首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ras GTPases act as binary switches for signal transduction pathways that are important for growth regulation and tumorigenesis. Despite the biochemical simplicity of this switch, Ras proteins control multiple pathways, and the functions of the four mammalian Ras proteins are not overlapping. This raises an important question—how does a Ras protein selectively regulate a particular activity? One recently emerging model suggests that a single Ras protein can control different functions by acting in distinct cellular compartments. A critical test of this model is to identify pathways that are selectively controlled by Ras when it is localized to a particular compartment. A recent study has examined Ras signaling in the fission yeast Schizosaccharomyces pombe, which expresses only one Ras protein that controls two separate evolutionarily conserved pathways. This study demonstrates that whereas Ras localized to the plasma membrane selectively regulates a MAP kinase pathway to mediate mating pheromone signaling, Ras localized to the endomembrane activates a Cdc42 pathway to mediate cell polarity and protein trafficking. This study has provided unambiguous evidence for compartmentalized signaling of Ras.  相似文献   

2.
3.
4.
Cullen PJ  Sprague GF 《Genetics》2012,190(1):23-49
Filamentous growth is a nutrient-regulated growth response that occurs in many fungal species. In pathogens, filamentous growth is critical for host-cell attachment, invasion into tissues, and virulence. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth, which provides a genetically tractable system to study the molecular basis of the response. Filamentous growth is regulated by evolutionarily conserved signaling pathways. One of these pathways is a mitogen activated protein kinase (MAPK) pathway. A remarkable feature of the filamentous growth MAPK pathway is that it is composed of factors that also function in other pathways. An intriguing challenge therefore has been to understand how pathways that share components establish and maintain their identity. Other canonical signaling pathways-rat sarcoma/protein kinase A (RAS/PKA), sucrose nonfermentable (SNF), and target of rapamycin (TOR)-also regulate filamentous growth, which raises the question of how signals from multiple pathways become integrated into a coordinated response. Together, these pathways regulate cell differentiation to the filamentous type, which is characterized by changes in cell adhesion, cell polarity, and cell shape. How these changes are accomplished is also discussed. High-throughput genomics approaches have recently uncovered new connections to filamentous growth regulation. These connections suggest that filamentous growth is a more complex and globally regulated behavior than is currently appreciated, which may help to pave the way for future investigations into this eukaryotic cell differentiation behavior.  相似文献   

5.
The mAKAP signalosome and cardiac myocyte hypertrophy   总被引:1,自引:0,他引:1  
  相似文献   

6.
Insulin signaling pathways in time and space   总被引:31,自引:0,他引:31  
Despite remarkable progress in dissecting the signaling pathways that are crucial for the metabolic effects of insulin, the molecular basis for the specificity of its cellular actions is not fully understood. One clue might lie in the spatial and temporal aspects of signaling. Recent evidence suggests that signaling molecules and pathways are localized to discrete compartments in cells by specific protein interactions. Also, the rapid termination of tyrosine or lipid phosphorylation by phosphatases or serine kinases might tightly control the strength of a signaling pathway, thus determining its effect on growth, differentiation and metabolism.  相似文献   

7.
The yeast Saccharomyces cerevisiae senses and responds to nutrients by adapting its growth rate and undergoing morphogenic transitions to ensure survival. The Tor pathway is a major integrator of nutrient-derived signals that in coordination with other signaling pathways orchestrates cell growth. Recent advances have identified novel Tor kinase substrates and established the protein trafficking membranous network and the nucleus as platforms for Tor signaling. These and other recent findings delineate distinct signaling branches emanating from membrane-associated Tor complexes to control cell growth.  相似文献   

8.
Stephan JS  Herman PK 《Autophagy》2006,2(2):146-148
The induction of autophagy appears to be tightly controlled in all eukaryotic cells. This highly conserved, degradative process is induced by a variety of signals, including nutrient deprivation, and is generally thought to be incompatible with rapid cell growth. Recent work in the budding yeast, Saccharomyces cerevisiae, has suggested that the Atg1 protein kinase is at the center of this control. Atg1, and its associated proteins, appear to be directly targeted by multiple signaling pathways important for the control of both autophagy and cell growth. These pathways involve the small GTP-binding Ras proteins, the Tor protein kinases and the AMP-activated protein kinase, Snf1, respectively. A key question that remains is whether this regulatory paradigm has been evolutionarily conserved. In other words, is Atg1 the primary target of those signaling pathways responsible for coordinating growth with environmental influences in other eukaryotes? Here, we suggest that Atg1 is very likely to fulfill this role but that a truly definitive answer will require that we develop a better understanding of this protein kinase and its targets in all eukaryotes.  相似文献   

