首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pax7 is required for the specification of myogenic satellite cells   总被引:55,自引:0,他引:55  
  相似文献   

2.
研究证实,肌肉中存在2种类型的干细胞,即肌卫星细胞和多能干细胞,后者又可分为不同的细胞亚群。这些细胞群表现出自我更新能力和多潜能性,可分化为血细胞、成骨细胞、神经细胞等不同胚层的组织细胞。由于肌源干细胞具有治疗包括骨骼肌和心肌在内的肌肉疾病的可能性,并且潜在地可促进其他组织,如骨和软骨的再生和愈合,因此近几年来的相关研究取得很大进展。  相似文献   

3.
Distinct cell populations with regenerative capacity have been reported to contribute to myofibres after skeletal muscle injury, including non-satellite cells as well as myogenic satellite cells. However, the relative contribution of these distinct cell types to skeletal muscle repair and homeostasis and the identity of adult muscle stem cells remain unknown. We generated a model for the conditional depletion of satellite cells by expressing a human diphtheria toxin receptor under control of the murine Pax7 locus. Intramuscular injection of diphtheria toxin during muscle homeostasis, or combined with muscle injury caused by myotoxins or exercise, led to a marked loss of muscle tissue and failure to regenerate skeletal muscle. Moreover, the muscle tissue became infiltrated by inflammatory cells and adipocytes. This localised loss of satellite cells was not compensated for endogenously by other cell types, but muscle regeneration was rescued after transplantation of adult Pax7(+) satellite cells alone. These findings indicate that other cell types with regenerative potential depend on the presence of the satellite cell population, and these observations have important implications for myopathic conditions and stem cell-based therapeutic approaches.  相似文献   

4.
目的:比较蛋、肉鸡骨骼肌卫星细胞在增殖、分化速度及在细胞因子作用下细胞周期等方面所存在的特性差异,为人类肌肉疾病的研究和千细胞治疗提供一定的理论依据。方法:采用两步酶消化法体外原代培养获得7日龄蛋肉鸡骨骼肌卫星细胞,利用血球计数板进行细胞计数绘制出二者的细胞生长曲线;通过流式细胞仪检测经细胞因子bFGF和Myostatin处理后,蛋肉鸡骨骼肌卫星细胞的细胞周期变化情况。结果:体外相同的培养条件下,肉鸡肌卫星细胞的增殖、分化速度大于蛋鸡肌卫星细胞;且经相同剂量的同种细胞因子处理后,蛋鸡卫星细胞对于Myostatin的抑制作用十分敏感,而肉鸡则对bFGF的促进增殖的作用反应强烈。结论:肉鸡肌卫星细胞的增殖、分化速度大于蛋鸡肌卫星细胞,且二者对于同种细胞因子的敏感程度不同。  相似文献   

5.
Satellite cells are myogenic stem cells responsible for the post-natal growth, repair and maintenance of skeletal muscle. This review focuses on the basic biology of the satellite cell with emphasis on its role in muscle repair and parallels between embryonic myogenesis and muscle regeneration. Recent advances have altered the long-standing view of the satellite cell as a committed myogenic stem cell derived directly from the fetal myoblast. The experimental basis for this evolving perspective will be highlighted as will the relationship between the satellite cell and other newly discovered muscle stem cell populations. Finally, advances and prospects for cell-based therapies for muscular dystrophies will be addressed.  相似文献   

6.
The use of stem cells to repair and replace damaged skeletal muscle cells in chronic, debilitating muscle diseases such as the muscular dystrophies holds great promise. Different stem cell populations, both of embryonic and adult origin display the potential to generate skeletal muscle cells and have been studied in animal models of muscular dystrophy. These include muscle derived satellite cells; bone marrow derived mesenchymal stem cells, muscle or bone marrow side population cells, circulating CD133+ cells and cells derived from blood vessel walls such as mesoangioblasts or pericytes. The design of effective stem cell based therapies requires a detailed understanding of the molecules and signaling pathways which determine myogenic lineage commitment and differentiation. We discuss the great strides that have been made in delineating these pathways and how a better understanding of muscle stem cell biology has the potential to lead to more effective stem cell based therapies for skeletal muscle regeneration for devastating muscle diseases.  相似文献   

