首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A group of unnatural 1-(2-deoxy-beta-D-ribofuranosyl)-2,4-difluorobenzenes having a variety of C-5 two-carbon substituents [-C...C-X, X = I, Br; -C...CH; (E)-CH=CH-X, X = I, Br; -CH=CH2; -CH2CH3; -CH(N3) CH2Br], designed as nucleoside mimics, were synthesized for evaluation as anticancer and antiviral agents. The 5-substituted (E)-CH=CH-I and -CH2CH3 compounds exhibited negligible cytotoxicity in a MTT assay (CC50 = 10(-3) to 10(-4)M range), relative to thymidine (CC50 = 10(-3) to 10(-5)M range), against a variety of cancer cell lines. In contrast, the C-5 substituted -C...C-I and -CH(N3)CH2Br compounds were more cytotoxic (CC50 = 10(-5) to 10(-6)M range). The -C...C-I and -CH2CH3 compounds exhibited similar cytotoxicity against non-transfected (KBALB, 143B) and HSV-1 TK+ gene transfected (KBALB-STK, 143B-LTK) cancer cell lines expressing the herpes simplex virus type 1 (HSV-1) thymidine kinase gene (TK+). This observation indicates that expression of the viral TK enzyme did not provide a gene therapeutic effect. The parent group of 5-substituted compounds, that were evaluated using a wide variety of antiviral assay systems [HSV-1, HSV-2, varicella-zoster virus (VZV), vaccinia virus, vesicular stomatitis, cytomegalovirus (CMV), and human immunodeficiency (HIV-1, HIV-2) viruses], showed that this class of unnatural C-aryl nucleoside mimics are inactive and/or weakly active antiviral agents.  相似文献   

2.
A group of unnatural 1-(2-deoxy-beta-D-ribofuranosyl)-2,4-difluorobenzenes having a variety of C-5 substituents (H, Me, F, Cl, Br, I, CF3, CN, NO2, NH2), designed as thymidine mimics, were synthesized for evaluation as anticancer and antiviral agents. The coupling reaction of 3,5-bis-O-(p-chlorobenzoyl)-2-deoxy-alpha-D-ribofuranosyl chloride with an organocadmium reagent [(2,4-difluorophenyl)2Cd] afforded a mixture of the alpha- and beta-anomeric products (alpha:beta = 3:1 to 10:1 ratio). Treatment of the alpha-anomer with BF3.Et2O in nitroethane at 110-120 degrees C for 30 min was developed as an efficient method for epimerization of the major alpha-anomer to the desired beta-anomer. The 5-substituted (H, Me, Cl, I, NH2) beta-anomers exhibited negligible cytotoxicity in a MTT assay (CC50 = 10(-3)-10(-4) M range), relative to thymidine (CC50 = 10(-3)-10(-5) M range), against a variety of cancer cell lines. In contrast, the 5-NO2 derivative was more cytotoxic (CC50 = 10(-5)-10(-6) M range). A number of 5-substituted beta-anomers, and some related alpha-anomers, that were evaluated using a wide variety of antiviral assay systems [HSV-1, HSV-2, varicella-zoster virus (VZV), vaccinia virus, vesicular stomatitis, cytomegalovirus (CMV) and human immunodeficiency (HIV-1, HIV-2) viruses], showed that this class of unnatural C-aryl nucleoside mimics are inactive antiviral agents.  相似文献   

3.
A group of unnatural 1-(2-deoxy-beta-D-ribofuranosyl)isocarbostyrils having a variety of C-7 substituents [H, 4,7-(NO2)2, I, CF3, CN, (E)-CH=CH-I, -C triple bond CH, -C triple bond C-I, -C triple bond C-Br, -C=C-Me], designed as nucleoside mimics, were synthesized for evaluation as anticancer and antiviral agents. This class of compounds exhibited weak cytotoxicity in a MTT assay (CC50 = 10(-3) to 10(-5) M range) with the 4,7-dinitro derivative being the most cytotoxic, relative to thymidine (CC50 = 10(-3) to 10(-5) M range), against a variety of cancer cell lines. The 4,7-dinitro, 7-I and 7-C triple bond CH compounds exhibited similar cytotoxicity against non-transfected (KBALB, 143B), and HSV-1 TK+ gene transfected (KBALB-STK, 143B-LTK) cancer cell lines possessing the herpes simplex virus type 1 (HSV-1) thymidine kinase gene (TK+). This observation indicates that these compounds are not substrates for HSV type-1 TK, and are therefore unlikely to be useful in gene therapy based on the HSV gene therapy paradigm.  相似文献   

