首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Two competing events, termination and readthrough (or nonsense suppression), can occur when a stop codon reaches the A-site of a translating ribosome. Translation termination results in hydrolysis of the final peptidyl-tRNA bond and release of the completed nascent polypeptide. Alternatively, readthrough, in which the stop codon is erroneously decoded by a suppressor or near cognate transfer RNA (tRNA), results in translation past the stop codon and production of a protein with a C-terminal extension. The relative frequency of termination versus readthrough is determined by parameters such as the stop codon nucleotide context, the activities of termination factors and the abundance of suppressor tRNAs. Using a sensitive and versatile readthrough assay in conjunction with RNA interference technology, we assessed the effects of depleting eukaryotic releases factors 1 and 3 (eRF1 and eRF3) on the termination reaction in human cell lines. Consistent with the established role of eRF1 in triggering peptidyl-tRNA hydrolysis, we found that depletion of eRF1 enhances readthrough at all three stop codons in 293 cells and HeLa cells. The role of eRF3 in eukarytotic translation termination is less well understood as its overexpression has been shown to have anti-suppressor effects in yeast but not mammalian systems. We found that depletion of eRF3 has little or no effect on readthrough in 293 cells but does increase readthrough at all three stop codons in HeLa cells. These results support a direct role for eRF3 in translation termination in higher eukaryotes and also highlight the potential for differences in the abundance or activity of termination factors to modulate the balance of termination to readthrough reactions in a cell-type-specific manner.  相似文献   

4.
The molecular mechanism of stop codon recognition by the release factor eRF1 in complex with eRF3 has been described in great detail; however, our understanding of what determines the difference in termination efficiencies among various stop codon tetranucleotides and how near-cognate (nc) tRNAs recode stop codons during programmed readthrough in Saccharomyces cerevisiae is still poor. Here, we show that UGA-C as the only tetranucleotide of all four possible combinations dramatically exacerbated the readthrough phenotype of the stop codon recognition-deficient mutants in eRF1. Since the same is true also for UAA-C and UAG-C, we propose that the exceptionally high readthrough levels that all three stop codons display when followed by cytosine are partially caused by the compromised sampling ability of eRF1, which specifically senses cytosine at the +4 position. The difference in termination efficiencies among the remaining three UGA-N tetranucleotides is then given by their varying preferences for nc-tRNAs. In particular, UGA-A allows increased incorporation of Trp-tRNA whereas UGA-G and UGA-C favor Cys-tRNA. Our findings thus expand the repertoire of general decoding rules by showing that the +4 base determines the preferred selection of nc-tRNAs and, in the case of cytosine, it also genetically interacts with eRF1. Finally, using an example of the GCN4 translational control governed by four short uORFs, we also show how the evolution of this mechanism dealt with undesirable readthrough on those uORFs that serve as the key translation reinitiation promoting features of the GCN4 regulation, as both of these otherwise counteracting activities, readthrough versus reinitiation, are mediated by eIF3.  相似文献   

5.
Translation of mRNA into a polypeptide is terminated when the release factor eRF1 recognizes a UAA, UAG, or UGA stop codon in the ribosomal A site and stimulates nascent peptide release. However, stop codon readthrough can occur when a near-cognate tRNA outcompetes eRF1 in decoding the stop codon, resulting in the continuation of the elongation phase of protein synthesis. At the end of a conventional mRNA coding region, readthrough allows translation into the mRNA 3’-UTR. Previous studies with reporter systems have shown that the efficiency of termination or readthrough is modulated by cis-acting elements other than stop codon identity, including two nucleotides 5’ of the stop codon, six nucleotides 3’ of the stop codon in the ribosomal mRNA channel, and stem-loop structures in the mRNA 3’-UTR. It is unknown whether these elements are important at a genome-wide level and whether other mRNA features proximal to the stop codon significantly affect termination and readthrough efficiencies in vivo. Accordingly, we carried out ribosome profiling analyses of yeast cells expressing wild-type or temperature-sensitive eRF1 and developed bioinformatics strategies to calculate readthrough efficiency, and to identify mRNA and peptide features which influence that efficiency. We found that the stop codon (nt +1 to +3), the nucleotide after it (nt +4), the codon in the P site (nt -3 to -1), and 3’-UTR length are the most influential features in the control of readthrough efficiency, while nts +5 to +9 had milder effects. Additionally, we found low readthrough genes to have shorter 3’-UTRs compared to high readthrough genes in cells with thermally inactivated eRF1, while this trend was reversed in wild-type cells. Together, our results demonstrated the general roles of known regulatory elements in genome-wide regulation and identified several new mRNA or peptide features affecting the efficiency of translation termination and readthrough.  相似文献   

