首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determination of protein transfer across the endothelial barrier or the entire alveolar capillary membrane is critical for investigation of mechanisms leading to pulmonary edema. The purpose of this study was to evaluate Evans blue dye for determination of protein clearance across cultured bovine pulmonary artery endothelial cell monolayers and as a quantitative marker for albumin leakage to the air spaces in isolated perfused rat lungs. Evans blue dye bound tightly to albumin (EBA) as determined by lack of transfer through dialysis membranes and specific elution with albumin from a molecular exclusion column. EBA was equivalent to 125I-labeled albumin for calculation of albumin clearance rates (Calb) across intact and challenged monolayers [Calb (+ vehicle) = 0.12 microliters/min; Calb (+10 nM alpha-thrombin) = 0.47 microliters/min; Calb (+5 mg/ml trypsin) = 1.29 microliters/min]. Transfer of EBA was linear with time in both the endothelial cell monolayer model and the perfused lung. EBA was a sensitive marker for early edema in the perfused lung (before detectable weight gain) as well as for severe edema in the oxidant-injured lung (marked EBA accumulation in lavage fluid) and was a more specific marker for protein transfer than lavage fluid protein. EBA transfer is a convenient, reproducible, and accurate means to assess alterations in vascular permeability.  相似文献   

2.
The purpose of this research was to examine the evolution of arterial shear stress-induced intimal albumin permeability and coevolving structural responses in swine arteries. Uniform laminar shear-stress responses were compared with those of a simulated "flow separation" stress field. These fields were created using specially designed flow-configuring devices in an experimentally controlled, metabolically supported, ex vivo thoracoabdominal aorta preparation. The Evans blue dye-albumin complex (EBD-alb) permeability patterns that evolved were measured by a reflectometric method. The corresponding tissue structural responses were evaluated by histological, immunostaining, and ultrastructural microscopic techniques. It was shown that when a previously in vivo-adapted artery is challenged by a new mechanochemical environment, it undergoes a sequence of adaptive processes over the ensuing 95 h. Intimal regions of laminar shear-stress exposure ( approximately 16 dyn/cm(2)) responded initially (23 h) with an increase in permeability. With continued stress exposure, intimal-medial structural changes ensued that restored the artery to a physiologically normal permeability. Over this same period, adjacent endothelial regions exposed to simulated flow separation stress fields ( approximately 0.03-0.27 dyn/cm(2)) developed early and progressively increasing permeability. This was associated with formation of local intimal edema, loss of intimal matrix material, and development of distinctively raised, gelatinous-appearing intimal lesions having a potentially preatheromatous architecture.  相似文献   

3.
Experiments were carried out in swine to test the hypothesis that changes in the fluid dynamic environment of the arterial wall, with time constants of several minutes to perhaps a few hours, prompt adaptive responses that transiently increase endothelial permeability. After parenteral Evans Blue Dye (EBD) administration, the hemodynamics of the external iliac arteries of the experimental animals were altered using a reversible arteriovenous femoral shunt. For 3 h, the shunt was opened and closed with a period (tau) between 1-180 min. Subsequently, the animal was euthanized and the iliac vessels were photographed en face to obtain the distribution of EBD-bound albumin uptake by the tissue during its exposure to the dye. Albumin uptake increases with tau in a fashion that can be explained by an a priori model of the adaptive permeability response, with a time constant of about an hour.  相似文献   

4.
Since actin microfilaments are essential in the maintenance of endothelial integrity and in the repair of injured endothelium, we have carried out a detailed study of the distribution of microfilaments in the immediate vicinity of aortic branches. Branches are of major interest because there is a predilection for atherosclerotic lesions near branch ostia. We made an extensive, systematic examination of branches of the aorta and iliac arteries using in situ staining of perfusion-fixed arteries. Microfilaments were localized using rhodamine phalloidin. Three patterns of staining were observed. Some endothelial cells showed prominent central stress fibers. Others had few central stress fibers but prominent peripheral fibers. Still others showed an intermediate pattern with some central and some peripheral fibers present. At small branch sites, the lip of the divider was more blunt, and there were more cells with peripheral actin. At large branches, cells with peripheral actin were confined mainly to the lip, while there were many more cells with prominent central fibers. We also found that major differences can occur over very small distances, so adjacent cells may have strikingly different patterns of microfilament distribution. These patterns appear to reflect the geometry of the flow divider and local variations in hemodynamic shear stress. The differences in microfilament distribution may reflect differences in endothelial functions which are essential in maintaining endothelial integrity.  相似文献   

