共查询到20条相似文献,搜索用时 0 毫秒
1.
Bogdelis A Treinys R Stankevičius E Jurevičius J Skeberdis VA 《Biochemical and biophysical research communications》2011,(1):116-121
In the heart, L-type voltage dependent calcium channels (L-VDCC) provide Ca2+ for the activation of contractile apparatus. The best described pathway for L-type Ca2+ current (ICa,L) modulation is the phosphorylation of calcium channels by cAMP-dependent protein kinase A (PKA), the activity of which is predominantly regulated in opposite manner by β-adrenergic (β-ARs) and muscarinic receptors. The role of other kinases is controversial and often depends on tissues and species used in the studies. In different studies the inhibitors of tyrosine kinases have been shown either to stimulate or inhibit, or even have a biphasic effect on ICa,L. Moreover, there is no clear picture about the route of activation and the site of action of cardiac Src family nonreceptor tyrosine kinases (Src-nPTKs). In the present study we used PP1, a selective inhibitor of Src-nPTKs, alone and together with different activators of ICa,L, and demonstrated that in human atrial myocytes (HAMs): (i) Src-nPTKs are activated concomitantly with activation of cAMP-signaling cascade; (ii) Src-nPTKs attenuate PKA-dependent stimulation of ICa,L by inhibiting PKA activity; (iii) Gαs are not involved in the direct activation of Src-nPTKs. In this way, Src-nPTKs may provide a protecting mechanism against myocardial overload under conditions of increased sympathetic activity. 相似文献
2.
The mechanism of idiopathic ventricular tachycardia originating from the right ventricular outflow tract (RVOT) is not clear.
Many clinical reports have suggested a mechanism of triggered activity. However, there are few studies investigating this
because of the technical difficulties associated with examining this theory. The L-type calcium current (I
Ca-L), an important inward current of the action potential (AP), plays an important role in arrhythmogenesis. The aim of this
study was to explore differences in the APs of right ventricular (RV) and RVOT cardiomyocytes, and differences in electrophysiological
characteristics of the ICa-L in these myocytes. Rabbit RVOT and RV myocytes were isolated and their AP and I
Ca-L were investigated using the patch-clamp technique. RVOT cardiomyocytes had a wider range of AP duration (APD) than RV cardiomyocytes,
with some markedly prolonged APDs and markedly shortened APDs. The markedly shortened APDs in RVOT myocytes were abolished
by treatment with 4-AP, an inhibitor of the transient outward potassium current, but the markedly prolonged APDs remained,
with some myocytes with a long AP plateau not repolarizing to resting potential. In addition, early afterdepolarization (EAD)
and second plateau responses were seen in RVOT myocytes but not in RV myocytes. RVOT myocytes had a higher current density
for I
Ca-L than RV myocytes (RVOT (13.16±0.87) pA pF−1, RV (8.59±1.97) pA pF−1; P<0.05). The I
Ca-L and the prolonged APD were reduced, and the EAD and second plateau response disappeared, after treatment with nifedipine
(10 μmol L−1), which blocks the I
Ca-L. In conclusion, there was a wider range of APDs in RVOT myocytes than in RV myocytes, which is one of the basic factors involved
in arrhythmogenesis. The higher current density for I
Ca-L is one of the factors causing prolongation of the APD in RVOT myocytes. The combination of EAD with prolonged APD may be
one of the mechanisms of RVOT-VT generation. 相似文献
3.