4.
Abstract

A group of unnatural 1-(2-deoxy-β-D-ribofuranosyl)-2,4-difluorobenzenes possessing a 5-I or 5-CF3 substituent, that were originally designed as thymidine mimics, were coupled via their 5′-OH group to a cyclosaligenyl (cycloSal) ring system having a variety of C-3 substituents (Me, OMe, H). The 5′-O-cycloSal-pronucleotide concept was designed to effect a thymidine kinase-bypass, thereby providing a method for the intracellular delivery and generation of the 5′-O-monophosphate for nucleosides that are poorly phosphorylated. The 5′-O-cycloSal pronucleotide phosphotriesters synthesized in this study were obtained as a 1:1 mixture of two diastereomers that differ in configuration (S P or R P) at the asymmetric phosphorous center. The (S P)- and (R P)-diastereomers for the 5′-O-3-methylcycloSal- and 5′-O-3-methoxycycloSal derivatives of 1-(2-deoxy-β-D-ribofuranosyl)-2,4-difluoro-5-iodobenzene were separated by silica gel flash column chromatography. This class of cycloSal pronucleotide compounds generally exhibited weak cytotoxic activities in a MTT assay (CC50 values in the 10?3 to 10?4 M range), against a number of cancer cell lines (143B, 143B-LTK, EMT-6, Hela, 293), except for cyclosaligenyl-5′-O-[1′-(2,4-difluoro-5-iodophenyl)-2′-deoxy-β-D-ribofuranosyl]phosphate that was more potent (CC50 values in the 10?5 to 10?6 M range), than the reference drug 5-iodo-2′-deoxyuridine (IUDR) which showed CC50 values in the 10?3 to 10?5 M range.  相似文献   

5.
A group of 1-[(2-hydroxyethoxy)methyl]- (12) and 1-[(1,3-dihydroxy-2-propoxy)methyl]- (13) derivatives of 2,4-difluorobenzene possessing a variety of C-5 substituents (R = Me, H, I, NO2) were designed with the expectation that they may serve as acyclic 5-substituted-2'-deoxyuridine (thymidine) mimics. Compounds 12 and 13 (R = Me, H, I) were inactive as anticancer agents (CC50 = 10(-3) to 10(-4) M range), whereas the 5-nitro compounds (12d, 13d) exhibited weak-to-moderate cytotoxicity (CC50 = 10(-5) to 10(-6) M range) against a variety of cancer cell lines. All compounds prepared (12a-d, 13a-d) were inactive as antiviral agents in a broad-spectrum antiviral screen that also included the human immunodeficiency virus (HIV-1 and HIV-2) and herpes simplex virus (HSV-1 and HSV-2).  相似文献   

6.
The thymidine mimics isocarbostyril nucleosides and difluorophenyl nucleosides were tested as deoxynucleoside kinase substrates using recombinant human cytosolic thymidine kinase (TK1) and deoxycytidine kinase (dCK), and mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK). The isocarbostyril nucleoside compound 1-(2-deoxy-beta-D-ribofuranosyl)-isocarbostyril (EN1) was a poor substrate with all the enzymes. The phosphorylation rates of EN1 with TK1 and TK2 were <1% relative to Thd, where as the phosphorylation rates for EN1 were 1.4% and 1.1% with dCK and dGK relative to dCyd and dGuo, respectively. The analogue 1-(2-deoxy-beta-D-ribofuranosyl)-7-iodoisocarbostyril (EN2) showed poor relative-phosphorylation efficiencies (kcat/Km) with both TK1 and dGK, but not with TK2. The kcat/Km value for EN2 with TK2 was 12.6% relative to that for Thd. Of the difluorophenyl nucleosides, 5-(1'-(2'-deoxy-beta-D-ribofuranosyl))-2,4-difluorotoluene (JW1) and 1-(1'-(2'-deoxy-beta-D-ribofuranosyl))-2,4-difluoro-5-iodobenzene (JW2) were substrates for TK1 with phosphorylation efficiencies of about 5% relative to that for Thd. Both analogues were considerably more efficient substrates for TK2, with kcat/Km values of 45% relative to that for Thd. 2,5-Difluoro-4-[1-(2-deoxy-beta-L-ribofuranosyl)]-aniline (JW5), a L-nucleoside mimic, was phosphorylated up to 15% as efficiently as deoxycytidine by dCK. These data provide a possible explanation for the previously reported lack of cytotoxicity of the isocarbostyril- and difluorophenyl nucleosides, but potential mitochondrial effects of EN2, JW1 and JW2 should be further investigated.  相似文献   

