首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microcosm studies investigated the effects of bioaugmentation with a mixed Dehalococcoides (Dhc)/Dehalobacter (Dhb) culture on biological enhanced reductive dechlorination for treatment of 1,1,1-trichloroethane (TCA) and chloroethenes in groundwater at three Danish sites. Microcosms were amended with lactate as electron donor and monitored over 600 days. Experimental variables included bioaugmentation, TCA concentration, and presence/absence of chloroethenes. Bioaugmented microcosms received a mixture of the Dhc culture KB-1 and Dhb culture ACT-3. To investigate effects of substrate concentration, microcosms were amended with various concentrations of chloroethanes (TCA or monochloroethane [CA]) and/or chloroethenes (tetrachloroethene [PCE], trichloroethene [TCE], or 1,1-dichloroethene [1,1-DCE]). Results showed that combined electron donor addition and bioaugmentation stimulated dechlorination of TCA and 1,1-dichloroethane (1,1-DCA) to CA, and dechlorination of PCE, TCE, 1,1-DCE and cDCE to ethane. Dechlorination of CA was not observed. Bioaugmentation improved the rate and extent of TCA and 1,1-DCA dechlorination at two sites, but did not accelerate dechlorination at a third site where geochemical conditions were reducing and Dhc and Dhb were indigenous. TCA at initial concentrations of 5 mg/L inhibited (i.e., slowed the rate of) TCA dechlorination, TCE dechlorination, donor fermentation, and methanogenesis. 1 mg/L TCA did not inhibit dechlorination of TCA, TCE or cDCE. Moreover, complete dechlorination of PCE to ethene was observed in the presence of 3.2 mg/L TCA. In contrast to some prior reports, these studies indicate that low part-per million levels of TCA (<3 mg/L) in aquifer systems do not inhibit dechlorination of PCE or TCE to ethene. In addition, the results show that co-bioaugmentation with Dhc and Dhb cultures can be an effective strategy for accelerating treatment of chloroethane/chloroethene mixtures in groundwater, with the exception that all currently known Dhc and Dhb cultures cannot treat CA.  相似文献   

2.
Many reductive dehalogenases (RDases) have been identified in organohalide-respiring microorganisms, and yet their substrates, specific activities, and conditions for expression are not well understood. We tested whether RDase expression varied depending on the substrate-exposure history of reductive dechlorinating communities. For this purpose, we used the enrichment culture KB-1 maintained on trichloroethene (TCE), as well as subcultures maintained on the intermediates cis-dichloroethene (cDCE) and vinyl chloride (VC). KB-1 contains a TCE-to-cDCE dechlorinating Geobacter and several Dehalococcoides strains that together harbor many of the known chloroethene reductases. Expressed RDases were identified using blue native polyacrylamide gel electrophoresis, enzyme assays in gel slices, and peptide sequencing. As anticipated but never previously quantified, the RDase from Geobacter was only detected transiently at the beginning of TCE dechlorination. The Dehalococcoides RDase VcrA and smaller amounts of TceA were expressed in the parent KB-1 culture during complete dechlorination of TCE to ethene regardless of time point or amended substrate. The Dehalococcoides RDase BvcA was only detected in enrichments maintained on cDCE as growth substrates, in roughly equal abundance to VcrA. Only VcrA was detected in subcultures enriched on VC. Enzyme assays revealed that 1,1-DCE, a substrate not used for culture enrichment, afforded the highest specific activity. trans-DCE was substantially dechlorinated only by extracts from cDCE enrichments expressing BvcA. RDase gene distribution indicated enrichment of different strains of Dehalococcoides as a function of electron acceptor TCE, cDCE, or VC. Each chloroethene reductase has distinct substrate preferences leading to strain selection in mixed communities.  相似文献   

