTA to PGA (MW = 50,000) via cystamine, a cleavable disulfide spacer, followed by the complexation with GdCl(3). A Gd(III) DOTA chelate derivative was readily released from the polymer conjugate in the incubation with cysteine, an endogenous plasma thiol. The conjugate produced significant MRI blood pool contrast enhancement in nude mice bearing OVCAR-3 human ovarian carcinoma xenographs. Less significant contrast enhancement was observed for a small molecular contrast agent, Gd(DTPA-BMA). The pharmacokinetic MRI study showed that the Gd(III) chelate from the conjugate accumulated in the urinary bladder in a similar kinetic pattern to Gd(DTPA-BMA), suggesting that the chelate was released by the endogenous thiols and excreted through renal filtration. The preliminary results suggest that this novel design has a great potential to solve the safety problem of macromolecular MRI contrast agents.  相似文献   

18.
研究结果表明,V.natriegens可以利用葡萄糖,果糖,以及糖蜜为碳源合成聚羟基丁酸[Poly(3HB)] ,当以糖蜜为碳源时,积累的Poly(3HB)达到细胞干重的28.4%,实验结果还表明,Poly(3HB)的积累滞后于细胞生长,在培养前加入过量的碳源,不仅没有Poly(3HB)积累,还抑制细胞的生长,测定了与Poly(3HB)合成相关的PHA聚合酶,β-酮硫解酶和乙酰乙酰CoA还原酶的活性。结果表明,伴随Poly(3HB)合成,PHA聚合酶活性从无到有,β-酮硫解酶活性提高了10倍以上。进一步通过利用脂肪酸合成代谢抑制物-浅蓝菌素(cerulenin),研究了脂肪酸从头合成途径与Poly(3HB)合成途径的关系。发现浅蓝菌素能够明显降低细胞Poly(3HB)的累积。根据以上结果,推测在V.natrigens中可能存在两条代谢途径参与Poly(3HB)的合成。  相似文献   

19.
A mononuclear cobalt(III)-peroxo complex bearing a macrocyclic tetradentate N4 ligand, [CoIII(TMC)(O2)]+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was generated in the reaction of [CoII(TMC)]2+ and H2O2 in the presence of triethylamine in CH3CN. The reactivity of the cobalt(III)-peroxo complex was investigated in aldehyde deformylation with various aldehydes and compared with that of iron(III)- and manganese(III)-peroxo complexes, such as [FeIII(TMC)(O2)]+ and [MnIII(TMC)(O2)]+. In this reactivity comparison, the reactivities of metal-peroxo species were found to be in the order of [MnIII(TMC)(O2)]+ > [CoIII(TMC)(O2)]+ > [FeIII(TMC)(O2)]+. A positive Hammett ρ value of 1.8, obtained in the reactions of [CoIII(TMC)(O2)]+ and para-substituted benzaldehydes, demonstrates that the aldehyde deformylation by the cobalt(III)-peroxo species occurs via a nucleophilic reaction.  相似文献   

20.
Zearalenone, a mycotoxin produced by several Fusarium spp., is most commonly found as a contaminant in stored grain and has chronic estrogenic effects on mammals. Zearalenone is a polyketide derived from the sequential condensation of multiple acetate units by a polyketide synthase (PKS), but the genetics of its biosynthesis are not understood. We cloned two genes, designated ZEA1 and ZEA2, which encode polyketide synthases that participate in the biosynthesis of zearalenone by Gibberella zeae (anamorph Fusarium graminearum). Disruption of either gene resulted in the loss of zearalenone production under inducing conditions. ZEA1 and ZEA2 are transcribed divergently from a common promoter region. Quantitative PCR analysis of both PKS genes and six flanking genes supports the view that the two polyketide synthases make up the core biosynthetic unit for zearalenone biosynthesis. An appreciation of the genetics of zearalenone biosynthesis is needed to understand how zearalenone is synthesized under field conditions that result in the contamination of grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号