5.
Hypertension is closely associated with vascular endothelial dysfunction. The aim of this study was to investigate the effects of Angiotensin II (ANG II) receptor antagonist losartan on the blood-brain barrier (BBB) permeability in L-NAME-induced hypertension and/or in ANG II-induced acute hypertension in normotensive and hypertensive rats. Systolic blood pressure was measured by tail cuff method before, during and following L-NAME treatment (1 g/L). Losartan (3 mg/kg) was given to the animal for five days. Acute hypertension was induced by ANG II (60 microg/kg). Arterial blood pressure was directly measured on the day of the experiment. BBB disruption was quantified according to the extravasation of the albumin-bound Evans blue dye. Losartan significantly reduced the mean arterial blood pressure from 169 +/- 3.9 mmHg to 82 +/- 2.9 mmHg in L-NAME and from 171 +/- 2.9 mmHg to 84 +/- 2.9 in L-NAME plus losartan plus ANG II groups (p < 0.05). The content of Evans blue dye in the cerebral cortex significantly increased in L-NAME (p < 0.01). Moreover, the content of Evans blue dye markedly increased in the cerebellum (p < 0.001) and slightly increased in diencephalon region (p < 0.05) in L-NAME plus ANG II. Losartan reduced the increased BBB permeability to Evans blue dye in L-NAME (p < 0.01) and L-NAME plus ANG II (p < 0.001). These results indicate that L-NAME and L-NAME plus ANG II both lead to an increase in microvascular Evans blue dye efflux to brain, and losartan treatment attenuates this protein-bound dye transport into brain tissue presumably due to its protective effect on endothelial cells of brain vessels.  相似文献   

6.
The effects of hypothermia and rewarming on endothelial integrity were examined in intestines, kidney, heart, gastrocnemius muscle, liver, spleen, and brain by measuring albumin-bound Evans blue loss from the vasculature. Ten groups of twelve rats, normothermic with no pentobarbital, normothermic sampled at 2, 3, or 4 h after pentobarbital, hypothermic to 20, 25, or 30 degrees C, and rewarmed from 20, 25, or 30 degrees C, were cooled in copper coils through which water circulated. Hypothermic rats were cooled to the desired core temperature and maintained there for 1 h; rewarmed rats were cooled to the same core temperatures, maintained there for 1 h, and then rewarmed. Following Evans blue administration, animals were euthanized with methoxyflurane, tissues removed, and Evans blue extracted. Because hypothermia and rewarming significantly decrease blood flow, organ-specific flow rates for hypothermic and rewarmed tissues were used to predict extravasation. Hypothermia decreased extravasation in tissues with continuous endothelium (brain, muscle) and increased it in tissues with discontinuous endothelium (liver, lung, spleen). All tissues exhibited significant (p < 0.05) differences from normothermic controls. These differences are attributed to a combination of anesthesia, flow, and (or) change in endothelial permeability, suggesting that appropriate choice of organ and temperature would facilitate testing pharmacological means of promoting return to normal perfusion.  相似文献   

7.
Recent studies suggest that the temporal gradient of shear stress that is generated by blood flow plays an important role in the pathology of arteriosclerosis. We focused on the temporal gradient of shear stress and measured the permeability of albumin under steady or pulsatile shear stress conditions. Porcine aortic endothelial cells were seeded on a membrane filter and subjected to steady or pulsatile shear stress (1 Hz) at 1 Pa for 48 h, and the permeability of albumin was measured over time. The permeability increased gradually under steady flow but increased acutely under pulsatile shear stress. In particular, the maximum permeability of albumin differed under these conditions. The value was 4.2 × 10?5 cm/s at 18 h under pulsatile shear stress and 2.8 × 10?5 cm/s at 48 h under steady shear stress. The permeable route of albumin was examined using isoproterenol, which decreases junctional permeability. The increase in albumin permeability with pulsatile shear stress was decreased by isoproterenol. These results suggest that the increased permeability of albumin with pulsatile shear stress was related to trafficking through paracellular junctions. Thus, pulsation may promote a mechanotransduction process that differs from that of steady shear stress, and these pulsation effects likely play an important role in the permeability of macromolecules.  相似文献   