7.
To establish an adequate model to study the proliferation and differentiation of adult caprine skeletal muscle in response to bioactive compounds, a pool of satellite cells (SC) was derived from the rectus abdominis muscle of adult goat. Skeletal muscle contains a population of adult stem cells, named as satellite cells that reside beneath the basal lamina of skeletal muscle fiber and other populations of cells. These SC are multipotent stem cells, since cells cultured in the presence of specific cell lineage inducing cocktails can differentiate into several types of mesenchymal lineage, such as osteocytes and adipocytes. In the present study, we have developed a modified protocol for isolating satellite cells (>90%) and examined their myogenic and contractile properties in vitro.  相似文献   

8.
Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders characterized by progressive muscle wasting and weakness likely associated with exhaustion of muscle regeneration potential. At present, no cures or efficacious treatments are available for these diseases, but cell transplantation could be a potential therapeutic strategy. Transplantation of myoblasts using satellite cells or other myogenic cell populations has been attempted to promote muscle regeneration, based on the hypothesis that the donor cells repopulate the muscle and contribute to its regeneration. Embryonic stem cells (ESCs) and more recently induced pluripotent stem cells (iPSCs) could generate an unlimited source of differentiated cell types, including myogenic cells. Here we review the literature regarding the generation of myogenic cells considering the main techniques employed to date to elicit efficient differentiation of human and murine ESCs or iPSCs into skeletal muscle. We also critically analyse the possibility of using these cellular populations as an alternative source of myogenic cells for cell therapy of MDs.  相似文献   

9.
10.
Myogenic specification of side population cells in skeletal muscle   总被引:34,自引:0,他引:34  
Skeletal muscle contains myogenic progenitors called satellite cells and muscle-derived stem cells that have been suggested to be pluripotent. We further investigated the differentiation potential of muscle-derived stem cells and satellite cells to elucidate relationships between these two populations of cells. FACS(R) analysis of muscle side population (SP) cells, a fraction of muscle-derived stem cells, revealed expression of hematopoietic stem cell marker Sca-1 but did not reveal expression of any satellite cell markers. Muscle SP cells were greatly enriched for cells competent to form hematopoietic colonies. Moreover, muscle SP cells with hematopoietic potential were CD45 positive. However, muscle SP cells did not differentiate into myocytes in vitro. By contrast, satellite cells gave rise to myocytes but did not express Sca-1 or CD45 and never formed hematopoietic colonies. Importantly, muscle SP cells exhibited the potential to give rise to both myocytes and satellite cells after intramuscular transplantation. In addition, muscle SP cells underwent myogenic specification after co-culture with myoblasts. Co-culture with myoblasts or forced expression of MyoD also induced muscle differentiation of muscle SP cells prepared from mice lacking Pax7 gene, an essential gene for satellite cell development. Therefore, these data document that satellite cells and muscle-derived stem cells represent distinct populations and demonstrate that muscle-derived stem cells have the potential to give rise to myogenic cells via a myocyte-mediated inductive interaction.  相似文献   

11.
Satellite cells reside beneath the basal lamina of skeletal muscle fibers and include cells that act as precursors for muscle growth and repair. Although they share a common anatomical localization and typically are considered a homogeneous population, satellite cells actually exhibit substantial heterogeneity. We used cell-surface marker expression to purify from the satellite cell pool a distinct population of skeletal muscle precursors (SMPs) that function as muscle stem cells. When engrafted into muscle of dystrophin-deficient mdx mice, purified SMPs contributed to up to 94% of myofibers, restoring dystrophin expression and significantly improving muscle histology and contractile function. Transplanted SMPs also entered the satellite cell compartment, renewing the endogenous stem cell pool and participating in subsequent rounds of injury repair. Together, these studies indicate the presence in adult skeletal muscle of prospectively isolatable muscle-forming stem cells and directly demonstrate the efficacy of myogenic stem cell transplant for treating muscle degenerative disease.  相似文献   