三羟异黄酮对豚鼠心室肌细胞L-型钙通道电流的影响 总被引:2,自引:0,他引:2
本实验用全细胞膜片钳技术观察三羟异黄酮(genistein,GST)对豚鼠心室肌细胞L-钙通道电流(ICa、L)的影响。结果如下:(1)GST(10、50、100 μmol/L)可浓度依赖性地降低ICa,L(n=6,P<0.01)。GST的非活性结构类似物daidzein(100μmol/L),在同一浓度范围对ICa,L没有影响(n=5,P>0.05)。(2)GST使I-V曲线上移,但对ICa,L的电压依赖特征和最大激活电压无明显影响。(3)GST对ICa,L的激活动力学特性也无影响,但可使钙电流稳态失活曲线左移。V0.5从对照的-28.6±0.6 mV变为-32.8±1.1mV,κ值从对照的5.8±0.5 mV升至6.5±0.9 mV(n=6,P<0.05)。(4)GST明显使复活曲线右移,从而使ICa,L从失活状态下恢复明显减慢(n=7,P<0.01)。(5)酪氨酸磷酸酶抑制剂正钒酸钠(1 mmol/L)显著对抗GST引起的ICa,L抑制效应(n=6,P<0.01)。根据以上结果得出的结论是:GST抑制ICa,L加速钙通道失活和钙通道在失活状态下恢复减慢;GST对ICa,L的这种抑制作用与蛋白酪氨酸激酶(PTK)抑制有关。 相似文献
4.
Slow inactivation of L-type calcium current distorts the measurement of L- and T-type calcium current in Purkinje myocytes 总被引:1,自引:0,他引:1 下载免费PDF全文
《The Journal of general physiology》1993,102(5):859-869
We have examined slow inactivation of L-type calcium current in canine Purkinje myocytes with the whole cell patch clamp technique. Slow inactivation is voltage dependent. It is negligible at -50 mV but can inactivate more than half of available iCaL at -10 mV. There are two major consequences of this slow inactivation. First, standard protocols for the measurement of T-type current can dramatically overestimate its contribution to total calcium current, and second, the position and steepness of the inactivation versus voltage curve for iCaL will depend on the method of measurement. Given the widespread attempts to identify calcium current components and characterize them biophysically, an important first step should be to determine the extent of slow inactivation of calcium current in each preparation. 相似文献
5.
应用全细胞膜片钳技术研究低浓度辣椒素(capsaicin,CAP)对单个豚鼠心室肌细胞L-型钙电流的影响及其作用机制.CAP(1~25
nmol/L)可浓度依赖性增加电压依赖性的ICa-L的峰值并下移I-V曲线.CAPl,10,25
nmol/L使ICa-L最大峰值分别由-9.67±0.7pA/pF增至-10.21±0.8pA/pF(P>0.05),-11.37±0.8pA/pF和-12.84±0.9pA/pF(P<0.05).CAP25nmol/L可明显使稳态激活曲线左移,激活中点电压(V0.5)由-20.76±2.0mV变至-26.71±3.0mV(P<0.05),表明低浓度CAP改变了钙通道激活的电压依赖性.CAP25nmol/L对电压依赖性稳态失活曲线和ICa-L从失活状态下复活过程无明显影响.辣椒素受体(VR1)阻断剂钌红(RR,10μmol/L)可阻断低浓度辣椒素的效应.以上结果表明,低浓度辣椒素使钙通道稳态激活曲线左移,增加ICa-L,这一效应可能由VRl介导. 相似文献
6.
Barajas-Martínez H Elizalde A Sánchez-Chapula JA 《American journal of physiology. Heart and circulatory physiology》2000,278(2):H484-H492
In the present work, we found that the delayed rectifying outward potassium current (I(K)) in adult and neonatal cat ventricular myocytes consists of both rapid and slow components, I(Kr) and I(Ks), respectively, which can be isolated pharmacologically. Thus after complete blockade of I(Kr) with dofetilide, the remaining I(Ks) current is homogeneous, as shown by an envelope of tails test. I(Kr) maximum tail current density, measured at -40 mV, was similar in adult and neonatal myocytes. I(Ks) maximum tail current density in neonatal myocytes, measured at -40 mV, was significantly smaller than in adult myocytes. Activation kinetics of I(Kr) and I(Ks) was similar in both age groups. However, the I(Kr) deactivation time course was significantly faster in neonatal than in adult myocytes. Developmental differences in the subunit composition of I(Kr) that display distinctly different deactivation kinetics are suggested. 相似文献
7.