6.
Chao AT  Dierick HA  Addy TM  Bejsovec A 《Genetics》2003,165(2):601-612
In a screen for suppressors of the Drosophila wingless(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens.  相似文献   

7.
Translation termination in eukaryotes is mediated by the release factors eRF1 and eRF3, but mechanisms of the interplay between these factors are not fully understood, due partly to the difficulty of measuring termination on eukaryotic mRNAs. Here, we describe an in vitro system for the assay of termination using competition with programmed frameshifting at the recoding signal of mammalian antizyme. The efficiency of antizyme frameshifting in rabbit reticulocyte lysates was reduced by addition of recombinant rabbit eRF1 and eRF3 in a synergistic manner. Addition of suppressor tRNA to this assay system revealed competition with a third event, stop codon readthrough. Using these assays, we demonstrated that an eRF3 mutation at the GTPase domain repressed termination in a dominant negative fashion probably by binding to eRF1. The effect of the release factors and the suppressor tRNA showed that the stop codon at the antizyme frameshift site is relatively inefficient compared to either the natural termination signals at the end of protein coding sequences or the readthrough signal from a plant virus. The system affords a convenient assay for release factor activity and has provided some novel views of the mechanism of antizyme frameshifting.  相似文献   

8.
Hatin I  Fabret C  Namy O  Decatur WA  Rousset JP 《Genetics》2007,177(3):1527-1537
In eukaryotes, release factors 1 and 3 (eRF1 and eRF3) are recruited to promote translation termination when a stop codon on the mRNA enters at the ribosomal A-site. However, their overexpression increases termination efficiency only moderately, suggesting that other factors might be involved in the termination process. To determine such unknown components, we performed a genetic screen in Saccharomyces cerevisiae that identified genes increasing termination efficiency when overexpressed. For this purpose, we constructed a dedicated reporter strain in which a leaky stop codon is inserted into the chromosomal copy of the ade2 gene. Twenty-five antisuppressor candidates were identified and characterized for their impact on readthrough. Among them, SSB1 and snR18, two factors close to the exit tunnel of the ribosome, directed the strongest antisuppression effects when overexpressed, showing that they may be involved in fine-tuning of the translation termination level.  相似文献   

9.
The essential eukaryote release factor eRF1, encoded by the yeast SUP45 gene, recognizes stop codons during ribosomal translation. SUP45 nonsense alleles are, however, viable due to the establishment of feedback-regulated readthrough of the premature termination codon; reductions in full-length eRF1 promote tRNA-mediated stop codon readthrough, which, in turn, drives partial production of full-length eRF1. A deterministic mathematical model of this eRF1 feedback loop was developed using a staged increase in model complexity. Model predictions matched the experimental observation that strains carrying the mutant SUQ5 tRNA (a weak UAA suppressor) in combination with any of the tested sup45UAA nonsense alleles exhibit threefold more stop codon readthrough than that of an SUQ5 yeast strain. The model also successfully predicted that eRF1 feedback control in an SUQ5 sup45UAA mutant would resist, but not completely prevent, imposed changes in eRF1 expression. In these experiments, the introduction of a plasmid-borne SUQ5 copy into a sup45UAA SUQ5 mutant directed additional readthrough and full-length eRF1 expression, despite feedback. Secondly, induction of additional sup45UAA mRNA expression in a sup45UAA SUQ5 strain also directed increased full-length eRF1 expression. The autogenous sup45 control mechanism therefore acts not to precisely control eRF1 expression, but rather as a damping mechanism that only partially resists changes in release factor expression level. The validated model predicts that the degree of feedback damping (i.e., control precision) is proportional to eRF1 affinity for the premature stop codon. The validated model represents an important tool to analyze this and other translational negative feedback loops.  相似文献   