7.
The thioamide derivatives 3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-3'-[(2-methyl-1-thioxo- propyl)amino]thymidine 1 and 3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-3'-((6-([(9H-(fluo-ren-9- ylmethoxy)carbonyl]-amino)-1-thioxohexyl)amino) thymidine 2 were synthesized by regioselective thionation of their corresponding amides 7 and 8 with 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide (Lawesson's reagent). The thioamides were converted into the corresponding 5'-triphosphates 3 and 4. Compound 3 was chosen for DNA sequencing experiments and 4 was further labelled with fluorescein.  相似文献   

8.
Alkylation of 2,4-bis-O-(trimethylsilyl)uracil with hexafluoroacetone trifluoroacetylimine gave 5-(2-trifluoroacelylaminohexafluoroprop-2-yl)uracil, which was transformed by alkaline hydrolysis to 5-(2-aminohexafluoroprop-2-yl)uracil. The latter was glycosytated with 2-deoxy-3,5-di-O-p-toluoyl-alpha-D-ribofyranosyl chloride by means of various modifications of the silyl method leading to the predominant formation of beta-deoxynucleoside; after deacylation 1-(2-deoxy-beta-D-ribofuranosyl)-5-(2-aminohexafluoroprop-2-yl)ura cil was obtained. Interaction of silylated 5-(2-trifluoroacetylaminohexafluoroprop-2-yl)uracil with acylgalogenose gave anomeric O-substitutet deoxynucleosides, which were deblocked to give 5-(2-trifluoroacetylaminohexafluoroprop-2-yl)-2'-deoxyuridine and corresponding alpha-anomer. Alkaline hydrolysis of N-trifluoroacetyl group in both individual anomers produced 1-(2-deoxy-alpha-D-ribofuranosyl)-5-(2-aminohexafluoroprop-2-yl)ur acil and the abovementioned beta-anomer. Of all compounds synthesised only 1-(2-deoxy-beta-D-ribofuranosyl)-5-(2-aminohexafluoroprop-2-yl)ura cil has a moderate inhibitory effect on replication of vaccinia virus in vitro.  相似文献   

9.
Abstract

A group of 1-[(2-hydroxyethoxy)methyl]- (12) and 1-[(1,3-dihydroxy-2-propoxy)methyl]- (13) derivatives of 2,4-difluorobenzene possessing a variety of C-5 substituents (R = Me, H, I, NO2) were designed with the expectation that they may serve as acyclic 5-substituted-2′-deoxyuridine (thymidine) mimics. Compounds 12 and 13 (R = Me, H, I) were inactive as anticancer agents (C50 = 10?3 to 10?4 M range), whereas the 5-nitro compounds (12d, 13d) exhibited weak-to-moderate cytotoxicity (CC50 = 10?5 to 10?6 M range) against a variety of cancer cell lines. All compounds prepared (12a-d, 13a-d) were inactive as antiviral agents in a broad-spectrum antiviral screen that also included the human immunodeficiency virus (HIV-1 and HIV-2) and herpes simplex virus (HSV-1 and HSV-2).  相似文献   