Boixel C Tessier S Pansard Y Lang-Lazdunski L Mercadier JJ Hatem SN 《American journal of physiology. Heart and circulatory physiology》2000,278(2):H670-H676
The effects of tyrosine protein kinases (TK) on the L-type Ca(2+) current (I(Ca)) were examined in whole cell patch-clamped human atrial myocytes. The TK inhibitors genistein (50 microM), lavendustin A (50 microM), and tyrphostin 23 (50 microM) stimulated I(Ca) by 132 +/- 18% (P < 0.001), 116 +/- 18% (P < 0.05), and 60 +/- 6% (P < 0.001), respectively. After I(Ca) stimulation by genistein, external application of isoproterenol (1 microM) caused an additional increase in I(Ca). Dialyzing the cells with a protein kinase A inhibitor suppressed the effect of isoproterenol on I(Ca) but not that of genistein. Inhibition of protein kinase C (PKC) by pretreatment of cells with 100 nM staurosporine or 100 nM calphostin C prevented the effects of genistein on I(Ca). The PKC activator phorbol 12-myristate 13-acetate (PMA), after an initial stimulation (75 +/- 17%, P < 0.05), decreased I(Ca) (-36 +/- 5%, P < 0.001). Once the inhibitory effect of PMA on I(Ca) had stabilized, genistein strongly stimulated the current (323 +/- 25%, P < 0.05). Pretreating myocytes with genistein reduced the inhibitory effect of PMA on I(Ca). We conclude that, in human atrial myocytes, TK inhibit I(Ca) via a mechanism that involves PKC. 相似文献
8.
Selective modulation of L-type calcium current by magnesium lithospermate B in guinea-pig ventricular myocytes 总被引:3,自引:0,他引:3
Magnesium lithospermate B (MLB) is the main water-soluble principle of Salviae Miltiorrhizae Radix (also called as 'Danshen' in the traditional Chinese medicine) for the treatment of cardiovascular diseases. MLB was found to possess a variety of pharmacological actions. However, it is unclear whether and how MLB affects the cardiac ion channels. In the present study, the effects of MLB on the voltage-activated ionic currents were investigated in single ventricular myocytes of adult guinea pigs. MLB reversibly inhibited L-type Ca(2+) current (I(Ca,L)). The inhibition was use-dependent and voltage-dependent (the IC(50) value of MLB was 30 microM and 393 microM, respectively, at the holding potential of -50 mV and -100 mV). In the presence of 100 microM MLB, both the activation and steady-state inactivation curves of I(Ca,L) were markedly shifted to hyperpolarizing membrane potentials, whereas the time course of recovery of I(Ca,L) from inactivation was not altered. MLB up to 300 microM had no significant effect on the fast-inactivating Na(+) current (I(Na)), delayed rectifier K(+) current (I(K)) and inward rectifier K(+) current (I(K1)). The results suggest that the voltage-dependent Ca(2+) antagonistic effect of MLB work in concert with its antioxidant action for attenuating heart ischemic injury. 相似文献
9.
Properties of L-type calcium channel gating current in isolated guinea pig ventricular myocytes. 下载免费PDF全文
Nonlinear capacitative current (charge movement) was compared to the Ca current (ICa) in single guinea pig ventricular myocytes. It was concluded that the charge movement seen with depolarizing test steps from -50 mV is dominated by L-type Ca channel gating current, because of the following observations. (a) Ca channel inactivation and the immobilization of the gating current had similar voltage and time dependencies. The degree of channel inactivation was directly proportional to the amount of charge immobilization, unlike what has been reported for Na channels. (b) The degree of Ca channel activation was closely correlated with the amount of charge moved at all test potentials between -40 and +60 mV. (c) D600 was found to reduce the gating current in a voltage- and use-dependent manner. D600 was also found to induce "extra" charge movement at negative potentials. (d) Nitrendipine reduced the gating current in a voltage-dependent manner (KD = 200 nM at -40 mV). However, nitrendipine did not increase charge movement at negative test potentials. Although contamination of the Ca channel gating current from other sources cannot be fully excluded, it was not evident in the data and would appear to be small. However, it was noted that the amount of Ca channel gating charge was quite large compared with the magnitude of the Ca current. Indeed, the gating current was found to be a significant contaminant (19 +/- 7%) of the Ca tail currents in these cells. In addition, it was found that Ca channel rundown did not diminish the gating current. These results suggest that Ca channels can be "inactivated" by means that do not affect the voltage sensor. 相似文献
10.