9.
Protection from apoptosis by receptor tyrosine kinases, resistant to the inhibition of phosphatidylinositol 3 '-kinase/Akt and Ras/MEK pathways, has been reported in several cell types, including fibroblasts and epithelial prostate cancer cells; however, mechanisms of this effect were not clear. Here we report that in prostate cancer cells, epidermal growth factor activates two antiapoptotic signaling pathways that impinge on the proapoptotic protein BAD. One signaling cascade operates via the Ras/MEK module and induces BAD phosphorylation on Ser112. Another pathway predominantly relies on Rac/PAK1 signaling that leads to BAD phosphorylation on Ser136. Each of these two pathways is sufficient to protect cells from apoptosis, and therefore both have to be inhibited simultaneously to block epidermal growth factor-dependent survival. Redundancy of antiapoptotic signaling pathways should be considered when therapies targeting antiapoptotic mechanisms are designed.  相似文献   

10.
Insulin-like growth factor-I (IGF-I) has gained broad recognition as an important survival factor for epithelial cells in numerous tissues. The IGF-I receptor signaling pathway is deregulated in the majority of carcinomas, and such deregulation has also been reported to be tightly associated with enhanced tumor progression and metastasis. One of the key proteins that transduces IGF-I signals and is phospho-activated downstream of the IGF-I receptor, is the non-receptor serine/threonine kinase proto-oncogene protein kinase B (PKB, also known as Akt). This kinase serves as a major molecular node to control the function of many cell survival and death proteins through phosphorylation-mediated protein modification. The end result of the activation of Akt is enhanced cell survival and proliferation, pre-requisites for malignant transformation. Recent studies show that IGF-I signals cross-talk at multiple levels with various components of the TGF-beta signaling pathway, which depending on context may function either as tumor suppressor or as tumor promoter. Thus, a better understanding of how the IGF-I and TGF-beta signaling pathways are mutually interconnected is likely to unveil novel targets for the therapeutic intervention of many cancers.  相似文献   

11.
12.
13.
Transforming growth factor beta (TGF-beta) modulates a number of cellular phenotypes as divergent as growth stimulation and growth inhibition. Although the Smad pathway is critical for many of these responses, recent evidence indicates that Smad-independent pathways may also have a critical role. One such protein previously shown to regulate TGF-beta action independent of the Smad proteins is the c-Abl nonreceptor tyrosine kinase. In the current study we determined that TGF-beta receptor signaling activates c-Abl kinase activity in a subset of fibroblast but not epithelial cultures. This cell type-specific response occurs in a membrane-proximal locale independent of receptor internalization and upstream of dynamin action. Although c-Abl activation by TGF-beta is independent of Smad2 or Smad3, it is prevented by inhibitors of phosphatidylinositol 3-kinase or PAK2. Thus, c-Abl represents a target downstream of phosphatidylinositol 3-kinase-activated PAK2, which differentiates TGF-beta signaling in fibroblasts and epithelial cell lines and integrates serine/threonine receptor kinases with tyrosine kinase pathways.  相似文献   

14.
15.
Transcriptional control of dimorphism in Candida albicans.   总被引:13,自引:0,他引:13  
  相似文献   

16.
Human epidermal growth factor receptor 2 (HER2) is a member of the human epidermal growth factor receptor kinases (other members include EGFR or HER1, HER3, and HER4) that are involved in signaling cascades for cell growth and differentiation. It is well established that HER2-mediated heterodimerization has important implications in cancer. Deregulation of signaling pathways and overexpression of HER2 is known to occur in cancer cells, indicating a role of HER2 in tumorigenesis. Therefore, blocking HER2-mediated signaling has potential therapeutic value. We have designed several peptidomimetics to inhibit HER2-mediated signaling for cell growth. One of the compounds (HERP5, Arg-beta Naph-Phe) exhibited antiproliferative activity with IC(50) values in the micromolar-to-nanomolar range in breast cancer cell lines. Binding of fluorescently labeled HERP5 to HER2 protein was evaluated by fluorescence assay, microscopy, and circular dichroism spectroscopy. Results indicated that HERP5 binds to the extracellular region of the HER2 protein. Structure of the peptidomimetic HERP5 was studied by NMR and molecular dynamics simulations. Based on these results a model was proposed for HER2-EGFR dimerization and possible blocking by HERP5 peptidomimetic using a protein-protein docking method.  相似文献   

17.
18.
19.
Porton B  Kao HT 《Neuro-Signals》2003,12(1):45-52
Intracellular signaling pathways involved in neurite outgrowth have been extensively studied in a variety of cell systems. While most of these studies utilized continuous neuronal-like cell lines, fewer studies have been conducted in primary neuronal culture. One primary culture system that has recently been used to dissect the signaling pathways involved in axon guidance consists of spinal neurons derived from embryonic Xenopus laevis. In this study, we used Xenopus to study neurite outgrowth by treating neuronal cultures with pharmacological agents that activate or inhibit various protein kinases or that inhibit protein phosphatases. We found that agents which affected signaling via cAMP-dependent protein kinase, calmodulin, cyclin-dependent kinase 5, or protein phosphatases had effects on Xenopus neurite outgrowth that were similar to those reported in other primary neurons or in neuronal-like cell lines. However, agents which affected protein kinase C signaling had effects on Xenopus neurite outgrowth that were distinct from those reported in neuronal-like cell lines. Although continuous cell lines have several advantages for the dissection of signaling pathways involved in neurodevelopment, these observations underscore the importance of also using primary neurons to examine these pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号