8.
The endothelial junction is tightly controlled to restrict the passage of blood cells and solutes. Disruption of endothelial barrier function by bacterial endotoxins, cytokines or growth factors results in inflammation and vascular damage leading to vascular diseases. We have identified 5-methoxytryptophan (5-MTP) as an anti-inflammatory factor by metabolomic analysis of conditioned medium of human fibroblasts. Here we postulated that endothelial cells release 5-MTP to protect the barrier function. Conditioned medium of human umbilical vein endothelial cells (HUVECs) prevented endothelial hyperpermeability and VE-cadherin downregulation induced by VEGF, LPS and cytokines. We analyzed the metabolomic profile of HUVEC conditioned medium and detected 5-MTP but not melatonin, serotonin or their catabolites, which was confirmed by enzyme-linked immunosorbent assay. Addition of synthetic pure 5-MTP preserved VE-cadherin and maintained barrier function despite challenge with pro-inflammatory mediators. Tryptophan hydroxylase-1, an enzyme required for 5-MTP biosynthesis, was downregulated in HUVECs by pro-inflammatory mediators and it was accompanied by reduction of 5-MTP. 5-MTP protected VE-cadherin and prevented endothelial hyperpermeability by blocking p38 MAPK activation. A chemical inhibitor of p38 MAPK, SB202190, exhibited a similar protective effect as 5-MTP. To determine whether 5-MTP prevents vascular hyperpermeability in vivo, we evaluated the effect of 5-MTP administration on LPS-induced murine microvascular permeability with Evans blue. 5-MTP significantly prevented Evans blue dye leakage. Our findings indicate that 5-MTP is a new class of endothelium-derived molecules which protects endothelial barrier function by blocking p38 MAPK.  相似文献   

9.
Protective effect of purinergic agonist ATPgammaS against acute lung injury   总被引:1,自引:0,他引:1  
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are major causes of acute respiratory failure associated with high morbidity and mortality. Although ALI/ARDS pathogenesis is only partly understood, pulmonary endothelium plays a major role by regulating lung fluid balance and pulmonary edema formation. Consequently, endothelium-targeted therapies may have beneficial effects in ALI/ARDS. Recently, attention has been given to the therapeutic potential of purinergic agonists and antagonists for the treatment of cardiovascular and pulmonary diseases. Extracellular purines (adenosine, ADP, and ATP) and pyrimidines (UDP and UTP) are important signaling molecules that mediate diverse biological effects via cell-surface P2Y receptors. We previously described ATP-induced endothelial cell (EC) barrier enhancement via a complex cell signaling and hypothesized endothelial purinoreceptors activation to exert anti-inflammatory barrier-protective effects. To test this hypothesis, we used a murine model of ALI induced by intratracheal administration of endotoxin/lipopolysaccharide (LPS) and cultured pulmonary EC. The nonhydrolyzed ATP analog ATPgammaS (50-100 muM final blood concentration) attenuated inflammatory response with decreased accumulation of cells (48%, P < 0.01) and proteins (57%, P < 0.01) in bronchoalveolar lavage and reduced neutrophil infiltration and extravasation of Evans blue albumin dye into lung tissue. In cell culture model, ATPgammaS inhibited junctional permeability induced by LPS. These findings suggest that purinergic receptor stimulation exerts a protective role against ALI by preserving integrity of endothelial cell-cell junctions.  相似文献   