Namiki T Joyner RW Wagner MB 《American journal of physiology. Heart and circulatory physiology》2007,292(1):H295-H303
The mechanisms of recovery from inactivation of the L-type calcium current (I(Ca)) are not well established, and recovery is affected by many experimental conditions. Little is known about developmental changes of recovery from inactivation of I(Ca). We studied developmental changes of recovery from inactivation in I(Ca) using isolated adult and newborn (1-4 days) rabbit ventricular myocytes. We used broken-patch and perforated-patch techniques with physiological extracellular ionic concentrations of calcium and sodium and interpulse conditioning potentials of -80 or -50 mV. We also maximized I(Ca) with forskolin. We found that recovery from inactivation did not differ between adult and newborn cells when either EGTA or BAPTA was used to buffer intracellular calcium. Maximizing I(Ca) with forskolin slowed recovery from inactivation in newborn but not in adult cells. In contrast, when the intracellular buffering of the cell was left nearly intact (perforated patch), recovery from inactivation (half-time of recovery) in the newborn cells was significantly slower than for the adult cells when either a conditioning potential of -80 mV (140 +/- 9 vs. 58 +/- 4 ms, newborn vs. adult; P < 0.05) or -50 mV (641 +/- 106 vs. 168 +/- 15 ms, newborn vs. adult; P < 0.05) was used. Forskolin significantly increased half-time of recovery for both adult and newborn cells. Dialysis with no calcium buffer showed a slower recovery from inactivation in newborn cells. Intracellular dialysis with a calcium buffer masked differences in recovery from inactivation of I(Ca) between newborn and adult rabbit ventricular cells. 相似文献
11.
The protein kinase inhibitor, staurosporine, inhibits L-type Ca2+ current in rabbit atrial myocytes 总被引:1,自引:0,他引:1
A whole-cell patch recording was used to determine the effects of staurosporine (ST), a potent protein kinase C (PKC) inhibitor, on L-type Ca(2+) channel (LTCC) activity in rabbit atrial myocytes. Bath application of ST (300 nM) caused a significant reduction in peak I-V relationship of LTCC (from -16.8+/-2.55 to -3.74+/-1.22pApF(-1) at 0 mV). The level of L-type Ca(2+) current (I(Ca,L)) inhibition produced by ST was independent of the voltage at which the effect was measured. ST inhibited the I(Ca,L) in a dose-dependent manner with a K(d) value of 61.98+/-6.802 nM. ST shifted the activation curve to more positive potentials, but did not have any significant effect on the voltage dependence of the inactivation curve. Other PKC inhibitors, GF 109203X (1 microM) and chelerythrine (3 microM), and PKA inhibitor, PKA-IP (5 microM), did not show any inhibitory effect on I(Ca,L). Additional application of ST in the presence of isoproterenol (1 microM), a selective beta-adrenoreceptor agonist, reduced peak I(Ca,L) (78.2%) approximately to the same level with single application of ST (77.8%). In conclusion, our results indicate that ST directly blocks the LTCC in a PKC or PKA-independent manner on LTCC and it should be taken into consideration when ST is used in functional studies of ion channel modulation by protein phosphorylation. 相似文献
12.