10.
eRF3 is a GTPase associated with eRF1 in a complex that mediates translation termination in eukaryotes. In mammals, two genes encode two distinct forms of eRF3, eRF3a and eRF3b, which differ in their N-terminal domains. Both bind eRF1 and stimulate its release activity in vitro. However, whether both proteins can function as termination factors in vivo has not been determined. In this study, we used short interfering RNAs to examine the effect of eRF3a and eRF3b depletion on translation termination efficiency in human cells. By measuring the readthrough at a premature nonsense codon in a reporter mRNA, we found that eRF3a silencing induced an important increase in readthrough whereas eRF3b silencing had no significant effect. We also found that eRF3a depletion reduced the intracellular level of eRF1 protein by affecting its stability. In addition, we showed that eRF3b overexpression alleviated the effect of eRF3a silencing on readthrough and on eRF1 cellular levels. These results suggest that eRF3a is the major factor acting in translation termination in mammals and clearly demonstrate that eRF3b can substitute for eRF3a in this function. Finally, our data indicate that the expression level of eRF3a controls the formation of the termination complex by modulating eRF1 protein stability.  相似文献   

11.
Termination of translation in higher organisms is a GTP-dependent process. However, in the structure of the single polypeptide chain release factor known so far (eRF1) there are no GTP binding motifs. Moreover, in prokaryotes, a GTP binding protein, RF3, stimulates translation termination. From these observations we proposed that a second eRF should exist, conferring GTP dependence for translation termination. Here, we have shown that the newly sequenced GTP binding Sup35-like protein from Xenopus laevis, termed eRF3, exhibits in vitro three important functional properties: (i) although being inactive as an eRF on its own, it greatly stimulates eRF1 activity in the presence of GTP and low concentrations of stop codons, resembling the properties of prokaryotic RF3; (ii) it binds and probably hydrolyses GTP; and (iii) it binds to eRF1. The structure of the C-domain of the X.laevis eRF3 protein is highly conserved with other Sup35-like proteins, as was also shown earlier for the eRF1 protein family. From these and our previous data, we propose that yeast Sup45 and Sup35 proteins belonging to eRF1 and eRF3 protein families respectively are also yeast termination factors. The absence of structural resemblance of eRF1 and eRF3 to prokaryotic RF1/2 and RF3 respectively, may point to the different evolutionary origin of the translation termination machinery in eukaryotes and prokaryotes. It is proposed that a quaternary complex composed of eRF1, eRF3, GTP and a stop codon of the mRNA is involved in termination of polypeptide synthesis in ribosomes.  相似文献   

12.
It is known from experiments with bacteria and eukaryotic viruses that readthrough of termination codons located within the open reading frame (ORF) of mRNAs depends on the availability of suppressor tRNA(s) and the efficiency of termination in cells. Consequently, the yield of readthrough products can be used as a measure of the activity of polypeptide chain release factor(s) (RF), key components of the translation termination machinery. Readthrough of the UAG codon located at the end of the ORF encoding the coat protein of beet necrotic yellow vein furovirus is required for virus replication. Constructs harbouring this suppressible UAG codon and derivatives containing a UGA or UAA codon in place of the UAG codon have been used in translation experiments in vitro in the absence or presence of human suppressor tRNAs. Readthrough can be virtually abolished by addition of bacterially-expressed eukaryotic RF1 (eRF1). Thus, eRF1 is functional towards all three termination codons located in a natural mRNA and efficiently competes in vitro with endogenous and exogenous suppressor tRNA(s) at the ribosomal A site. These results are consistent with a crucial role of eRF1 in translation termination and forms the essence of an in vitro assay for RF activity based on the abolishment of readthrough by eRF1.  相似文献   

