首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of acute exposure to different water pH levels on urinary excretion and plasma ion levels in silver catfish Rhamdia quelen was analysed. Fish were exposed to pH 4·0, 5·0, 7·5, 8·0, and 9·0 for 4 days and urine was collected. Other specimens were also exposed to the experimental pH for 24 h and blood was sampled. Urine flow rate, urine and plasma pH showed a significant trend to increase with the increase of water pH. Urinary Na+ excretion rate also increased and ammonia urinary excretion rate decreased with the increase of water pH. There was a significant trend to decrease volume, ammonia, Cl and Na+ urinary excretion rate with increasing mass in fish exposed to all pH levels studied. Plasma ammonia levels showed a slight decrease in fish exposed to water pH from 4·0 to 8·0, but those exposed to water pH 9·0 presented the highest ammonia levels. Most plasma ions and urinary excretion changes observed in silver catfish exposed to acidic or alkaline water were similar to those already detected in rainbow trout Oncorhynchus mykiss . In addition, the kidney and urinary bladder might participate on acid–base balance in silver catfish, since urine pH changed according to plasma pH.  相似文献   

2.
The Na+ uptake mechanism of cardinal tetras Paracheirodon axelrodi displayed specialization for operation in dilute waters of the amazonian Rio Negro. Kinetic analysis revealed low Km and high Jmax values which ensure high rates of uptake even in very dilute waters. In contrast, Na+ uptake of angelfish Pterophyllum scalare did not appear to be specialized for dilute waters at all, with much higher Km and lower Jmax values. Na+ uptake in cardinal tetras was high and completely unaffected down to pH 3·5, while uptake in angelfish was much lower and progressively inhibited by dropping pH; it was completely shut down at pH 3·5. During chronic exposure to pH 4·0 and 3·5, angelfish showed no ability to restore Na+ uptake and at pH 3·5 all individuals died between day 3 and 6 presumably due to small, but steady loss of Na+. At low pH, both species displayed a strong ability to prevent stimulation of diffusive Na+ losses. In angelfish, the ability to control diffusive ion losses at low pH was related to a high branchial affinity for Ca2+. For cardinal tetras, the rate of Na+ loss appeared to be independent of water Ca2+ concentration. The specializations of cardinal tetras are similar to other characid fishes tested, but the results for angelfish reveal a new pattern of ion regulation in acidophilic species from the Rio Negro. The differences between the species may be the result of their different distributions, cardinal tetras are found in the central Rio Negro region while angelfish are more peripheral, or they may reflect phylogenetic differences.  相似文献   

3.
The Lahontan cutthroat trout lives under highly alkaline and saline conditions in Pyramid Lake, Nevada (pH 9.4; 0.2 mmol 1−1 Ca++; 7.3 mmol 1−1 Mg++). These experiments were conducted to study the possible roles of water Ca++ and Mg++ concentrations on ammonia excretion in the Lahontan cutthroat trout under highly alkaline conditions. The basic protocol of the experiments was to determine ammonia excretion rates during the following three exposure periods (each of 3-h duration) in sequence: (a) in normal lake water; (b) in soft lake water with the divalent cation concentrations reduced; and (c) in the soft lake water with either Ca++ or Mg++ (or no divalent cations added) added back at the appropriate lake water concentration. The soft-water exposure caused a significant reduction in ammonia excretion to about half of the control (original lake water) levels. When either Ca++ or Mg++ was added to the soft water in the third exposure period, the ammonia excretion rates were increased more than twofold back to lake water levels.  相似文献   

4.
In freshwater-acclimated rainbow trout a single intraperitoneal injection of ovine TSH significantly elevated plasma thyroxine (T4) levels within 1 h after the injection. In seawater adapted trout the increase in T4 after TSH-treatment was not evident until 6 h after the injection. TSH caused a transient fall in plasma Na+ and Cl- between 3 h and 9 h after the injection in seawater-adapted fish and plasma Na+ was lowered in freshwater-adapted trout 24 h after the injection. Although there were clear histological changes in the thyroid gland of freshwater-adapted trout after TSH-injection, no such changes were evident in seawater-adapted fish.
Plasma thyroid hormone levels and thyroid histology in freshwater-adapted rainbow trout and coho salmon transferred to sea water, and seawater-adapted trout transferred to fresh water showed no consistent changes compared with controls.
The data are interpreted to indicate that although ambient salinity may have indirect effects on thyroid activity there is no direct involvement in ionic or osmotic regulation in the two species.  相似文献   