Collis LP Srivastava S Coetzee WA Artman M 《American journal of physiology. Heart and circulatory physiology》2007,293(5):H2826-H2835
Selective stimulation of beta(2)-adrenergic receptors (ARs) in newborn rabbit ventricular myocardium invokes a positive inotropic effect that is lost during postnatal maturation. The underlying mechanisms for this age-related stimulatory response remain unresolved. We examined the effects of beta(2)-AR stimulation on L-type Ca(2+) current (I(Ca,L)) during postnatal development. I(Ca,L) was measured (37 degrees C; either Ca(2+) or Ba(2+) as the charge carrier) using the whole-cell patch-clamp technique in newborn (1 to 5 days old) and adult rabbit ventricular myocytes. Ca(2+) transients were measured concomitantly by dialyzing the cell with indo-1. Activation of beta(2)-ARs (with either 100 nM zinterol or 1 microM isoproterenol in the presence of the beta(1)-AR antagonist, CGP20712A) stimulated I(Ca,L) twofold in newborns but not in adults. The beta(2)-AR-mediated increase in Ca(2+) transient amplitude in newborns was due exclusively to the augmentation of I(Ca,L). Zinterol increased the rate of inactivation of I(Ca,L) and increased the Ca(2+) flux integral. The beta(2)-AR inverse agonist, ICI-118551 (500 nM), but not the beta(1)-AR antagonist, CGP20712A (500 nM), blocked the response to zinterol. Unexpectedly, the PKA blockers, H-89 (10 microM), PKI 6-22 amide (10 microM), and Rp-cAMP (100 microM), all failed to prevent the response to zinterol but completely blocked responses to selective beta(1)-AR stimulation of I(Ca,L) in newborns. Our results demonstrate that in addition to the conventional beta(1)-AR/cAMP/PKA pathway, newborn rabbit myocardium exhibits a novel beta(2)-AR-mediated, PKA-insensitive pathway that stimulates I(Ca,L). This striking developmental difference plays a major role in the age-related differences in inotropic responses to beta(2)-AR agonists. 相似文献
13.
西洛他唑对人心房肌细胞瞬间外向钾电流的影响 总被引:2,自引:0,他引:2
目的:观察西洛他唑对人心房肌细胞瞬间外向钾电流(Ito1)的影响,探讨该药抗心律失常作用的机制.方法:二步酶解法分离人单个右心房肌细胞,应用全细胞膜片钳技术记录人心房肌细胞Ito1.结果:在保持电位-50 mV和去极化脉冲为 50 mV条件下,30 μmol/L西洛他唑显著降低Ito1,使Ito1幅值由加药前(8.16±0.70)pA/pF降至(4.84±0.60)pA/pF(P<0.01).西洛他唑在1~50 μmol/L范围内呈浓度依赖性的抑制Ito1,1 μmol/L时即产生作用,50 μmol/L时达最大效应(降低51.09%±3.00%),IC50为(13.18±2.60)μmol/L.此外,该药对Ito1的电压依赖性激活和失活曲线以及恢复曲线均无显著影响.结论:本实验结果表明西洛他唑浓度依赖性地阻滞人心房肌细胞的Ito1. 相似文献
14.
15.
Zhang XH Li GR Bourreau JP 《American journal of physiology. Heart and circulatory physiology》2007,293(5):H2888-H2893
Adrenomedullin (ADM) is upregulated in cardiac tissue under various pathophysiological conditions, particularly in septic shock. The intracellular mechanisms involved in the effect of ADM on adult rat ventricular myocytes are still to be elucidated. Ventricular myocytes were isolated from adult rats 4 h after an intraperitoneal injection of lipopolysaccharide (LPS, 10 mg/kg). Membrane potential and L-type calcium current (I(Ca,L)) were determined using whole cell patch-clamp methods. APD in LPS group was significantly shorter than control values (time to 50% repolarization: LPS, 169 +/- 2 ms; control, 257 +/- 2 ms, P < 0.05; time to 90% repolarization: LPS, 220 +/- 2 ms; control, 305 +/- 2 ms, P < 0.05). I(Ca,L) density was significantly reduced in myocytes from the LPS group (-3.2 +/- 0.8 pA/pF) compared with that of control myocytes (-6.7 +/- 0.3 pA/pF, P < 0.05). The ADM antagonist ADM-(22-52) reversed the shortened APD and abolished the reduction of I(Ca,L) in shock myocytes. In myocytes from control rats, incubating with ADM for 1 h induced a marked decrease in peak I(Ca,L) density. This effect was reversed by ADM-(22-52). The G(i) protein inhibitor, pertussis toxin (PTX), the protein kinase A (PKA) inhibitor, KT-5720, and the specific cyclooxygenase 2 (COX-2) inhibitor, nimesulide, reversed the LPS-induced reduction in peak I(Ca,L). The results suggest a COX-2-involved PKA-dependent switch from G(s) coupled to PTX-sensitive G(i) coupling by ADM in adult rat ventricular myocytes. The present study delineates the intracellular pathways involved in ADM-mediated effects on I(Ca,L) in adult rat ventricular myocytes and also suggests a role of ADM in sepsis. 相似文献
16.