3.
The extent of tetrachloroethene (PCE) dechlorination in two chemostats was evaluated as a function of hydraulic retention time (HRT). The inoculum of these chemostats was from an upflow anaerobic sludge blanket (UASB) reactor that rapidly converts PCE to vinyl chloride (VC) and ethene. When the HRT was 2.9 days, PCE was converted only to cis-dichloroethene (cDCE). When the HRT was 11 days, the end products were VC and ethene. Further studies showed that the dechlorinating microbial community in the UASB reactor contained two distinct populations, one of which converted PCE to cDCE and the other cDCE to VC and ethene. Methanogenic activity was very low in these cultures. The cDCE dechlorinating culture apparently has a lower growth rate than the PCE dechlorinating culture, and as a result, at a shorter HRT, the cDCE dechlorinating culture was washed out from the system leading to incomplete dechlorination of PCE. Both enrichment cultures used pyruvate or hydrogen as electron donors for dechlorination. Acetate was the carbon source (but not energy source) when hydrogen was used. Both cultures had undefined nutrient requirements and needed supplements of cell extract obtained from the mixed culture in the UASB reactor. However, the two cultures were different in their response to the addition of an inhibitor of methanogenesis (2-bromoethanesulfonate [BES]). BES inhibited the dechlorinating activity of the enriched cDCE dechlorinating culture, but had no influence on the PCE dechlorinating culture. Preliminary studies on BES inhibition are presented.  相似文献   

4.
Groundwater at an industrial site is contaminated with α hexachlorocyclohexane (HCH) and γ -HCH (i.e., lindane) (0.3 to 0.5 ppm). Other contaminants in the 1 to 15 ppm range include 1,2,4-trichlorobenezene (TCB), 1,2-dichlorobenzene (DCB), 1,3-DCB, 1,4-DCB, chlorobenzene (CB), benzene, trichloroethene (TCE), and cis-1,2-dichloroethene (cDCE). The aquifer consists of a shallow layer of soil over fractured dolomite, where most of the contaminant mass resides. The objective of this study was to compare (1) anaerobic reductive dechlorination of the polychlorinated contaminants, followed by aerobic biodegradation of the daughter products (mainly DCBs, CB, and benzene); and (2) aerobic biodegradation of α - and γ -HCH, TCB, DCBs, CB, and benzene, followed by anaerobic reduction of TCE and cDCE to ethene. Conventional wisdom suggests that sequential anaerobic and aerobic conditions are desirable for bioremediating sites contaminated by mixtures of polychlorinated organics. The results of this microcosm study suggest that a sequential aerobic and anaerobic approach may be more successful, although implementing this in the field presents some major challenges. In the dolomite microcosms incubated under aerobic conditions first (59 days), α - and γ -HCH were biodegraded close to the maximum contaminant level for lindane; all of the aromatic compounds were consumed; and there was partial removal of TCE and cDCE (presumptively via cometabolism). The subsequent switch to anaerobic conditions (day 101) yielded reductive dechlorination of the remaining TCE; a significant level of ethene was produced, although some cDCE and VC persisted. In contrast, sequential anaerobic (393 days) and aerobic treatment (498 days) for the dolomite microcosms was ineffective in completely removing the aromatic compounds, α -HCH, cDCE, and VC. For the soil microcosms, both treatment sequences were effective, most likely reflecting a greater abundance of the necessary microbes and electron donor in this part of the site.  相似文献   

5.
A major obstacle in the implementation of the reductive dechlorination process at chloroethene-contaminated sites is the accumulation of the intermediate vinyl chloride (VC), a proven human carcinogen. To shed light on the microbiology involved in the final critical dechlorination step, a sediment-free, nonmethanogenic, VC-dechlorinating enrichment culture was derived from tetrachloroethene (PCE)-to-ethene-dechlorinating microcosms established with material from the chloroethene-contaminated Bachman Road site aquifer in Oscoda, Mich. After 40 consecutive transfers in defined, reduced mineral salts medium amended with VC, the culture lost the ability to use PCE and trichloroethene (TCE) as metabolic electron acceptors. PCE and TCE dechlorination occurred in the presence of VC, presumably in a cometabolic process. Enrichment cultures supplied with lactate or pyruvate as electron donor dechlorinated VC to ethene at rates up to 54 μmol liter−1day−1, and dichloroethenes (DCEs) were dechlorinated at about 50% of this rate. The half-saturation constant (KS) for VC was 5.8 μM, which was about one-third lower than the concentrations determined for cis-DCE and trans-DCE. Similar VC dechlorination rates were observed at temperatures between 22 and 30°C, and negligible dechlorination occurred at 4 and 35°C. Reductive dechlorination in medium amended with ampicillin was strictly dependent on H2 as electron donor. VC-dechlorinating cultures consumed H2 to threshold concentrations of 0.12 ppm by volume. 16S rRNA gene-based tools identified a Dehalococcoides population, and Dehalococcoides-targeted quantitative real-time PCR confirmed VC-dependent growth of this population. These findings demonstrate that Dehalococcoides populations exist that use DCEs and VC but not PCE or TCE as metabolic electron acceptors.  相似文献   