13.
真核生物蛋白质翻译终止过程中,第一类肽链释放因子(eukaryotic polypeptide release factor, eRF1)利用其N端结构域识别终止密码子。eRF1的N结构域中的GTS、NIKS和YxCxxxF模体对于终止密码子的识别发挥重要作用。但至目前为止,eRF1识别终止密码子的机制,尤其是对于终止密码子的选择性识别机制仍不清楚。我们构建了四膜虫(Tetrahymena thermophilia)eRF1的N端结构域与酿酒酵母(Saccharomyces cerevisiae)或裂殖酵母(Schizosaccharomyces pombe)eRF1的M和C结构域组成的杂合eRF1,即Tt/Sc eRF1 和Tt/Sp eRF1。双荧光素酶检测结果证实,两种杂合eRF1在细胞中识别终止密码子的活性具有显著差异。Tt/Sc eRF1仅识别UGA密码子,与四膜虫eRF1一致,具有密码子识别特异性;而Tt/Sp eRF1可以识别3个终止密码子,无密码子识别特异性。为解释这一现象,将Sp eRF1的C结构域中的1个关键的小结构域中的氨基酸进行突变,与Sc eRF1相应位点的氨基酸一致。分析结果显示,突变体Tt/Sp eRF1识别密码子UAA和UAG的性质发生显著变化,说明第一类肽链释放因子的C端结构域参与了终止密码子的识别过程。这提示,四膜虫eRF1识别终止密码子的特异性可能依赖于eRF1分子内的结构域间相互作用。本研究结果为揭示肽链释放因子识别终止密码子的分子机制提供了数据支持。  相似文献   

14.
Translation termination in eukaryotes is mediated by two release factors, eRF1 and eRF3. eRF1 recognizes each of the three stop codons (UAG, UAA, and UGA) and facilitates release of the nascent polypeptide chain. eRF3 is a GTPase that stimulates the translation termination process by a poorly characterized mechanism. In this study, we examined the functional importance of GTP hydrolysis by eRF3 in Saccharomyces cerevisiae. We found that mutations that reduced the rate of GTP hydrolysis also reduced the efficiency of translation termination at some termination signals but not others. As much as a 17-fold decrease in the termination efficiency was observed at some tetranucleotide termination signals (characterized by the stop codon and the first following nucleotide), while no effect was observed at other termination signals. To determine whether this stop signal-dependent decrease in the efficiency of translation termination was due to a defect in either eRF1 or eRF3 recycling, we reduced the level of eRF1 or eRF3 in cells by expressing them individually from the CUP1 promoter. We found that the limitation of either factor resulted in a general decrease in the efficiency of translation termination rather than a decrease at a subset of termination signals as observed with the eRF3 GTPase mutants. We also found that overproduction of eRF1 was unable to increase the efficiency of translation termination at any termination signals. Together, these results suggest that the GTPase activity of eRF3 is required to couple the recognition of translation termination signals by eRF1 to efficient polypeptide chain release.  相似文献   

15.
Stop codon suppression via inhibition of eRF1 expression   总被引:2,自引:0,他引:2  
In humans, recognition of a stop codon by protein release factor eRF1 leads to release of the nascent peptide from the ribosome. Although efficient eRF1 activity is usually desirable, numerous pathologies result from eRF1 recognition of premature stop mutations in essential genes. In these cases, decreased eRF1 activity could increase readthrough of the premature stop codon, thereby making full-length protein. To broaden the means available to beneficially decrease eRF1 activity, we have targeted eRF1 mRNA using siRNAs and antisense oligonucleotides. We show that both eRF1-targeted siRNA and antisense oligonucleotides decrease eRF1 mRNA and eRF1 protein concentrations, and increase UAG readthrough in cultured human cells.  相似文献   

16.
17.