Rose RA Lomax AE Giles WR 《American journal of physiology. Heart and circulatory physiology》2003,285(6):H2454-H2462
Single atrial myocytes were isolated from the bullfrog heart and studied under current and voltage clamp conditions to determine the electrophysiological effects of the C-type natriuretic peptide (CNP). CNP (10(-8) M) significantly shortened the action potential and reduced its peak amplitude after the application of isoproteronol (10(-7) M). In voltage clamp studies, CNP inhibited isoproteronol-stimulated L-type Ca2+ current (ICa) without any significant effect on the inward rectifier K+ current. The effects of cANF (10(-8) M), a selective agonist of the natriuretic peptide C receptor (NPR-C), were very similar to those of CNP. Moreover, HS-142-1, an antagonist of the guanylyl cyclase-linked NPR-A and NPR-B receptors did not alter the inhibitory effect of CNP on ICa. Inclusion of cAMP in the recording pipette to stimulate ICa at a point downstream from adenylyl cyclase increased ICa, but this effect was not inhibited by cANF. These results provide the first demonstration that CNP can inhibit ICa after binding to NPR-C, and suggest that this inhibition involves a decrease in adenylyl cyclase activity, which leads to reduced intracellular levels of cAMP. 相似文献
17.
J Magyar CE Kiper G Sievert W Cai GX Shi SM Crump L Li S Niederer N Smith DA Andres J Satin 《Channels (Austin, Tex.)》2012,6(3):166-173
Rationale: The L-type calcium channels (LTCC) are critical for maintaining Ca ( 2+) -homeostasis. In heterologous expression studies, the RGK-class of Ras-related G-proteins regulates LTCC function; however, the physiological relevance of RGK-LTCC interactions is untested. Objective: In this report we test the hypothesis that the RGK protein, Rem, modulates native Ca ( 2+) current (ICa,L) via LTCC in murine cardiomyocytes. Methods and Results: Rem knockout mice (Rem (-/-) ) were engineered, and ICa,L and Ca ( 2+) -handling properties were assessed. Rem (-/-) ventricular cardiomyocytes displayed increased ICa,L density. ICa,L activation was shifted positive on the voltage axis, and β-adrenergic stimulation normalized this shift compared with wild-type ICa,L. Current kinetics, steady-state inactivation, and facilitation was unaffected by Rem (-/-) . Cell shortening was not significantly different. Increased ICa,L density in the absence of frank phenotypic differences motivated us to explore putative compensatory mechanisms. Despite the larger ICa,L density, Rem (-/-) cardiomyocyte Ca ( 2+) twitch transient amplitude was significantly less than that compared with wild type. Computer simulations and immunoblot analysis suggests that relative dephosphorylation of Rem (-/-) LTCC can account for the paradoxical decrease of Ca ( 2+) transients. Conclusions: This is the first demonstration that loss of an RGK protein influences ICa,L in vivo in cardiac myocytes. 相似文献
18.
