首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
高山森林凋落物分解过程中的微生物生物量动态   总被引:1,自引:0,他引:1  
周晓庆  吴福忠  杨万勤  朱剑霄 《生态学报》2011,31(14):4144-4152
凋落物分解过程中的微生物生物量动态对于深入了解森林凋落物分解机理具有重要意义。为了解高山森林典型树种凋落物分解过程中的微生物生物量特征,采用凋落物分解袋法,研究了土壤冻结期(3月)、融冻期(4月-5月)、生长季节(5-10月)和冻结初期(11月)红桦(Betula albosinensi)、岷江冷杉(Abies faxoniana)和粗枝云杉(Picea asperata)凋落物分解过程的微生物生物量C(MBC)、微生物生物量N(MBN)和微生物生物量P(MBP)动态。四个关键时期,凋落物的MBC、MBN以生长季节最高,但非生长季节的三个关键时期也检测出较高的MBC、MBN。在融冻期结束后,三类凋落物分解过程中MBC和MBN均出现爆发性增长。然而,MBP在生长季节中期(8月)、完全冻结期(3月)和冻结初期(11月)均相对较低,但在融冻期和生长季节后期(9月)相对较高。另外,红桦凋落物的MBC、MBN和MBP含量均高于岷江冷杉和粗枝云杉凋落物(除4月粗枝云杉凋落物MBP异常升高外)。这些结果为更加清晰地认识高寒森林凋落物分解过程及机理,以及进一步理解陆地生态系统结构和功能提供了一定基础数据。  相似文献   

2.
SUMMARY. 1. Despite the widely accepted importance of bacteria and fungi in degrading detritus in aquatic ecosystems there is still very little quantitative information on the abundance and dynamics of these microorganisms. Using epifluorescent microscopy, we measured the biomass of bacteria and fungi during decomposition of three types of leaf detritus. Bacterial production was determined from the rate of incorporation of 3H-thymidine into DNA.
2. The transformation of leaf carbon into dissolved organic carbon and fine particulate organic carbon was followed in order to compare the amounts of leaf material that were converted into these 'end-products' of decomposition versus the amount converted into microbial biomass.
3. The amount of microbial carbon in the leaf-detritus complex never exceeded 5.2% of the total carbon, and fungal biomass was always much greater than bacterial biomass. Despite the greater standing stock of fungi, the rapid turnover of bacteria (doubling about once per day) implies that their role in degrading leaf litter or as a food source for detritivores might be as great as for fungi.
4. Removal of microbial biomass from leaf litter may occur as release of fungal spores and consumption or shedding of bacterial biomass. Fungal spores can be a significant part of the fine particulate organic carbon released from leaf detritus and potentially represent an important food resource for filter-feeding organisms.  相似文献   

3.
Climate change-induced rainfall reductions in Mediterranean forests negatively affect the decomposition of plant litter through decreased soil moisture. However, the indirect effects of reduced precipitation on litter decomposition through changes in litter quality and soil microbial communities are poorly studied. This is especially the case for fine root litter, which contributes importantly to forests plant biomass. Here we analyzed the effects of long-term (11 years) rainfall exclusion (29% reduction) on leaf and fine root litter quality, soil microbial biomass, and microbial community-level physiological profiles in a Mediterranean holm oak forest. Additionally, we reciprocally transplanted soils and litter among the control and reduced rainfall treatments in the laboratory, and analyzed litter decomposition and its responses to a simulated extreme drought event. The decreased soil microbial biomass and altered physiological profiles with reduced rainfall promoted lower fine root—but not leaf—litter decomposition. Both leaf and root litter, from the reduced rainfall treatment, decomposed faster than those from the control treatment. The impact of the extreme drought event on fine root litter decomposition was higher in soils from the control treatment compared to soils subjected to long-term rainfall exclusion. Our results suggest contrasting mechanisms driving drought indirect effects on above-(for example, changes in litter quality) and belowground (for example, shifts in soil microbial community) litter decomposition, even within a single tree species. Quantifying the contribution of these mechanisms relative to the direct soil moisture-effect is critical for an accurate integration of litter decomposition into ecosystem carbon dynamics in Mediterranean forests under climate change.  相似文献   