6.
《Process Biochemistry》2007,42(11):1498-1505
Batch reactors and microcosms were used to evaluate groundwater bioremediation potential of tetrachloroethene (PCE) in the presence of additional pollutants present at a site located in the Apulia Region (SE Italy). Reductive dechlorination of PCE was studied under anaerobic conditions by comparing the effectiveness of three inocula: (a) soil sampled at the contaminated site, (b) anaerobic sludge from a municipal wastewater plant, and (c) an enriched dehalogenating culture containing Dehalococcoides species. In order to enhance dehalogenation, reactors inoculated with sludge were also amended with selected electron donors. Aerobic reactors were also established to study oxidative degradation of vinyl chloride (VC), that may accumulate after incomplete dechlorination of PCE.Results showed that consortia derived from anaerobic sludge and amended with electron donors quantitatively and incompletely degraded PCE to cis-dichloroethylene, whereas in reactors augmented with a dehalogenating culture complete dechlorination of PCE occurred even in the presence of additional toxic contaminants. The presence of Dehalococcoides spp. in the dehalogenating culture and its absence in reactors inoculated with anaerobic sludge was confirmed using FISH community analyses. In all cases, prolonged incubation periods were necessary for dechlorination. On the other hand, oxidative degradation of VC in aerobic reactors occurred after short lag times.  相似文献   

7.
While many anaerobic microbial communities are capable of reductively dechlorinating tetrachloroethene (PCE) and trichloroethene (TCE) to dichloroethene (DCE), vinyl chloride (VC), and finally ethene, the accumulation of the highly toxic intermediates, cis-DCE (cDCE) and VC, presents a challenge for bioremediation processes. Members of the genus Dehalococcoides are apparently solely responsible for dechlorination beyond DCE, but isolates of Dehalococcoides each metabolize only a subset of PCE dechlorination intermediates and the interactions among distinct Dehalococcoides strains that result in complete dechlorination are not well understood. Here we apply quantitative PCR to 16S rRNA and reductase gene sequences to discriminate and track Dehalococcoides strains in a TCE enrichment derived from soil taken from the Alameda Naval Air Station (ANAS) using a four-gene plasmid standard. This standard increased experimental accuracy such that 16S rRNA and summed reductase gene copy numbers matched to within 10%. The ANAS culture was found to contain only a single Dehalococcoides 16S rRNA gene sequence, matching that of D. ethenogenes 195, but both the vcrA and tceA reductive dehalogenase genes. Quantities of these two genes in the enrichment summed to the quantity of the Dehalococcoides 16S rRNA gene. Further, between ANAS subcultures enriched on TCE, cDCE, or VC, the relative copy number of the two dehalogenases shifted 14-fold, indicating that the genes are present in two different Dehalococcoides strains. Comparison of cell yields in VC-, cDCE-, and TCE-enriched subcultures suggests that the tceA-containing strain is responsible for nearly all of the TCE and cDCE metabolism in ANAS, whereas the vcrA-containing strain is responsible for all of the VC metabolism.  相似文献   