5.
Wet mass and water content of four lots of whole eggs did not change throughout embryonic development of rainbow trout Oncorhynchus mykiss. Eggs in all four lots accumulated Na+. Eggs in lots 2 and 4 also accumulated Ca2+ and Cl-, whereas eggs in lot 1 showed no significant change in Ca2+ or Cl- and eggs in lot 3 showed no change in Cl-and a small loss of Ca2+. Although the Na+ content of embryonic tissues increases in the later stages of development, the yolk sac content remained constant, indicating uptake of Na+ from the environment. Na+ uptake by whole eggs was non-saturable, consistent with diffusion of Na+ across the chorion into the perivitelline fluid. Na+ uptake in dechorionated embryos was saturable, as was Ca2+ uptake by both whole eggs and dechorionated embryos, consistent with active uptake or facilitated diffusion mechanisms at the surface of embryos. Very low Ca2+ uptake rates in dechorionated embryos suggest that the Ca2+ uptake mechanism is not fully developed until after hatching.  相似文献   

6.
Plantago species differ in their strategy towards salt stress, a major difference being the uptake and distribution of Na+ ions. A salt-sensitive ( Plantago media L.) and a salt-tolerant ( P. maritima L.) species were compared with respect to Na+/H+ antiport activities at the tonoplast. After exposure of the plants to 50 m M NaCl for 6 days isolated tonoplast vesicles of P. maritima showed Na+/H+ antiport activity with saturation kinetics and a Km of 2.4 m M Na+, NaCl-grown P. media and the control plants of both species showed no antiport activity. Selectivity of the antiport system for Na+ was high and was determined by adding different chloride salts after formation of a Δ pH in the vesicles. Specific tonoplast ATPase activities were similar in the two species and did not alter after exposure to NaCl stress.  相似文献   

7.
Danish rainbow trout, Salmo gairdneri Richardson, (40–65 g) were transferred to 28%o sea water at intervals throughout the early spring and summer. Gill Na+/K+-ATPase of fish kept in fresh water surged distinctly during May. Simultaneously, a body silvering occurred and plasma concentrations of Cl, Na+ and total thyroxine (T4) decreased. The seawater transfer-induced adaptive response in plasma electrolytes comprised a biphasic change, i.e., an adjustive peak phase and a regulatory phase lasting for 2 days and 1 week after transfer, respectively. Further, gill Na+/K+-ATPase activity increased to a new level after an initial lag phase of 2–3 days, but electrolyte regulation was mostly initiated prior to the adaptive change in ATPase activity. In spite of increasing pre-transfer freshwater Na+/K+-ATPase activity during the spring, the electrolyte peak level, the degree of muscle dehydration and the mortality of fish transferred to sea water increased from April to July. The apparent uncoupling of freshwater Na+/K+-ATPase activity and plasma electrolyte regulation in sea water is discussed in relation to smelting and prediction of hypo-osmoregulatory performance.  相似文献   

8.
Confinement of brown trout in small troughs of static water for 1 h at a density of six fish 251−1 stimulated the hypothalamic-pituitary-interrenal axis and resulted in an elevation of plasma cortisol from basal levels (less than 2 ng m1−1) to about 100 ng m1−1, the degree of stimulation being dependent upon water temperature. Confinement at a density of 30 fish 251−1 resulted in a 50% suppression of this response. It is demonstrated that this effect is mediated by changes in water chemistry and not by crowding per se . Experimental manipulation of the water chemistry showed that reduced pH (7.1 → 6.3), elevated free CO2 (63 → 520 μmoll−1) or elevated ammonia (8 → 1300 μg 1−1 as total ammonia nitrogen) had no individual effects on the interrenal response to acute confinement. Elevated ammonia in combination with reduced pH significantly increased the plasma cortisol levels in response to acute confinement, whereas a combination of reduced oxygen (100 → 20% saturation), elevated free CO2 and elevated ammonia markedly suppressed (∼ 50%) the cortisol response of both brown trout and rainbow trout to acute confinement in a manner similar to that observed with trout at high densities. A compensatory increase in plasma cortisol levels was observed during the subsequent recovery of fish which had been confined for 1 h in water of poor quality. These findings are discussed in relation to the exposure of fish to multiple stresses and to the role of corticosteroids in the stress response.  相似文献   