4.
Under the current paradigm, organic matter decomposition and nutrient cycling rates are a function of the imbalance between substrate and microbial biomass stoichiometry. Challenging this view, we demonstrate that in an individual‐based model, microbial community dynamics alter relative C and N limitation during litter decomposition, leading to a system behaviour not predictable from stoichiometric theory alone. Rather, the dynamics of interacting functional groups lead to an adaptation at the community level, which accelerates nitrogen recycling in litter with high initial C : N ratios and thus alleviates microbial N limitation. This mechanism allows microbial decomposers to overcome large imbalances between resource and biomass stoichiometry without the need to decrease carbon use efficiency (CUE), which is in contrast to predictions of traditional stoichiometric mass balance equations. We conclude that identifying and implementing microbial community‐driven mechanisms in biogeochemical models are necessary for accurately predicting terrestrial C fluxes in response to changing environmental conditions.  相似文献   

5.
为了解川西高山森林凋落物分解过程的微生物生物量特征,采用凋落物分解袋法,测定了粗枝云杉(Picea asperata)、岷江冷杉(Abies faxoniana)和红桦(Betula albosinensi)细根分解几个关键时期微生物生物量碳(MBC)、氮(MBN)和磷(MBP)的动态特征。3个树种细根分解过程中的MBC均表现为在土壤深冻期下降至全年最低点后缓慢上升,至土壤融冻中期再次下降,到生长季节增长的趋势。然而,粗枝云杉与岷江冷杉细根分解过程中的MBC最大值出现在生长季节末期,红桦细根分解过程中的MBC最大值出现在土壤冻结初期。3个树种细根分解过程中的MBN表现出相似的动态规律:土壤深冻期急剧下降至全年最低,随后在冻融季节无显著变化,生长季节明显增加,到生长季节末期达到全年最大值。另外,粗枝云杉和岷江冷杉细根分解过程中MBP均随着分解的进行呈现增加趋势,而红桦细根分解过程中的MBP在土壤融冻末期出现最大值,在生长季节中期出现另一峰值,生长季节末期明显下降。这些结果表明冬季细根分解过程中仍存在一定的土壤微生物,但受到细根质量、温度及其驱动的环境因子的深刻影响。  相似文献   

6.
To understand carbon cycle and flows of forests, accurate information on tree-component-specific litter production of trees is needed. In the ecosystem models, the litterfall of living trees is usually predicted by the biomass component by average amounts corresponding to site conditions or by multiplying the biomass of the growing stock by the component-specific biomass turnover rate. In this study, the rates of needle biomass turnover of Scots pine (Pinus sylvestris L.) were derived from the needle-shed dynamics. When the rates for needle litter production were modelled, the weighting and yellowing effects were taken into account. The annual biomass turnover rates of needles for southern and northern Finland are 0.21 and 0.10, respectively. Species-specific estimation of litter production is essential for understanding the carbon cycle and flows of forests. Biomass turnover rates can provide useful litter production estimates for large areas with average biomass values as a source of data.This revised version was published online in March 2005 with corrections to the figures. Owing to technical problems, the wrong figures were published.  相似文献   

7.
Ruan  H.H.  Zou  X.M.  Scatena  F.N.  Zimmerman  J.K. 《Plant and Soil》2004,260(1-2):147-154
Carbon availability often controls soil microbial growth and there is evidence that at regional scales soil microbial biomass is positively correlated with aboveground forest litter input. We examined the influence of plant litterfall on annual variation of soil microbial biomass in control and litter-excluded plots in a tropical wet forest of Puerto Rico. We also measured soil moisture, soil temperature, and plant litterfall in these treatment plots. Aboveground plant litter input had no effect on soil microbial biomass or on its pattern of fluctuation. Monthly changes in soil microbial biomass were not synchronized with aboveground litter inputs, but rather preceeded litterfall by one month. Soil microbial biomass did not correlate with soil temperature, moisture, or rainfall. Our results suggest that changes in soil microbial biomass are not directly regulated by soil temperature, moisture, or aboveground litter input at local scales within a tropical wet forest, and there were asynchronous fluctuation between soil microbial biomass and plant litterfall. Potential mechanisms for this asynchronous fluctuation include soil microbial biomass regulation by competition for soil nutrients between microorganisms and plants, and regulation by below-ground carbon inputs associated with the annual solar and drying-rewetting cycles in tropical wet forests.  相似文献   