10.
Twelve novel zidovudine derivatives were prepared by modifying 5 ′-hydroxyl group of sugar moiety (1–8) and 5-methyl group of thymidine nucleus (9–12) and characterized spectrally. The compounds were evaluated for anti-HIV-1, antitubercular and antibacterial activities. Compound (3-azido-tetrahydro-5- (3,4-dihydro-5-methyl-2,4-dioxopyrimidin- 1 (2H)-yl) furan-2-yl)methyl 7- (4- (2-phenylacetoyloxy) -3,5- dimethylpiperazin-1-yl) -5- (2-phenylacetoyloxyamino) -1-cyclopropyl-6,8-difluoro-1,4-dihydro-4-oxoquinoline-3-carboxylate (5) was found to be the most potent anti-HIV-1 agent with EC50 of 0.0012 μM against HIV-1IIIB and CC50 of 34.05 μM against MT-4 with selectivity index of 28,375. Compound 5 inhibited Mycobacterium tuberculosis with MIC of 1.72 μM and inhibited four pathogenic bacteria with MIC of less than 1 μM.  相似文献   

11.
A group of unnatural 1-(2-deoxy-β-D-ribofuranosyl)isocarbostyrils having a variety of C-7 substituents [H, 4,7-(NO2)2, I, CF3, CN, (E)-CH=CH-I, -C═CH, -C═C-I, -C═C-Br, -C═C-Me], designed as nucleoside mimics, were synthesized for evaluation as anticancer and antiviral agents. This class of compounds exhibited weak cytotoxicity in a MTT assay (CC50=10?3 to 10?5 M range) with the 4,7-dinitro derivative being the most cytotoxic, relative to thymidine (CC50=10?3 to 10?5 M range), against a variety of cancer cell lines. The 4,7-dinitro, 7-I and 7-C═CH compounds exhibited similar cytotoxicity against non-transfected (KBALB, 143B), and HSV-1 TK+ gene transfected (KBALB-STK, 143B-LTK) cancer cell lines possessing the herpes simplex virus type 1 (HSV-1) thymidine kinase gene (TK+). This observation indicates that these compounds are not substrates for HSV type-1 TK, and are therefore unlikely to be useful in gene therapy based on the HSV gene therapy paradigm.

  相似文献   

12.
A group of alkyl 7,7-dihalo-3-methyl-5-(2- or 3-nitrophenyl)-2-azabicyclo[4.1.0]hept-3-ene-4-carboxylates were prepared by reaction of dihalocarbenes (:CX(2), X=Br, Cl) with alkyl 2-methyl-4-(2- or 3-nitrophenyl)-1,4-dihydropyridine-3-carboxylates. In vitro calcium channel antagonist activities were determined using a guinea pig ileum longitudinal smooth muscle assay. The title compounds exhibited weaker CC antagonist activity (10(-5) to 10(-7)M range) than the reference drug nifedipine (1.4 x 10(-8)M). Structure-activity relationships showed that the position (ortho or meta) of the nitro-substituent on the C-5 phenyl ring, the size (van der Waal's radius for Br and Cl are 1.95 and 1.80A, respectively) and/or electronegativity (Cl>Br) of the C-7 geminal halogen atoms do not appear to have a significant effect on CC antagonist activity. In contrast, the effect of the alkyl ester substituent was more pronounced where compounds having a Me or Et alkyl ester group showed superior potency (IC(50) in the 10(-7)M range) relative to the reference drug nifedipine (IC(50)=1.40 x 10(-8)M). Replacement of a 2-methyl-3-methoxycarbonylvinyl moiety present in nifedipine by a bioisosteric geminal-dihalocyclopropyl moiety provided a novel class of calcium channel antagonists that do not exhibit any inotropic effect on guinea pig atria.  相似文献   

13.
alpha-Tocopherol inhibits glutathione S-transferase P1-1 (GST P1-1) (R.I.M. van Haaften, C.T.A. Evelo, G.R.M.M. Haenen, A. Bast, Biochem. Biophys. Res. Commun. 280 (2001)). In various cosmetic and dietary products alpha-tocopherol is added as a tocopherol ester. Therefore we have studied the effect of various tocopherol derivatives on GST P1-1 activity. It was found that GST P1-1 is inhibited, in a concentration dependent manner, by these compounds. Of the compounds tested, the tocopherols were the most potent inhibitors of GST P1-1; the concentration giving 50% inhibition (IC(50)) is <1 microM. The esterified tocopherols and alpha-tocopherol quinone also inhibit the GST P1-1 activity at a very low concentration: for most compounds the IC(50) was below 10 microM. RRR-alpha-Tocopherol acetate lowered the V(max) values, but did not affect the K(m) for either 1-chloro-2,4-dinitrobenzene or GSH. This indicates that the GST P1-1 enzyme is non-competitively inhibited by RRR-alpha-tocopherol acetate. The potential implications of GST P1-1 inhibition by tocopherol and alpha-tocopherol derivatives are discussed.  相似文献   