12.
The trans-differentiation hypothesis of adult tissue-specific stem cells has been recently questioned because of insufficient proof that the so-called plasticity experiments were performed on pure populations of tissue-specific stem cells. It was shown recently, for example, that the formation of haematopoietic colonies by muscle cells depended on the presence of haematopoietic stem/progenitor cells residing within the muscle tissue and hence was not related to the plasticity of the muscle stem cells. The explanation for the presence in, or homing into, muscles of haematopoietic stem cells is, however, not clear. In our study, we hypothesised that muscle tissues secrete stromal-derived factor (SDF)- 1, an alpha-chemokine for haematopoietic stem cells (HSC), which could attract HSC circulating in peripheral blood into muscle tissue. We found, using RT-PCR and immunocytochemistry, that SDF-1 was expressed in human heart and skeletal muscles. Moreover, muscle satellite cells, which are pivotal for regeneration of muscle, highly expressed on their surface CXCR4, a G-protein-coupled receptor that binds SDF-1. To determine whether the CXCR4 receptor is functional on muscle satellite/progenitor cells, we stimulated murine satellite cells (the C2C12 cell line) with SDF-1 and demonstrated the phosphorylation of p42/44 MAPK and AKT serine-threonine kinase in these cells. Moreover, we showed that SDF-1 gradient chemoattracts these cells. We postulate that the CXCR4-positive muscle satellite and CXCR4-positive HSC circulating in the peripheral blood compete for occupancy of SDF-1-positive stem cell niches that are present in bone marrow and muscle tissues. Thus, we suggest that competition for common niches by various circulating CXCR4-positive stem cells and their ability to home to the SDF-1-positive niches in various organs, is a better explanation than stem cell plasticity of why (i) haematopoietic colonies can be cultured from muscles and (ii) early muscle progenitors could be cultured from bone marrow.  相似文献   

13.
The skeletal muscle satellite cell: stem cell or son of stem cell?   总被引:18,自引:0,他引:18  
The concept of the adult tissue stem cell is fundamental to models of persistent renewal in functionally post-mitotic tissues. Although relatively ignored by stem cell biology, skeletal muscle is a prime example of an adult tissue that can generate terminally differentiated cells uniquely specialized to carry out tissue-specific functions. This capacity is attributed to satellite cells, a population of undifferentiated, quiescent precursors that become activated to divide and differentiate in response to the demands of growth or damage. The aim of this review is to discuss the role of the satellite cell as an adult tissue-specific stem cell. We examine evidence for the presence of behaviourally and phenotypically distinct subpopulations of precursor within the satellite cell pool. Further, we speculate on the possible identity, origins and relevance of multipotent muscle stem cells, a population with both myogenic and hematopoietic potentials that has been isolated from whole muscle. Taken together, current evidence suggests the possibility that the regenerative compartment of adult skeletal muscle may conform to an archetypal stem cell-based hierarchy, maintained within a stem cell niche. It therefore remains to be seen whether all satellite cells are skeletal muscle-specific stem cells, or whether some or all are the progeny of an as yet unidentified muscle stem cell.  相似文献   

14.
Skeletal muscle satellite cells and adult myogenesis   总被引:9,自引:0,他引:9  
  相似文献   

15.
Satellite cells are quiescent cells located under the basal lamina of skeletal muscle fibers that contribute to muscle growth, maintenance, repair, and regeneration. Mouse satellite cells have been shown to be muscle stem cells that are able to regenerate muscle fibers and self-renew. As human skeletal muscle is also able to regenerate following injury, we assume that the human satellite cell is, like its murine equivalent, a muscle stem cell. In this review, we compare human and mouse satellite cells and highlight their similarities and differences. We discuss gaps in our knowledge of human satellite cells, compared with that of mouse satellite cells, and suggest ways in which we may advance studies on human satellite cells, particularly by finding new markers and attempting to re-create the human satellite cell niche in vitro. (J Histochem Cytochem 58:941–955, 2010)  相似文献   