8.
目前,人工林普遍存在土壤退化、生物多样性降低等生态问题.人工抚育间伐,营造混交林是人们经营和管理人工林的主要方式之一.为了了解这种经营方式对人工林生态系统中养分循环的影响,本文研究了位于长江上游低山丘陵区的42年生马尾松人工林7种林窗(G1: 100 m2、G2: 225 m2、G3: 400 m2、G4: 625 m2、G5: 900 m2、G6: 1225 m2、G7: 1600 m2)中马尾松和红椿凋落叶分解过程中微生物生物量碳和氮的动态变化.结果表明: 中小型林窗(G1~G5)有利于凋落叶分解过程中微生物生物量碳(MBC)和生物量氮(MBN)的增加.马尾松凋落叶中的MBC和MBN以及红椿凋落叶中的MBN,在分解期(360 d)内呈现出先增加后降低的变化,在180 d时三者达到最大值,其最高含量分别达到9.87、0.22和0.80 g·kg-1.而红椿凋落叶中的MBC在分解90 d时即达到最大值44.40 g·kg-1.红椿凋落叶中的MBC和MBN显著高于马尾松凋落叶.凋落叶中的微生物生物量碳和氮与日均温和凋落物的含水率显著相关,与凋落物的特性也密切相关.这说明对人工林进行抚育间伐时可将林窗控制在100~900 m2的范围内,有利于凋落叶分解过程中微生物生物量碳和氮的增加,加快凋落叶的分解,提高人工林林地的土壤肥力.  相似文献   

9.
Land‐use conversion into bioenergy crop production can alter litter decomposition processes tightly coupled to soil carbon and nutrient dynamics. Yet, litter decomposition has been poorly described in bioenergy production systems, especially following land‐use conversion. Predicting decomposition dynamics in postconversion bioenergy production systems is challenging because of the combined influence of land‐use legacies with current management and litter quality. To evaluate how land‐use legacies interact with current bioenergy crop management to influence litter decomposition in different litter types, we conducted a landscape‐scale litterbag decomposition experiment. We proposed land‐use legacies regulate decomposition, but their effects are weakened under higher quality litter and when current land use intensifies ecosystem disturbance relative to prior land use. We compared sites left in historical land uses of either agriculture (AG) or Conservation Reserve Program grassland (CRP) to those that were converted to corn or switchgrass bioenergy crop production. Enzyme activities, mass loss, microbial biomass, and changes in litter chemistry were monitored in corn stover and switchgrass litter over 485 days, accompanied by similar soil measurements. Across all measured variables, legacy had the strongest effect (P < 0.05) relative to litter type and current management, where CRP sites maintained higher soil and litter enzyme activities and microbial biomass relative to AG sites. Decomposition responses to conversion depended on legacy but also current management and litter type. Within the CRP sites, conversion into corn increased litter enzymes, microbial biomass, and litter protein and lipid abundances, especially on decomposing corn litter, relative to nonconverted CRP. However, conversion into switchgrass from CRP, a moderate disturbance, often had no effect on switchgrass litter decomposition parameters. Thus, legacies shape the direction and magnitude of decomposition responses to bioenergy crop conversion and therefore should be considered a key influence on litter and soil C cycling under bioenergy crop management.  相似文献   

10.
Because of conflicting results in previous studies, it is unclear whether litter diversity has a predictable impact on microbial communities or ecosystem processes. We examined whether effects of litter diversity depend on factors that could confound comparisons among previous studies, including leaf type, habitat type, identity of other leaves in the mixture, and spatial covariance at two scales within habitats. We also examined how litter diversity affects the saprotrophic microbial community using terminal restriction fragment length polymorphism to profile bacterial and fungal community composition, direct microscopy to quantify bacterial biomass, and ergosterol extraction to quantify fungal biomass. We found that leaf mixture diversity was rarely significant as a main effect (only for fungal biomass), but was often significant as an interaction with leaf type (for ash-free dry mass recovered, carbon-to-nitrogen ratio, fungal biomass, and bacterial community composition). Leaf type and habitat were significant as main effects for all response variables. The majority of variance in leaf ash-free dry mass and C/N ratio was explained after accounting for treatment effects and spatial covariation at the meter (block) and centimeter (litterbag) scales. However, a substantial amount of variability in microbial communities was left unexplained and must be driven by factors at other spatial scales or more complex spatiotemporal dynamics. We conclude that litter diversity effects are primarily dependent on leaf type, rather than habitat type or identity of surrounding leaves, which can guide the search for mechanisms underlying effects of litter diversity on ecosystem processes.  相似文献   