14.
Oligonucleotides bearing biodegradable phosphate protecting groups have been synthesized on a solid support. For this purpose, two dimeric building blocks, viz. 5'-O-(4,4'-dimethoxytrityl)-(R(P),S(P))-O(P)-[2,2-bis(ethoxycarbonyl)-3-(pivaloyloxy)propyl]-P-thiothymidylyl-(3',5')-thymidine 3'-[O-(2-cyanoethyl)-N,N-diisopropylphosphoramidite] (1) and 5'-O-(4,4'-dimethoxytrityl)-(R(P),S(P))-O(P)-[2-cyano-2-(2-phenylethylaminocarbonyl)-3-(pivaloyloxy)propyl]thymidylyl-(3',5')-thymidine 3'-(H-phosphonate) (2), were prepared. Phosphoramidite 1 was incorporated into an phosphorothioate oligothymidylate sequence on a base-labile hydroquinone-O,O'-diacetic acid linker (Q-linker) and on a photolabile 4-alkoxy-5-methoxy-2-nitrobenzyl carbonate linker (11). H-Phosphonate 2 was, in turn, incorporated into an oligothymidylate sequence only on the photolabile linker. Kinetics of the removal of the protecting groups by porcine liver esterase and subsequent retro aldol condensation/phosphate elimination were then studied. While the pro-oligonucleotide that contained only one phosphate protection gave the deprotected phosphorothioate oligonucleotide in a quantitative yield, the enzymatic step was markedly decelerated upon increasing the number of protection groups, and hence chain cleavage started to compete.  相似文献   

15.
2-Amino-2,4-dideoxy-4-fluoro- and 2-amino-2,4,6-trideoxy-4, 6-difluoro-D-galactose, and 2-amino-2,4-dideoxy-4-fluoro- and 2-amino-4-deoxy-4, 4-difluoro-D-xylo-hexose were synthesized, as potential modifiers of tumor cell-surface glyco-conjugate, from benzyl 2-acetamido-3-O-benzyl-2-deoxy-4, 6-di-O-mesyl-alpha-D-glucopyranoside and benzyl 2-acetamido-3, 6-di-O-benzyl-2-deoxy-4-O-mesyl-alpha-D-glucopyranoside, which were converted into the corresponding 4,6-difluoro-2,4, 6-trideoxy and 2,4-dideoxy-4-fluoro derivatives. Benzyl 2-acetamido-2-deoxy-4-O-mesyl-alpha-D-galactopyranoside and benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-alpha-D-xylo-hexo-4-ulopyra noside were treated with diethylaminosulfur trifluoride to give 2-amino-2,4-dideoxy-4-fluoro-D-glucose and 2-amino-2,4-dideoxy-4, 4-di-fluoro-D-xylo-hexose derivatives, respectively, to give after deprotection the target compounds. Several of the peracetylated sugar derivatives inhibited L1210 tumor-cell growth in vitro at concentrations of 1-5 10(-5) M. The peracetylated derivative of 2-amino-2,4-dideoxy-4-fluoro-D-galactose inhibited protein and glycoconjugate biosynthesis, and also exhibited antitumor activity in mice with L1210 leukemia.  相似文献   