8.
1,1,1-Trichloroethane (1,1,1-TCA) is a common groundwater pollutant as a result of improper disposal and accidental spills. It is often found as a cocontaminant with trichloroethene (TCE) and inhibits some TCE-degrading microorganisms. 1,1,1-TCA removal is therefore required for effective bioremediation of sites contaminated with mixed chlorinated organics. This study characterized MS, a 1,1,1-TCA-degrading, anaerobic, mixed microbial culture derived from a 1,1,1-TCA-contaminated site in the northeastern United States. MS reductively dechlorinated 1,1,1-TCA to 1,1-dichloroethane (1,1-DCA) and then to monochloroethane (CA) but not further. Cloning of bacterial 16S rRNA genes revealed among other organisms the presence of a Dehalobacter sp. and a Desulfovibrio sp., which are both phylogenetically related to known dehalorespiring strains. Monitoring of these populations with species-specific quantitative PCR during degradation of 1,1,1-TCA and 1,1-DCA showed that Dehalobacter proliferated during dechlorination. Dehalobacter growth was dechlorination dependent, whereas Desulfovibrio growth was dechlorination independent. Experiments were also performed to test whether MS could enhance TCE degradation in the presence of inhibiting levels of 1,1,1-TCA. Dechlorination of cis-dichloroethene (cDCE) and vinyl chloride (VC) in KB-1, a chloroethene-degrading culture used for bioaugmentation, was inhibited with 1,1,1-TCA present. When KB-1 and MS were coinoculated, degradation of cDCE and VC to ethene proceeded as soon as the 1,1,1-TCA was dechlorinated to 1,1-DCA by MS. This demonstrated the potential application of the MS and KB-1 cultures for cobioaugmentation of sites cocontaminated with 1,1,1-TCA and TCE.  相似文献   

9.
This paper investigates effects of combining thermal and biological remediation, based on laboratory studies of trichloroethene (TCE) degradation. Aquifer material was collected 6 months after terminating a full-scale Electrical Resistance Heating (ERH), when the site had cooled from approximately 100°C to 40°C. The aquifer material was used to construct bioaugmented microcosms amended with the mixed anaerobic dechlorinating culture, KB-1TM, and an electron donor (5 mM lactate). Microcosms were bioaugmented during cooling at 40, 30, 20, and 10°C, as temperatures continually decreased during laboratory incubation. Redox conditions were generally methanogenic, and electron donors were present to support dechlorination. For microcosms bioaugmented at 10°C and 20°C, dechlorination stalled at cis-dichloroethene (cDCE) and vinyl chloride (VC) 150 days after bioaugmentation. However, within 300 days of incubation ethene was produced in the majority of these microcosms. In contrast, dechlorination was rapid and complete in microcosms bioaugmented at 30°C. Microcosms bioaugmented at 40°C also showed rapid dechlorination, but stalled at cDCE with partial VC and ethene production, even after 150 days of incubation when the temperature had decreased to 10°C. These results suggest that sequential bioremediation of TCE is possible in field-scale thermal treatments after donor addition and bioaugmentation and that the optimal bioaugmentation temperature is approximately 30°C. When biological and thermal remediations are to be applied at the same location, three bioremediation approaches could be considered: (a) treating TCE in perimeter areas outside the source zone at temperatures of approximately 30°C; (b) polishing TCE concentrations in the original source zone during cooling from approximately 30°C to ambient groundwater temperatures; and (c) using bioremediation in downgradient areas taking advantages of the higher temperature and potential release of organic matter.  相似文献   

10.
A major obstacle in the implementation of the reductive dechlorination process at chloroethene-contaminated sites is the accumulation of the intermediate vinyl chloride (VC), a proven human carcinogen. To shed light on the microbiology involved in the final critical dechlorination step, a sediment-free, nonmethanogenic, VC-dechlorinating enrichment culture was derived from tetrachloroethene (PCE)-to-ethene-dechlorinating microcosms established with material from the chloroethene-contaminated Bachman Road site aquifer in Oscoda, Mich. After 40 consecutive transfers in defined, reduced mineral salts medium amended with VC, the culture lost the ability to use PCE and trichloroethene (TCE) as metabolic electron acceptors. PCE and TCE dechlorination occurred in the presence of VC, presumably in a cometabolic process. Enrichment cultures supplied with lactate or pyruvate as electron donor dechlorinated VC to ethene at rates up to 54 micromol liter(-1)day(-1), and dichloroethenes (DCEs) were dechlorinated at about 50% of this rate. The half-saturation constant (K(S)) for VC was 5.8 microM, which was about one-third lower than the concentrations determined for cis-DCE and trans-DCE. Similar VC dechlorination rates were observed at temperatures between 22 and 30 degrees C, and negligible dechlorination occurred at 4 and 35 degrees C. Reductive dechlorination in medium amended with ampicillin was strictly dependent on H(2) as electron donor. VC-dechlorinating cultures consumed H(2) to threshold concentrations of 0.12 ppm by volume. 16S rRNA gene-based tools identified a Dehalococcoides population, and Dehalococcoides-targeted quantitative real-time PCR confirmed VC-dependent growth of this population. These findings demonstrate that Dehalococcoides populations exist that use DCEs and VC but not PCE or TCE as metabolic electron acceptors.  相似文献   