11.
Bacterial and fungal decomposers of aquatic plant litter may exhibit either synergistic or antagonistic interactions, which are likely to influence microbial growth as well as the decomposition of litter and, eventually, the carbon metabolism of aquatic systems. To elucidate such interactions, we inoculated decomposing Phragmites culms in microcosms with fungal isolates and with natural communities of bacteria and fungi in different combinations. The development of fungal and bacterial biomass and the carbon dynamics were studied during several months of degradation. The results show a bilateral antagonistic relationship between bacteria and fungi. After 3 months, fungal biomass accumulation was approximately 12 times higher in the absence than in the presence of bacteria. Bacterial biomass accumulation was about double in the absence of fungi compared to when fungi were present. Similar interactions developed between a natural assemblage of bacteria and five different fungal strains isolated from Phragmites litter (three identified hyphomycetes and two unidentified strains). Despite the great difference in biomass development between the treatments, the carbon metabolism was similar regardless of whether fungi and/or bacteria were present alone or in coexistence. We suggest that the antagonism between bacteria and fungi is an important controlling factor for microbial colonization and growth on aquatic plant litter.  相似文献   

12.
小麦残茬落叶的分解与土壤因子间动态关系的研究   总被引:1,自引:1,他引:0  
东北高寒地区的黑钙土土质优良肥沃 ,适合小麦、大豆和玉米等种植。近年来 ,由于人们只重视无机化肥的使用 ,忽视了地力培育 ,大量秸秆被移出田外 ,造成土壤有机质含量降低 ,土壤板结 ,使原本高产的农田逐渐变成中低产田 ,甚至有的已成为撂荒地。因此 ,研究当前农田土壤对枯枝落叶的分解现状 ,对于认识现有耕种条件下 ,农田土壤亚系统的物质转化和能量流动具有实际意义。1 研究地区和研究方法1 .1 自然概况该研究是在黑龙江省克山师专农场进行的。地理位置位于东经 1 2 5°8′~ 1 2 6°8′,北纬 47°50′~ 48°33′。年均气温 1 .3℃ ,1…  相似文献   

13.
The high biodiversity of tropical forest streams depends on the strong input of organic matter, yet the leaf litter decomposition dynamics in these streams are not well understood. We assessed how seasonal litterfall affects leaf litter breakdown, density and biomass of aquatic invertebrates, and the microbial biomass and sporulation of aquatic hyphomycetes in a South American grassland ‘vereda’ landscape. Although litter production in the riparian area was low, leaf litter breakdown was high compared with other South American systems, with maximum values coinciding with the rainy season. Fungal biomass in decomposing leaves was high, but spore densities in water and sporulation rates were very low. Invertebrates were not abundant in litter bags, suggesting they play a minor role in leaf litter decomposition. Chironomids accounted for ~70 percent of all invertebrates; only 10 percent of non‐Chironomidae invertebrates were shredders. Therefore, fungi appear to be the drivers of leaf litter decomposition. Our results show that despite low productivity and relatively fast litter decomposition, organic matter accumulated in the stream and riparian area. This pattern was attributed to the wet/dry cycles in which leaves falling in the flat riparian zone remain undecomposed (during the dry period) and are massively transported to the riverbed (rainy season).  相似文献   

14.
N cycling in tropical dry forests is driven by rainfall seasonality but the mechanisms involved are not well understood. We studied the seasonal variation in N dynamics and microbial biomass in the surface litter of a tropical dry forest ecosystem in Mexico over a 2-year period. Litter was collected at 4 different times of the year to determine changes in total, soluble, and microbial C and N concentrations. Additionally, litter from each sampling date was incubated under laboratory conditions to determine potential C mineralization rate, net N mineralization, net C and N microbial immobilization, and net nitrification. Litter C concentrations were highest in the early-dry season and lowest in the rainy season, while the seasonal changes in N concentrations varied between years. Litter P was higher in the rainy than in the early-dry season. Water-soluble organic C (WSOC) and water-soluble N concentrations were highest during the early- and late-dry seasons and represented up to 4.1 and 5.9% of the total C and N, respectively. NH4+ and NO3 showed different seasonal and annual variations. They represented an average 23% of soluble N. Microbial C was generally higher in the dry than in the wet seasons, while microbial N was lowest in the late-dry and highest in the early-rainy seasons. Incubations showed that lowest potential C mineralization rates and C and N microbial immobilization occurred in rainy season litter, and were positively correlated to WSOC. Net nitrification was highest in rainy season litter. Our results showed that the seasonal pattern in N dynamics was influenced by rainfall seasonality and labile C availability, and not by microbial biomass. We propose a conceptual model to hypothesize how N dynamics in the litter layer of the Chamela tropical dry forest respond to the seasonal variation in rainfall.  相似文献   