《Channels (Austin, Tex.)》2013,7(3):166-173
Rationale: The L-type calcium channels (LTCC) are critical for maintaining Ca2+-homeostasis. In heterologous expression studies, the RGK-class of Ras-related G-proteins regulates LTCC function; however, the physiological relevance of RGK–LTCC interactions is untested. Objective: In this report we test the hypothesis that the RGK protein, Rem, modulates native Ca2+ current (ICa,L) via LTCC in murine cardiomyocytes. Methods and Results: Rem knockout mice (Rem?/?) were engineered, and ICa,L and Ca2+-handling properties were assessed. Rem?/? ventricular cardiomyocytes displayed increased ICa,L density. ICa,L activation was shifted positive on the voltage axis, and β-adrenergic stimulation normalized this shift compared with wild-type ICa,L. Current kinetics, steady-state inactivation, and facilitation was unaffected by Rem?/?. Cell shortening was not significantly different. Increased ICa,L density in the absence of frank phenotypic differences motivated us to explore putative compensatory mechanisms. Despite the larger ICa,L density, Rem?/? cardiomyocyte Ca2+ twitch transient amplitude was significantly less than that compared with wild type. Computer simulations and immunoblot analysis suggests that relative dephosphorylation of Rem?/? LTCC can account for the paradoxical decrease of Ca2+ transients. Conclusions: This is the first demonstration that loss of an RGK protein influences ICa,L in vivo in cardiac myocytes. 相似文献
19.
Katsuharu Tsuchida Hiroshi Watajima 《Cellular and molecular biology, including cyto-enzymology》2002,48(2):179-185
The effects of nitroglycerin (NG) on the L-type Ca2+ current (ICa,L) were investigated in guinea-pig ventricular myocytes. NG did not affect the basal ICa,L significantly. The ICa,L was increased by NG when the ICa,L was augmented by the pre-treatment with isoproterenol (Iso), and this increase was abolished by the pretreatment with methylene blue (MB), a guanylate cyclase inhibitor. NG also increased ICa,L in the myocytes undergoing the pretreatment with isobutylmethylxanthine (IBMX). The NG-induced increase in ICa,L was also observed in the myocytes intracellularly dialyzed with cyclic adenosine monophosphate (cAMP). The order of the Iso-induced increase in ICa,L was Iso, IBMX and cAMP. Relatively a lower concentration of the extracellularly applied 8bromo-cyclic guanosine monophosphate (8Br-cGMP) increased ICa,L in the myocytes dialyzed with cAMP, whereas the higher concentration of 8Br-cGMP decreased ICa,L. NG produced a marked increase in cGMP levels, and a slight increase in cAMP levels in the ventricular tissues. These results suggest that the stimulatory effect of NG on the ICa,L is due to an inhibition of cGMP-inhibitable cAMP-phosphodiesterase (PDE) and a possible activation of cGMP-dependent protein kinase via the NG-induced increase in cGMP levels in guinea-pig ventricular myocytes. 相似文献
20.
Li H Zhang H Hancox JC Kozlowski RZ 《Biochemical and biophysical research communications》2007,359(3):765-770
This report describes a hitherto unreported anionic background current from human atrial cardiomyocytes. Under whole-cell patch-clamp with anion-selective conditions, an outwardly rectifying anion current (I(ANION)) was observed, which was larger with iodide than nitrate, and with nitrate than chloride as charge carrier. In contrast with a previously identified background anionic current from small mammal cardiomyocytes, I(ANION) was not augmented by the pyrethroid tefluthrin (10 microM); neither was it inhibited by hyperosmolar external solution nor by DIDS (200 microM); thus I(ANION) was not due to basal activity of volume-sensitive anion channels. I(ANION) was partially inhibited by the Cl(-) channel blockers NPPB (50 microM) and Gly H-101 (30 microM). Incorporation of I(ANION) into a human atrial action potential (AP) simulation led to depression of the AP plateau, accompanied by alterations to plateau inward calcium current, and to AP shortening at 50% but not 90% of complete repolarization, demonstrating that I(ANION) can influence the human atrial AP profile. 相似文献