11.
Despite extensive research on the bottom-up force of resource availability (e.g., electron donors and acceptors), slow biodegradation rates and stalling at cis-dichloroethene (cDCE) and vinyl chloride continue to be observed in aquifers contaminated with trichloroethene (TCE). The objective of this research was to gauge the impact of the top-down force of protistan predation on TCE biodegradation in laboratory microcosms. When indigenous bacteria from an electron donor-limited TCE-contaminated bedrock aquifer were present, the indigenous protists inhibited reductive dechlorination altogether. The presence of protists during organic carbon-amended conditions caused the bacteria to elongate (length:width, ≥10:1), but reductive dechlorination was still inhibited. When a commercially available dechlorinating bacterial culture and an organic carbon amendment were added in he presence of protists, the elongated bacteria predominated and reductive dechlorination stalled at cDCE. When protists were removed under organic carbon-amended conditions, reductive dechlorination stalled at cDCE, whereas in the presence organic carbon and bacterial amendments, the total chlorinated ethene concentration decreased, indicating TCE was converted to ethene and/or CO2. The data suggested that indigenous protists grazed dechlorinators to extremely low levels, inhibiting dechlorination altogether. Hence, in situ bioremediation/bioaugmentation may not be successful in mineralizing TCE unless the top-down force of protistan predation is inhibited.The bacterially mediated sequential dechlorination of trichloroethene (TCE) to cis-dichloroethene (cDCE), vinyl chloride (VC), ethene, and CO2 by dehalorespiration is often proposed as the most cost-effective in situ treatment to remediate chlorinated solvent-contaminated aquifers (35, 42). TCE mineralization to CO2 requires specific electron donors (i.e., acetate and H2) typically produced from readily fermentable organic carbon, the presence of specific bacterial species, and sulfate-reducing or methanogenic conditions (1, 4, 8, 15, 22, 25, 33, 35, 46). When the rate of mineralization is slow or stalled at one of the progeny (cDCE and VC), the problem is usually attributed to the bottom-up force of resource availability (e.g., the absence of a necessary condition such as suitable electron donors or bacterial species) (1, 4, 10, 22, 26, 43, 46). For example, whereas many bacterial species are capable of degrading TCE to cDCE and VC by dehalorespiration (33), only Dehalococcoides ethenogenes is known to convert VC to ethene (25). Hence, if an indigenous population of D. ethenogenes is not present in situ, the system will likely stall at cDCE or VC even if sufficient electron donor is added. Stalling is problematic because VC is more toxic than TCE (18). In this case, bioaugmentation with D. ethenogenes may trigger complete mineralization.An established link exists for the top-down force of predator-prey relationships between protists and bacteria in a range of surface water systems (13, 19-21, 29). Our previous work with groundwater protists in a wastewater contaminated sandy aquifer demonstrated that size selective predation by protists affects biodegradation of the organic carbon. Our subsequent work in a TCE-contaminated bedrock aquifer at the Bedrock Bioremediation Center (BBC) research site (Portsmouth, NH) suggested that bottom-up resource availability could not totally explain stalls at cDCE. This led us to hypothesize that the top-down force of selective predation by protists on dehalorespiring bacteria inhibited the required compositional shift in the bacterial community to one dominated by D. ethenogenes, thus preventing the conversion of cDCE and VC to ethene and CO2 (2, 15). This, coupled with bacterial studies by Travis and Rosenberg (41), Lewis (32) and Snyder et al. (40), led us to postulate that protistan predation could have a negative impact on TCE biodegradation. Continuously stirred reactors were used to examine how the presence of protists influenced the rate of bacterially mediated reductive dechlorination. Experiments were conducted using ambient (≤0.8 mM as C) and amended (10 mM as C) organic carbon concentrations with protists present and absent. TCE biodegradation was also assessed when the indigenous community was amended with a commercially available bacterial culture containing D. ethenogenes (34).(A portion of this research was originally submitted to the University of New Hampshire, Durham, by J. Cunningham as an M.S. thesis [12].)  相似文献   