9.
Long-term ammonia exposure of turbot: effects on plasma parameters   总被引:2,自引:0,他引:2  
Turbot juveniles were exposed to four ammonia concentrations [0·17 (L), 0·34 (M), 0·73 (MH) and 0·88 (H) mg l−1 NH3-N] for different exposure durations (28 days minimum to 84 days). Their physiological status and growth performances were compared to a control group [0·004 (C) mg l−1 NH3-N]. No growth was observed in the H group, and by day 57, mass increase in the MH group was only 15% of that in group C. During the first month growth in the L group was similar to that in control group while it was lower (33%) in the M group; afterwards the L and M groups had a similar growth (half that of controls). Accumulation of total ammonia nitrogen (TA-N) in plasma was dependent on ambient ammonia concentrations. Plasma urea levels in ammonia-exposed fish were lower, similar or greater than in controls (depending on ammonia concentration or exposure duration). Osmolarity, Cl and Na+ plasma concentrations were stable in the L and M groups. The increases in Na+, Cl, K+ and total Ca concentrations observed by the end of the experiment in the H and MH groups suggest that fish failed to adapt. There was an initial rise in plasma cortisol in all ammonia-exposed groups followed by a return to basal level (1·7–4 ng ml−1) in the L and M groups. In group MH, plasma cortisol peaked at 42 ng ml−1 by day 14, and after a decline at c . 1 month (14 ng ml−1), it rose again.  相似文献   

10.
Softwater (Ca2+=50, Na+= 50(μequiv. l−1) acclimated rainbow trout were fitted with chronic arterial catheters to allow for repetitive blood sampling. After 48 h recovery they were then exposed to either control (pH 6.5, Al = 0μg l−1), acid (pH 4.8, Al = 0μg l−1) or acid plus aluminum (pH 4.8, A1 = 112 μg l−1) conditions for 72 h. Parameters measured included blood glucose, lactate, haemoglobin, haematocrit and plasma Na+, Cl, protein and cortisol.
Exposure to pH 4'8 alone caused no mortality, a moderate ionoregulatory disturbance and a transient elevation in plasma cortisol. All other parameters were not significantly different from controls. Addition of aluminum to this exposure caused 100% mortality with a mean survival time of only 27.0 h. There was a marked decrease in plasma ions, hyperglycemia, lactate accumulation, haemoconcentration, red cell swelling, and a sharp rise in plasma cortisol becoming greatly increased as the fish neared death. The mechanism of toxicity of acute acid/aluminum exposure, the role for cortisol under such conditions, and the validity of cortisol and glucose as indicators of stress in fish are discussed.  相似文献   

11.
The objective of the current study was to examine whether sublethal (moderate) levels of dissolved ammonia may be beneficial to growth in juvenile walleye Sander vitreus (recent evidence in juvenile rainbow trout Oncorhynchus mykiss has shown significant increases in protein synthesis in the presence of moderately elevated concentrations of dissolved ammonia). Moderately elevated dissolved ammonia concentrations between 100 and 300 μmol l−1 suppressed routine aerobic metabolic activity by 20% during acute trials (2 h), while promoting specific growth rate (>50%) and elevating whole body soluble protein content by 20% in the early stages (14–42 days) in chronic ammonia exposure experiments. Juvenile S. vitreus held at ammonia concentrations between 107·6 ± 5·5 and 225·5 ± 4·7 μmol l−1 (mean ± s . e .) grew significantly faster than control fish and significantly reduced plasma cortisol levels (<3 μg dl−1). Results from this study suggest that chronic exposure to moderate amounts of dissolved ammonia significantly increase growth rates in juvenile S. vitreus by increasing nitrogen accessible for supplementary protein deposition leading to somatic development.  相似文献   