15.
We conducted a field experiment in two alpine meadows to investigate the short-term effects of nitrogen enrichment and plant litter biomass on plant species richness, the percent cover of functional groups, soil microbial biomass, and enzyme activity in two alpine meadow communities. The addition of nitrogen fertilizer to experimental plots over two growing seasons increased plant production, as indicated by increases in both the living plant biomass and litter biomass in the Kobresia humilis meadow community. In contrast, fertilization had no significant effect on the amounts of living biomass and litter biomass in the K. tibetica meadow. The litter treatment results indicate that litter removal significantly increased the living biomass and decreased the litter biomass in the K. humilis meadow; however, litter-removal and litter-intact treatments had no impact on the amounts of living biomass and litter biomass in the K. tibetica meadow. Litter production depended on the degree of grass cover and was also influenced by nitrogen enrichment. The increase in plant biomass reflects a strong positive effect of nitrogen enrichment and litter removal on grasses in the K. humilis meadow. Neither fertilization nor litter removal had any impact on the grass biomass in the K. tibetica meadow. Sedge biomass was not significantly affected by either nutrient enrichment or litter removal in either alpine meadow community. The plant species richness decreased in the K. humilis meadow following nitrogen addition. In the K. humilis meadow, microbial biomass C increased significantly in response to the nitrogen enrichment and litter removal treatments. Enzyme activities differed depending on the enzyme and the different alpine meadow communities; in general, enzyme activities were higher in the upper soil layers (0–10 cm and 10–20 cm) than in the lower soil layers (20–40 cm). The amounts of living plant biomass and plant litter biomass in response to the different treatments of the two alpine meadow communities affected the soil microbial biomass C, soil organic C, and soil fertility. These results suggest that the original soil conditions, plant community composition, and community productivity are very important in regulating plant community productivity and microbial biomass and activity.  相似文献   

16.
Leaf litter decomposition plays a major role in nutrient dynamics in forested streams. The chemical composition of litter affects its processing by microorganisms, which obtain nutrients from litter and from the water column. The balance of these fluxes is not well known, because they occur simultaneously and thus are difficult to quantify separately. Here, we examined C and N flow from streamwater and leaf litter to microbial biofilms during decomposition. We used isotopically enriched leaves (13C and 15N) from two riparian foundation tree species: fast-decomposing Populus fremontii and slow-decomposing Populus angustifolia, which differed in their concentration of recalcitrant compounds. We adapted the isotope pool dilution method to estimate gross elemental fluxes into litter microbes. Three key findings emerged: litter type strongly affected biomass and stoichiometry of microbial assemblages growing on litter; the proportion of C and N in microorganisms derived from the streamwater, as opposed to the litter, did not differ between litter types, but increased throughout decomposition; gross immobilization of N from the streamwater was higher for P. fremontii compared to P. angustifolia, probably as a consequence of the higher microbial biomass on P. fremontii. In contrast, gross immobilization of C from the streamwater was higher for P. angustifolia, suggesting that dissolved organic C in streamwater was used as an additional energy source by microbial assemblages growing on slow-decomposing litter. These results indicate that biofilms on decomposing litter have specific element requirements driven by litter characteristics, which might have implications for whole-stream nutrient retention.  相似文献   