12.
While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2–4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose-dependent changes of microbial composition and activity due to permanganate treatment provides insight into the mechanisms of OHR stimulation or disruption upon chemical oxidation.  相似文献   

13.
Vinyl chloride (VC) is a known human carcinogen and common groundwater contaminant. Reductive dechlorination of VC to non-toxic ethene under anaerobic conditions has been demonstrated at numerous hazardous waste sites. However, VC disappearance without stoichiometric production of ethene has also been observed at some sites and in microcosms. In this study we identify an organism responsible for this observation in presumably anaerobic microcosms and conclude that oxygen was not detectable based on a lack of color change from added resazurin. This organism, a Mycobacterium sp. closely related to known VC oxidizing strains, was present in high numbers in 16S rRNA gene clone libraries from a groundwater microcosm. Although the oxidation/reduction indicator resazurin remained in the clear reduced state in these studies, these results suggest inadvertent oxygen contamination occurred. This study helps to elucidate the dynamic behavior of chlorinated ethenes in contaminated groundwater, through the isolation of a strictly aerobic organism that may be responsible for at least some disappearance of VC without the concomitant production of ethene in groundwater considered anaerobic.  相似文献   

14.
Although the abundance and diversity of natural organochlorines are well established, much is still unknown about the degradation of these compounds. Triplicate microcosms were used to determine whether, and which, bacterial communities could dechlorinate two chlorinated xanthones (2,7-dichloroxanthone and 5,7-dichloro-1,3-dihydroxylxanthone), analogues of a diverse class of natural organochlorines. According to quantitative-PCR (qPCR) results, several known dechlorinating genera were either not present or not enriched during dechlorination of the xanthones. Denaturing gradient gel electrophoresis, however, indicated that several Firmicutes were enriched in the dechlorinating cultures compared to triplicate controls amended with nonchlorinated xanthones. One such group, herein referred to as the Gopher group, was further studied with a novel qPCR method that confirmed enrichment of Gopher group 16S rRNA genes in the dechlorinating cultures. The enrichment of the Gopher group was again tested with two new sets of triplicate microcosms. Enrichment was observed during chlorinated xanthone dechlorination in one set of these triplicate microcosms. In the other set, two microcosms showed clear enrichment while a third did not. The Gopher group is a previously unidentified group of Firmicutes, distinct from but related to the Dehalobacter and Desulfitobacterium genera; this group also contains clones from at least four unique cultures capable of dechlorinating anthropogenic organochlorines that have been previously described in the literature. This study suggests that natural chlorinated xanthones may be effective biostimulants to enhance the remediation of pollutants and highlights the idea that novel genera of dechlorinators likely exist and may be active in bioremediation and the natural cycling of chlorine.  相似文献   