16.
The UVA-absorbing photoproduct resulting from the oxidation of the sulfur atom and of the side chain nitrogen of the phototoxic drug cyamemazine (CMZ) (2-cyano-10-(3-[dimethylamino]-2 methylpropyl)-phenothiazine) is a potent photodynamic photosensitizer. The photophysical and photochemical properties of this photoproduct (P) (2-cyano-10-(3-[dimethylamino, N-oxide]-2-methylpropyl)-5-oxide-phenothiazine)) have been investigated in neutral buffered aqueous solutions and in ethanol and compared to those of the sulfoxide (S) (2-cyano-10-(3-[dimethylamino]-2 methylpropyl)-5-oxide-phenothiazine), a CMZ oxidation product of cells. The fluorescence quantum yield (PhiF) of P is 0.25 and 0.21 in pH 7 phosphate buffer and ethanol, respectively. By contrast, S (PhiF = 0.14 in buffer) is practically unfluorescent in alcohol. In buffer, the fluorescence lifetimes of P and S are 10.5 and 11.8 ns, respectively. The transient absorbance of the first excited triplet state (3P1) with a characteristic absorption band peaking at 660 nm (epsilon = 5,300 M(-1) cm(-1)) has been observed by 355 nm laser flash spectroscopy of deaerated phosphate buffer or ethanol solutions. In buffer, the 3P1 lifetime is 0.5 micros. The energy transfer which occurs from the 3P1 to naproxen suggests that the 3P1 energy is greater than 62 kcal mol(-1). Triplet quenching by dioxygen occurs at rate 2.3 x 10(9) M(-1) s(-1). With the triplet benzophenone as actinometer, the 3P1 formation quantum yield is found to be 0. 40 in buffer. The 3P1 state is quenched by ethanol and 2-propanol with bimolecular reaction rate constants of 1.6 and 2.4 x 10(6) M(-1) s(-1), respectively. In buffer, P and S triplet states react with tryptophan, indole and cysteine at rate constants of the order of 10(9) M(-1) s(-1) for Trp and indole and 10(8) M(-1) s(-1) for Cys.  相似文献   

17.
3'-Amino-3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-3'-N,5'(R)-C-ethylenethymidine (6) was synthesized starting from 3'-azido-3'-deoxythymidine. Condensation of 6 with 5'O-(H-phosphonyl)thymidine and 5'-O-(p-nitrophenoxycarbonyl)thymidine derivatives gave dinucleotide and dinucleoside derivatives, respectively, which were incorporated into oligodeoxynucleotides (ODNs). Tm data of the modified ODNs are also presented.  相似文献   

18.
Diastereoisomeric thymidine cyclic (3',5')-methanephosphonates (3a), cyclic (3',5')-phosphoranilidates (3b) and cyclic (3',5')-phosphoranilidothioates (3c) were prepared by treatment of diastereoisomerically pure thymidine 3'-O-[O-(4-nitrophenyl)methanephosphonates] (2a), 3'-O-[O-(4-nitrophenyl)phosphoranilidates] (2b) or 3'-O-[O-(4-nitrophenyl)phosphoranilidothioates] (2c), respectively, with sodium hydroxide in dioxane-water solution.  相似文献   

19.
20.
We measured the ability of the thrombin receptor activating peptide, SFLLR-NH2 (P5A) to stimulate 3H-thymidine incorporation in hamster CCL-39 fibroblasts either alone or in combination with the thrombin-derived polypeptides, YPPWNKNFTENDLL (TDP-1) and AGYKPDEGKRGDACEGDSGGPFV (TDP-2). In the presence (but not absence) of the amino peptidase inhibitor amastatin (10 μM), P5A alone (7.5 to 100 μM) caused a 1.5- to 2-fold stimulation of thymidine incorporation above basal, even though this inhibitor did not abrogate the degradation of P5A by other peptidases present in the assay medium. Neither TDP-1 nor TDP-2 alone had any effect on thymidine incorporation. However, TDP-1 (30 to 90 μM) considerably augmented P5A-mediated thymidine incorporation at low P5A concentrations (7.5 to 30 μM), shifting the P5A concentration-effect curve to the left. TDP-2 was inactive in this regard. The EC50 for this potentiating action of TDP-1 was approximately 40 μM. Further, thrombin, rendered proteolytically inactive by a low-molecular-weight bifunctional inhibitor, hirutonin-6, also acted synergistically with P5A to stimulate CCL-39 cell thymidine incorporation. We hypothesize that thrombin can cause its cellular effects, such as thymidine incorporation, not only via the proteolytic activation of its G-protein-coupled receptor, but also via the concurrent and synergistic interaction of its TDP-1 peptide domain with a separate cell surface docking site. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号