10.
Permeability characteristics of cultured endothelial cell monolayers   总被引:8,自引:0,他引:8  
The purpose of this study was to characterize the permeability characteristics of an in vitro endothelial cell monolayer system and relate this information to available in vivo data. We cultured bovine fetal aortic endothelial cells on fibronectin-coated polycarbonate filters and confirmed that our system was similar to others in the literature with regard to morphological appearance, transendothelial electrical resistance, and the permeability coefficient for albumin. We then compared our system with in vivo endothelium by studying the movement of neutral and negatively charged radiolabeled dextran tracers across the monolayer and by using electron microscopy to follow the pathways taken by native ferritin. There were a number of differences. The permeability of our monolayer was 10-100 times greater than seen in intact endothelium, there was no evidence of "restricted" diffusion or charge selectivity, and ferritin was able to move freely into the subendothelial space. The reason for these differences appeared to be small (0.5-2.0 micron) gaps between 5 and 10% of the endothelial cells. Although the current use of cultured endothelial cells on porous supports may provide useful information about the interaction of macromolecules with the endothelium, there appear to be differences in the transendothelial permeability characteristics of these models and in vivo blood vessels.  相似文献   

11.
Magnesium probably protects brain tissue against the effects of cerebral ischemia, brain injury and stroke through its actions as a calcium antagonist and inhibitor of excitatory amino acids. The effects of magnesium sulfate on cerebrovascular permeability to a dye, Evans blue, were studied during insulin-induced hypoglycemia with hypothermia in rats. Hypoglycemia was induced by an intramuscular injection of insulin. After giving insulin, each animal received MgSO4 (270 mg/kg) ip, followed by a 27 mg/kg dose every 20 min for 2.5 h. Plasma glucose and Mg2+ levels of animals were measured. Magnesium concentrations increased in the serum following MgSO4 administration (6.05+/-0.57 vs. 2.58+/-0.14 mg/dL in the Mg2+ group, and 7.14+/-0.42 vs. 2.78+/-0.06 mg/dL in the insulin + Mg2+ group, P < 0.01). Plasma glucose levels decreased following hypoglycemia (4+/-0.66 vs. 118+/-2.23 mg/dL in the insulin group, and 7+/-1.59 vs. 118+/-4.84 mg/dL in the insulin + Mg2+ group, P < 0.01). Blood-brain barrier permeability to Evans blue considerably increased in hypoglycemic rats (P < 0.01). In contrast, blood-brain barrier permeability to Evans blue was significantly reduced in treatment of hypoglycemic rats with MgSO4 (P < 0.01). These results indicate that Mg2+ greatly reduced the passage of exogenous vascular tracer bound to albumin into the brain during hypoglycemia with hypothermia. Mg2+ could have protective effects on blood-brain barrier permeability against insulin-induced hypoglycemia.  相似文献   

12.
Intravenously administered endotoxin inhibits the polymorphonuclear leukocyte (PMN)-dependent airway edema produced in guinea pigs exposed to toluene diisocyanate (TDI). Tumor necrosis factor (TNF) is produced in vivo by peripheral blood monocytes and tissue macrophages stimulated with endotoxin and has been shown to activate PMN's and vascular endothelial cells. To determine whether the inhibition of airway edema is mediated by TNF, guinea pigs were treated with intravenous saline or 75,000 U/kg recombinant human TNF 1.5 h before exposure to air or 3 ppm TDI for 1 h. Animals were then injected intravenously with 50 mg/kg Evans blue dye as a marker of protein extravasation. Saline-treated animals exposed to TDI had a significant increase in tracheal Evans blue dye extravasation (85 +/- 6.5 micrograms dye/g trachea, mean +/- SE) compared with saline-treated animals exposed to air (31.3 +/- 2.5, P less than 0.001). The tracheal extravasation of Evans blue dye was significantly inhibited (P less than 0.05) in TDI-exposed animals treated with TNF (64.7 +/- 7.5). Neither heat-inactivated TNF (104.9 +/- 9.5) nor TNF neutralized with a monoclonal antibody against TNF (99.7 +/- 17.9) inhibited TDI-induced airway edema. In addition, treatment with 15,000 U/kg (99.9 +/- 21.3) or 150,000 U/kg (103.2 +/- 17.6) interleukin 1, a monokine also produced in response to endotoxin, did not prevent airway edema. These results suggest that TNF released in response to endotoxin mediates endotoxin's inhibition of a PMN-dependent airway edema.  相似文献   