17.
Dai  Weiwei  Peng  Bo  Liu  Jun  Wang  Chao  Wang  Xin  Jiang  Ping  Bai  Edith 《Biogeochemistry》2021,154(2):371-383

Aboveground litter not only is an important source of nutrients to soil microbes but also regulates the microclimate in topsoil. How the changes in aboveground litter quantity would affect the microbial biogeochemical cycles is still unclear. Here we conducted a litter input manipulation experiment in a temperate mixed forest to investigate how different amounts of litter input affect soil organic carbon (SOC) and soil respiration via their regulation on soil microbes. We found that although neither SOC stock nor soil CO2 efflux was affected by litter manipulation, soil microbial characteristics had responded after four years of litter addition or removal treatments. Microbial biomass carbon (MBC) in the O horizon was higher in litter addition plots than in litter removal plots as a result of the changed availability of labile C under litter treatments. Both double litter and no litter treatments changed microbial compositions, which was probably due to the increased soil pH in no litter treatment and the increased labile C in double litter treatment. The null change in soil respiration could be attributed to the offset between the negative effect of decreased substrate and the positive effect of increased temperature on soil respiration in litter removal plots. Due to the important role of soil microbes in carbon cycling, the altered microbial properties under litter manipulation treatments suggested the inevitable changes in biogeochemical cycling in the long run and call for long-term studies on SOC dynamics in the future.

  相似文献   

18.
Improving current understanding of the factors that control soil carbon (C) dynamics in forest ecosystems remains an important topic of research as it plays an integral role in the fertility of forest soils and the global C cycle. Invasive earthworms have the potential to alter soil C dynamics, though mechanisms and effects remain poorly understood. To investigate potential effects of invasive earthworms on forest C, the forest floor, mineral soil, fine root biomass, litterfall and microbial litter decay rates, and total soil respiration (TSR) over a full year were measured at an invaded and uninvaded deciduous forest site in southern Ontario. The uninvaded site was approximately 300 m from the invaded site and a distinct invasion front between sites was present. Along the invasion front, the biomass of the forest floor was negatively correlated with earthworm abundance and biomass. There was no significant difference between litterfall, microbial litter decay, and TSR between the invaded and uninvaded sites, but fine root biomass was approximately 30% lower at the invaded site. There was no significant difference in total soil C pools (0–30 cm) between the invaded and uninvaded sites. Despite profound impacts on forest floor soil C pools, earthworm invasion does not significantly increase TSR, most likely because increased heterotrophic respiration associated with earthworms is largely offset by a decrease in autotrophic respiration caused by lower fine root biomass.  相似文献   

19.
This study was conducted to link soil and litter microbial biomass and activity with soil and litter quality in the surface layer for different pure and mixed stands of native tree species in southeastern Bahia, Brazil. The purpose of the study was to see how strongly the differences among species and stands affect the microbiological attributes of the soil and to identify how microbial processes can be influenced by soil and litter quality. Soil and litter samples were collected from six pure and mixed stands of six hardwood species (Peltogyne angustifolia, Centrolobium robustum, Arapatiella psilophylla, Sclerolobium chrysophyllum, Cordia trichotoma, Macrolobium latifolium) native to the southeastern region of Bahia, Brazil. In plantations of native tree species in humid tropical regions, the immobilization efficiency of C and N by soil microbial biomass was strongly related to the chemical quality of the litter and to the organic matter quality of the soil. According to the variables analyzed, the mixed stand was similar to the natural forest and dissimilar to the pure stands. Litter microbial biomass represented a greater sink of C and N than soil microbial biomass and is an important contributor of resources to tropical soils having low C and N availability.  相似文献   

20.
陈刚  涂利华  彭勇  胡红玲  胡庭兴 《生态学报》2015,35(18):6100-6109
次生林在全球碳循环中占有重要地位,为了研究中国中亚热带次生林土壤有机碳组分特征,以四川瓦屋山中山段扁刺栲-中华木荷常绿阔叶次生林为对象,通过挖取土壤剖面分层(0—10、10—40、40—70 cm和70—100 cm)取样方式,研究土壤各有机碳组分特征。结果表明:土壤有机碳、微生物生物量碳、可浸提溶解性有机碳和易氧化碳含量均随土层深度增加而减小,0—10 cm土层有机碳含量为121.89 g/kg,高于已报道的亚热带其他常绿阔叶林和四川各类森林;0—10 cm层微生物生物量碳含量为1931.82 mg/kg,可浸提溶解性有机碳含量为697.42 mg/kg,易氧化碳含量为20.98 g/kg,高于已报道的许多相似天然林和人工林活性碳含量。土壤有机碳储量为154.87 t/hm2,在四川省各类森林中处于中等水平。研究表明瓦屋山扁刺栲-中华木荷常绿阔叶次生林活性碳含量较大,微生物活动和养分流动较为活跃,凋落物层转化为土壤碳的潜力较大,这类生态系统可能会在区域碳循环过程中扮演更为重要的角色。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号