12.
In the present study, profiles of stable isotope composition were characterized for two species with partially migratory populations in rivers along the latitudinal gradient of Patagonia, brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss . The effects of factors ( e.g. ontogeny of fishes, location, species and fasting) that may influence the stable isotope analysis (SIA) were evaluated, as was SIA evaluated as a tool to assign individual fish to their corresponding ecotype. Anadromous fishes exhibited enriched δ15N (15·2 ± 1·0‰; mean ± s . d .) and δ13C (−19·2 ± 1·3‰) relative to resident fishes'δ15N (8·8 ± 1·1‰) and δ13C (−23·2 ± 2·5‰). For both species, the difference in δ15N was larger between resident (range 6·8–10·7‰) and anadromous (range 14·3–17·8‰) fishes than that in δ13C. Values of δ13C, while not as dramatically contrasting in rainbow trout, provided a powerful anadromy marker for brown trout in the region. Increases were found in both δ15N and δ13C during the spawning migration of anadromous rainbow trout, most likely due to fasting. Differences in stable isotopes between location, size and species were found, suggesting different stable isotopes base levels in freshwater environments and different trophic levels and feeding location of anadromous populations. The SIA was demonstrated as a powerful tool for ecotype discrimination in Patagonian Rivers, overriding any effect of sampling location, size or species.  相似文献   

13.
Resistance to cadmium by pretreated rainbow trout alevins   总被引:2,自引:0,他引:2  
A toxicity test with cadmium concentrations ranging from 0·1 to 100·0 mg Cd 1−1 was used to assess the effect of cadmium pretreatment on rainbow trout ( Salmo gairdneri Richardson) alevins. The median period of survival for fish pretreated at 0·01 mg Cd 1−1 was found to be increased at test concentrations up to 10mg Cd 1−1 compared with alevins pretreated with dilution water. However, at concentrations above 10mg Cd 1−1 pretreatment at 0·01 mg Cd 1−1 reduced the median period of survival.  相似文献   

14.
Regulatory volume decrease, following physical swelling of red cells from brown trout Salmo trutta , was almost complete in oxygenated cells but much less in deoxygenated cells. There was a small, insignificant regulatory volume increase, following physical shrinkage. Amiloride had no effect on this response, indicating that hypertonic shrinkage did not activate the Na+/H+ exchanger. However, cell volume was increased markedly in shrunken cells by addition of noradrenaline, with deoxygenated cells showing complete recovery. These data show that the previously reported differences in volume regulation between the red cells of brown trout and rainbow trout Oncorhynchus mykiss are not present and that both species appear to have lost volume sensitivity of the Na+/H+ exchanger.  相似文献   

15.
Abstract A Na+/H+ antiporter catalyses coupled Na+ extrusion and H+ uptake across the membranes of extremely alkalophilic bacilli. This exchange is electrogenic, with H+ translocated inward > Na+ extruded. It is energized by the Δψ 2 component of the ΔμH+ that is established during primary proton pumping by the alkalophile respiratory chain complexes. These complexes abound in the membranes of extreme alkalophiles. Combined activity of the respiratory chain, the antiporter, and solute transport systems that are coupled to Na+ re-entry, allow the alkalophiles to maintain a cytoplasmic pH that is several pH units more acidic than optimal external pH values for growth. There is no compelling evidence for a specific and necessary role for any ion other than sodium in pH homeostasis, and although there is very high cytoplasmic buffering capacity in the alkaline range, active mechanisms for pH homeostasis are crucial. Energization of the antiporter as well as the proton translocating F 1 F 0-ATPase that catalyses ATP synthesis in the extreme alkalophiles must accommodate the problem of the low net ΔμH+ and the very low concentrations of protons, per se, in the external medium. This problem is by-passed by other bioenergetic work functions, such as solute uptake or motility, that utilize sodium ions for energy-coupling in the place of protons.  相似文献   

16.
When Notothenia neglecta was exposed to diluted, half strength, sea water for 6 h or 10 days, serum concentrations of Cl-, Na+, K+ and Mg2+ did not differ from those of sea water controls. This indicates that the fish were capable of both short- and long-term regulation. Renal Na+,K+-ATPase activity decreased after a 6 h exposure to diluted sea water, but there were no differences between diluted sea water and controls after 10 days of exposure.  相似文献   