16.
Skeletal muscle regeneration is a complex process, which is not yet completely understood. Satellite cells, the skeletal muscle stem cells, become activated after trauma, proliferate, and migrate to the site of injury. Depending on the severity of the myotrauma, activated satellite cells form new multinucleated myofibers or fuse to damaged myofibers. The specific microenvironment of the satellite cells, the niche, controls their behavior. The niche contains several components that maintain satellite cells quiescence until they are activated. In addition, a great diversity of stimulatory and inhibitory growth factors such as IGF‐1 and TGF‐β1 regulate their activity. Donor‐derived satellite cells are able to improve muscle regeneration, but their migration through the muscle tissue and across endothelial layers is limited. Less than 1% of their progeny, the myoblasts, survive the first days upon intra‐muscular injection. However, a range of other multipotent muscle‐ and non‐muscle‐derived stem cells are involved in skeletal muscle regeneration. These stem cells can occupy the satellite cell niche and show great potential for the treatment of skeletal muscle injuries and diseases. The aim of this review is to discuss the niche factors, growth factors, and other stem cells, which are involved in skeletal muscle regeneration. Knowledge about the factors regulating satellite cell activity and skeletal muscle regeneration can be used to improve the treatment of muscle injuries and diseases. J. Cell. Physiol. 224:7–16, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Skeletal muscle atrophy can occur as a consequence of immobilization and/or starvation in the majority of vertebrates studied. In contrast, hibernating mammals are protected against the loss of muscle mass despite long periods of inactivity and lack of food intake. Resident muscle-specific stem cells (satellite cells) are known to be activated by muscle injury and their activation contributes to the regeneration of muscle, but whether satellite cells play a role in hibernation is unknown. In the hibernating 13-lined ground squirrel we show that muscles ablated of satellite cells were still protected against atrophy, demonstrating that satellite cells are not involved in the maintenance of skeletal muscle during hibernation. Additionally, hibernating skeletal muscle showed extremely slow regeneration in response to injury, due to repression of satellite cell activation and myoblast differentiation caused by a fine-tuned interplay of p21, myostatin, MAPK, and Wnt signaling pathways. Interestingly, despite long periods of inflammation and lack of efficient regeneration, injured skeletal muscle from hibernating animals did not develop fibrosis and was capable of complete recovery when animals emerged naturally from hibernation. We propose that hibernating squirrels represent a new model system that permits evaluation of impaired skeletal muscle remodeling in the absence of formation of tissue fibrosis.  相似文献   

18.
Satellite cells, the adult stem cells responsible for skeletal muscle regeneration, are defined by their location between the basal lamina and the fiber sarcolemma. Increasing evidence suggests that satellite cells represent a heterogeneous population of cells with distinct embryological origin and multiple levels of biochemical and functional diversity. This review focuses on the rich diversity of the satellite cell population based on studies across species. Ultimately, a more complete characterization of the heterogeneity of satellite cells will be essential to understand the functional significance in terms of muscle growth, homeostasis, tissue repair, and aging.  相似文献   

19.
20.
Three populations of myogenic cells were isolated from normal mouse skeletal muscle based on their adhesion characteristics and proliferation behaviors. Although two of these populations displayed satellite cell characteristics, a third population of long-time proliferating cells expressing hematopoietic stem cell markers was also identified. This third population comprises cells that retain their phenotype for more than 30 passages with normal karyotype and can differentiate into muscle, neural, and endothelial lineages both in vitro and in vivo. In contrast to the other two populations of myogenic cells, the transplantation of the long-time proliferating cells improved the efficiency of muscle regeneration and dystrophin delivery to dystrophic muscle. The long-time proliferating cells' ability to proliferate in vivo for an extended period of time, combined with their strong capacity for self-renewal, their multipotent differentiation, and their immune-privileged behavior, reveals, at least in part, the basis for the improvement of cell transplantation. Our results suggest that this novel population of muscle-derived stem cells will significantly improve muscle cell-mediated therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号