Background  

Translation termination is mediated through an interaction between the release factors eRF1 and eRF3 and the stop codon within its nucleotide context. Although it is well known that the nucleotide contexts both upstream and downstream of the stop codon, can modulate readthrough, little is known about the mechanisms involved.  相似文献   

18.
Eukaryotic peptide release factor 3 (eRF3) is a conserved, essential gene in eukaryotes implicated in translation termination. We have systematically measured the contribution of eRF3 to the rates of peptide release with both saturating and limiting levels of eukaryotic release factor 1 (eRF1). Although eRF3 modestly stimulates the absolute rate of peptide release (∼5-fold), it strongly increases the rate of peptide release when eRF1 is limiting (>20-fold). This effect was generalizable across all stop codons and in a variety of contexts. Further investigation revealed that eRF1 remains associated with ribosomal complexes after peptide release and subunit dissociation and that eRF3 promotes the dissociation of eRF1 from these post-termination complexes. These data are consistent with models where eRF3 principally affects binding interactions between eRF1 and the ribosome, either prior to or subsequent to peptide release. A role for eRF3 as an escort for eRF1 into its fully accommodated state is easily reconciled with its close sequence similarity to the translational GTPase EFTu.  相似文献   

19.
The translation machinery recognizes codons that enter the ribosomal A site with remarkable accuracy to ensure that polypeptide synthesis proceeds with a minimum of errors. When a termination codon enters the A site of a eukaryotic ribosome, it is recognized by the release factor eRF1. It has been suggested that the recognition of translation termination signals in these organisms is not limited to a simple trinucleotide codon, but is instead recognized by an extended tetranucleotide termination signal comprised of the stop codon and the first nucleotide that follows. Interestingly, pharmacological agents such as aminoglycoside antibiotics can reduce the efficiency of translation termination by a mechanism that alters this ribosomal proofreading process. This leads to the misincorporation of an amino acid through the pairing of a near-cognate aminoacyl tRNA with the stop codon. To determine whether the sequence context surrounding a stop codon can influence aminoglycoside-mediated suppression of translation termination signals, we developed a series of readthrough constructs that contained different tetranucleotide termination signals, as well as differences in the three bases upstream and downstream of the stop codon. Our results demonstrate that the sequences surrounding a stop codon can play an important role in determining its susceptibility to suppression by aminoglycosides. Furthermore, these distal sequences were found to influence the level of suppression in remarkably distinct ways. These results suggest that the mRNA context influences the suppression of stop codons in response to subtle differences in the conformation of the ribosomal decoding site that result from aminoglycoside binding.  相似文献   

20.
A search for suppressors of the carnitine/acylcarnitine translocase (CACT) deficiency in Aspergillus nidulans permitted the identification of the suaE7 mutation, mapping at a new translational suppressor (suaE) gene. The suaE gene is essential in A. nidulans and encodes the eukaryotic release factor 1 (eRF1). The suaE7 mutation suppresses two acuH alleles (acuH13 and acuH31), both carrying nonsense mutations in the CACT encoding gene that involve the replacement of a CAG (Gln) codon with a premature TAG stop codon. In contrast, the suaE7 gene does not suppress the acuH20 amber nonsense mutation involving a TGG-->TAG change. The phenotype associated to the suaE7 mutation strictly resembles that of mutants at the suaA and suaC genes, two translational suppressor genes previously identified, suggesting that their gene products might functionally interact in translation termination. Sequencing of the suaE7 gene allowed the identification of a mutation in the domain 2 of the omnipotent class-1 eukaryotic release factor involving the Gly265Ser substitution in the A. nidulans eRF1. This mutation creates a structural context unfavourable for normal eRF binding that allows the misreading of stop codons by natural suppressor tRNAs, such as the tRNAs(Gln). Structural analysis using molecular modelling of A. nidulans eRF1 domain 2 bearing the G265S substitution and computer simulation results suggest that this mutation might impair the necessary conformational changes in the eRF1 to optimally recognize the stop codon and simultaneously interact with the peptidyl transferase centre of the 60S ribosomal subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号