17.
Higher concentrations of NaCl inhibit the growth and reduce the specific growth rate of the freshwater cyanobacterium Anabaena doliolum. Among the nitrogen sources tried, nitrate protected the cyanobacterial cells most from salt toxicity. However, supplementing of medium with nitrate could increase the adaptability of the cells at sublethal doses but it would not permit growth at otherwise lethal doses of 300 mmol 1-1 NaCl. Nitrate uptake was proportionally related to the NaCl level in the medium. The uptake of sodium was minimum when nitrate was simultaneously available to the cells, indicating the interaction of nitrate with the Na+ carrier. Na+ efflux was maximum in N2, ammonia, urea and nitrate in decreasing order. This led to the conclusion that Na+ influx plays the critical role in salt tolerance, rather than its efflux.  相似文献   

18.
The effects of adrenergic-stimulation upon the oxygen-binding capacity of fish erythrocytes have been investigated. The oxygen capacity of rainbow trout, Oncorhynchus mykiss (Walbaum), erythrocytes was lowered by 44% on extracellular acidification (the so-called 'Root effect'). Addition of isoproterenol at 20° Ccaused an acid shift of the curve relating oxygen capacity to pH0 by approximately 0.2 pH units, a value which was similar to the change in intracellular pH caused by adrenergic stimulation (Cossins & Kilbey Journal of Experimental Biology , 148 , 303–312, 1990). Moreover, when plotted as a function of pHi, the curves for control and adrenalinstimulated erythrocytes were superimposable suggesting that the adrenergic shift in the Root curve was a result of the change in pHi caused by activation of the adrenergic Na+/H+ exchanger.
A similarly large adrenergic shift in the Root curve was observed for pike, Esox lucius L., erythrocytes, though not for erythrocytes of carp, Cyprinus carpio L., and tench, Tinea tinea (L.). The pH for the mid-point of the Root effect in pike erythrocytes was distinctly more acid than for trout, but in both cases corresponded closely with the optimal pH for the adrenergic Na+/H+ exchange mechanism. This suggests a link between the functional characteristics of the exchanger and the oxygen-binding properties of haemoglobin.  相似文献   

19.
Abstract— Myelin, synaptosomal and mitochondrial fractions obtained from homogenates of whole mouse brain contain K+ which can exchange with 42K+ at 2º in 0·32 m -sucrose. The content and rates of exchange of K+ were greater at pH 8·2 than at 6·1. In the synaptosomal preparations, the rates of exchange and content of 42K+ and K+ declined progressively with decreasing pH.
Of the total synaptosomal K+, 95 per cent could exchange with external 42K+. At pH 7·5, 20 per cent of the K+ and 78 per cent of the Na+ appeared to reside in osmotically insensitive pools. Synaptosomal K+ at 2º was slowly displaced by NaCl (0·18 m ) and the rate of exchange between 42K+ and K+ was retarded. KCI (0·18 m ) did not readily displace endogenous Na+. Synaptosomal K+ exchanged with exogenous K+ more rapidly than with exogenous Na+.
These observations have been discussed in terms of possible roles for ion exchange as the principal means by which K+ traverses the plasma membrane at 2º.  相似文献   

20.
Salt-tolerant reed plants ( Phragmites communis Trinius) and salt-sensitive rice plants ( Oryza sativa L. cv. Kinmaze) were grown in salinized nutrient solutions up to 50 m M NaCl, and growth, Na+ contents and kinetics of 22Na+ uptake and translocation were compared between the species to characterize the salt tolerance mechanisms operating in reed plants. When both plants were grown under the same salinity, Na+ contents of the shoots were lower in reed plants, although those of the roots were quite similar. The shoot base region of both species accumulated Na+ more than the leaf blades did. Sodium-22 uptake and pulse-chase experiments suggested that the lower Na+ transport rate from root to shoot could limit excessive Na+ accumulation in the reed shoot. There was a possibility that the apparently lower 22Na+ transport rate to the shoot of reed plants was due to net downward Na+ transport from shoot base to root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号