13.
1. The present study was aimed at elucidating effects of transforming growth factor-beta (TGF-beta) on blood-brain barrier (BBB) functions with mouse brain capillary endothelial (MBEC4) cells. 2. The permeability coefficients of sodium fluorescein and Evans blue albumin for MBEC4 cells and the cellular accumulation of rhodamine 123 in MBEC4 cells were dose-dependently decreased after a 12-h exposure to TGF-beta1 (0.01-10 ng/mL). 3. The present study demonstrates that TGF-beta lowers the endothelial permeability and enhances the functional activity of P-gp, suggesting that cellular constituents producing TGF-beta in the brain may keep the BBB functioning.  相似文献   

14.
We studied the effects of contact of bovine pulmonary artery endothelial cell monolayers with fibrin on the endothelial barrier function. Fibrin formed by clotting purified fibrinogen (0.5 to 3.0 mg/ml) with alpha-thrombin (1 U/ml) was added to endothelial monolayers and permeability measurements were made after fibrin removal. Fibrin incubation for 3 hours resulted in 2- to 5-fold increases in transendothelial 125I-albumin permeability. Permeability returned to baseline value within 3 hours after fibrin removal. Direct contact with fibrin was necessary for the response, since fibrin separated from the endothelium did not increase permeability. Contact with agarose (2 mg/ml) or fibrinogen (0.5 to 3.0 mg/ml) also did not increase endothelial permeability. Transmission electron microscopic examination indicated normal appearance of interendothelial junctions at a time when albumin permeability was increased and no overt evidence of endothelial injury. Incubation of fibrin with endothelial monolayers at 4 degrees C prevented the increase in albumin permeability. We examined the possibility that increased albumin transcytosis was responsible for fibrin's effect using 14C-sucrose (Mr = 342D), a lipid insoluble tracer. Fibrin increased sucrose flux by 1.5-fold compared to 2- to 5-fold increases in albumin flux. The results indicate that fibrin contact with the endothelial cell increases endothelial permeability. The effect of fibrin may involve activation of temperature-sensitive bulk phase transcytosis of albumin.  相似文献   

15.
Ischemia-reperfusion (I/R) lung injury is characterized by increased pulmonary endothelial permeability and edema, but the genetic basis for this injury is unknown. We utilized an in vivo mouse preparation of unilateral lung I/R to evaluate the genetic determinants of I/R lung injury. An index of pulmonary vascular protein permeability was measured by the ratio of left-to-right lung Evans blue dye of eight inbred mouse strains after 30 min of left lung ischemia and 150 min of reperfusion. The order of strain-specific sensitivity to I/R lung injury was BALB/c < SJL/J < CBA/J < C57BL/6J < 129/J < A/J < C3H/H3J < SWR/J. The reciprocal F1 offspring of the BALB/c and SWR/J progenitor strains had intermediate phenotypes but a differing variance. A similar pattern of right lung Evans blue dye content suggested the presence of contralateral injury because baseline vascular permeability was not different. Lung I/R injury was attenuated by NADPH oxidase inhibition, indicating a role for NADPH oxidase-derived reactive oxygen species (ROS). There was no strain-dependent difference in lung NADPH oxidase expression. Strain-related differences in zymosan-stimulated neutrophil ROS production did not correlate with I/R lung injury in that neutrophil ROS production in SWR/J mice was greater than C57BL/6J but not different from BALB/c mice. These data indicate the presence of a genetic sensitivity to lung I/R injury that involves multiple genes including a maternal-related factor. Although neutrophil-derived ROS production is also modulated by genetic factors, the pattern did not explain the genetic sensitivity to lung I/R injury.  相似文献   

16.
Endothelial monolayer permeability to macromolecules   总被引:9,自引:0,他引:9  
The barrier function of the endothelial monolayer has not been extensively investigated using the cultured endothelium. The in vitro approach may contribute to a more complete understanding of microvessel wall permeability. Our studies using an in vitro endothelial monolayer system have led us to the following conclusions: the endothelial monolayer is more permeable to small-molecular-weight substances than to large molecules; the permeability of albumin is different for endothelial cells derived from different vascular sites (higher for pulmonary venous than pulmonary arterial endothelium); basement membrane components may have a significant role in the permeability of albumin across the endothelium; control of endothelial monolayer permeability is determined not only by the characteristics of the macromolecule (i.e., size and charge) but also by the shape of the endothelial cells and the size of interendothelial space.  相似文献   

17.
We have addressed the question of how the alveolar space stays relatively free of fluid when thoracic irradiation injures the pulmonary capillary endothelium and plasma fluid leaks into the interstitium. A single dose of 15 Gy to the thorax of rats significantly increased the pulmonary capillary filtration coefficient and the lung wet/dry weight ratio 2 h after irradiation. However, there was no significant increase in the release of lactose dehydrogenase or leaking of Evans blue dye into the alveolar space, indicating that alveolar epithelial permeability remained intact. We found no significant difference in the basal alveolar fluid clearance between control and irradiated animals. There was also no significant difference in blockage of alveolar fluid clearance by amiloride. This indicates that the function of the alveolar epithelial Na(+) channels is not impaired and that alveolar epithelium absorbs fluid normally. Examination of lung tissue by light microscopy demonstrated accumulation of fluid in the perivascular region but not in the alveolar space. Our data appear to indicate that the alveolar epithelial barrier function is more resistant to radiation than that of the pulmonary capillary endothelium. We conclude that intact alveolar epithelial permeability and normal transalveolar epithelial fluid absorption ability are of critical importance in keeping the alveolar space relatively free of fluid during acute radiation lung injury.  相似文献   

18.
Malaria-induced anemia exceeds that attributable to direct parasite destruction of erythrocytes. Since spleen and liver weights increase significantly, hemodilution may account for part of this excessive anemia. To determine the role of hemodilution in the etiology of anemia, vascular volumes were measured with Evans blue and isotope dilution techniques. The Evans blue dilution technique showed that blood volume increased 20%, in infected Balb/C mice. However, when blood volume was measured with Evans blue bound to protein prior to injection or with iodinated albumin and chromium-labelled red blood cells no significant change was detected. Evidently the permeability of the vasculature and/or erythrocytes of infected mice was increased so that injected Evans blue occupied a space larger than the vascular volume before becoming bound to plasma proteins. We conclude that hemodilution is not involved in the excessive anemia of Plasmodium berghei-infected Balb/C mice.  相似文献   

19.
The endothelial glycocalyx mediates interactions between the blood flow and the endothelium. This study aims to evaluate, quantitatively, effects of structural change of the glycocalyx on stress distribution and shear rate on endothelial cells. In the study, the endothelial glycocalyx is modeled as a surface layer of fiber matrix and when exposed to laminar shear flow, the matrix deforms. Fluid velocity and stress distribution inside the matrix and on cell membranes are studied based on a binary mixture theory. Parameters, such as the height and porosity of the matrix and the drag coefficient between fluid and matrix fibrils, are based on available data and estimation from experiments. Simple theoretical solutions are achieved for fluid velocity and stress distribution in the surface matrix. Degradation of the matrix, e.g., by enzyme digestion, is represented by reductions in the volume fraction of fibrils, height, and drag coefficient. From a force balance, total stress on endothelial surface remains constant regardless of structural alteration of the glycocalyx. However, the stress that is transmitted to endothelial cells by direct "pulling" of fiber branches of the glycocalyx is reduced significantly. Fluid shear rate at the cell membrane, on the other hand, increases. The study gives quantitative insight into the effect of the structural change of the glycocalyx on the shear rate and pulling stress on the endothelium. Results can be used to interpret experiments on effects of the glycocalyx in shear induced endothelial responses.  相似文献   

20.
Endothelial cells (ECs) that line the inner surface of blood vessels are continuously exposed to shear stress induced by blood flow in vivo, and shear stress affects ATP-dependent macromolecular transport in ECs. However, the relationship between the ATP production and shear stress is still unclear. We, therefore, evaluated mitochondrial ATP synthesis activity in cultured endothelial cells exposed to shear stress, using a confocal laser scanning microscope (CLSM) and a mitochondrial membrane potential probe (5,5',6,6'-tetrachloro-1,1',3, 3'-tetraethyl-benzimidazolycarbocyanine iodide, JC-1). Low shear stress (10 dyn/cm(2)) increased mitochondrial membrane potential by 30%. On the contrary, high shear stress (60 dyn/cm(2)) decreased it by 20%. This observation was consistent with the ATP-dependent albumin uptake into endothelial cells. Our results indicate that ATP synthetic activity is related to the albumin uptake into endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号