15.
Two highly enriched cultures containing Dehalococcoides spp. were used to study the effect of aceticlastic methanogens on reductive vinyl chloride (VC) dechlorination. In terms of aceticlastic methanogens, one culture was dominated by Methanosaeta, while the other culture was dominated by Methanosarcina, as determined by fluorescence in situ hybridization. Cultures amended with 2-bromoethanesulfonate (BES), an efficient inhibitor of methanogens, exhibited slow VC dechlorination when grown on acetate and VC. Methanogenic cultures dominated by Methanosaeta had no impact on dechlorination rates, compared to BES-amended controls. In contrast, methanogenic cultures dominated by Methanosarcina displayed up to sevenfold-higher rates of VC dechlorination than their BES-amended counterparts. Methanosarcina-dominated cultures converted a higher percentage of [2-14C]acetate to 14CO2 when concomitant VC dechlorination took place, compared to nondechlorinating controls. Respiratory indices increased from 0.12 in nondechlorinating cultures to 0.51 in actively dechlorinating cultures. During VC dechlorination, aqueous hydrogen (H2) concentrations dropped to 0.3 to 0.5 nM. However, upon complete VC consumption, H2 levels increased by a factor of 10 to 100, indicating active hydrogen production from acetate oxidation. This process was thermodynamically favorable by means of the extremely low H2 levels during dechlorination. VC degradation in nonmethanogenic cultures was not inhibited by BES but was limited by the availability of H2 as electron donor, in cultures both with and without BES. These findings all indicate that Methanosarcina (but not Methanosaeta), while cleaving acetate to methane, simultaneously oxidizes acetate to CO2 plus H2, driving hydrogenotrophic dehalorespiration of VC to ethene by Dehalococcoides.  相似文献   

16.
Le NB  Coleman NV 《Biodegradation》2011,22(6):1095-1108
Mycobacterium chubuense strain NBB4 can grow on both alkanes and alkenes as carbon sources, and was hypothesised to be an effective bioremediation agent for chlorinated aliphatic pollutants. In this study, the ability of NBB4 to biodegrade vinyl chloride (VC), cis-dichloroethene (cDCE) and 1,2-dichloroethane (DCA) was investigated under pure-culture conditions and in microcosms. Ethene-grown NBB4 cells were capable of biodegrading VC and cDCE, while ethane-grown cells could biodegrade cDCE and DCA. The stoichiometry of inorganic chloride release (1 mol/mol in each case) indicated that VC was completely dechlorinated, while cDCE and DCA were only partially dechlorinated, yielding chloroacetate in the case of DCA, and unknown metabolites in the case of cDCE. The apparent maximum specific activities (k) of whole cells against ethene, cDCE, ethane and DCA were 93 ± 4.6, 89 ± 18, 39 ± 5.5, and 4.8 ± 0.9 nmol/min/mg protein, respectively, while the substrate affinities (KS) of whole cells with the same substrates were 2.0 ± 0.15, 46 ± 11, 11 ± 0.33 and 4.0 ± 3.2 μM, respectively. In microcosms containing contaminated aquifer sediments and groundwater, NBB4 cells removed 85-95% of the pollutants (cDCE or DCA at 2 mM) within 24 h, and the cells remained viable for >1 month. Due to its favourable kinetic parameters, and robust survival and biodegradation activities, strain NBB4 is a promising candidate for bioremediation of chlorinated aliphatic pollutants.  相似文献   

17.
Soil column and serum bottle microcosm experiments were conducted to investigate the potential for in situ anaerobic bioremediation of trichloroethy lene (TCE) and dichloromethane (DCM) at the Pinellas site near Largo, Florida. Soil columns with continuous groundwater recycle were used to evaluate treatment with complex nutrients (casamino acids, methanol, lactate, sulfate); benzoate and sulfate; and methanol. The complex nutrients drove microbial dechlorination of TCE to ethene, whereas the benzoate/sulfate and methanol supported microbial dechlorination of TCE only to cis-1 ,2-dichloroethylene (cDCE). Microbial sulfate depletion in the benzoate/sulfate column allowed further dechlorination of cDCE to vinyl chloride. Serum bottle microcosms were used to investigate TCE dechlorination and DCM biodegradation in Pinellas soil slurries bioaugmented with liquid from the soil columns possessing TCE-dechlorinating activity and DCM biodegradation by indigenous microorganisms. Bioaugmented soil microcosms showed immediate TCE dechlorination in the microcosms with methanol or complex nutrients, but no dechlorination in the benzoate/sulfate microcosm. DCM biodegradation by indigenous microorganisms occurred in soil microcosms amended with either benzoate/sulfate or methanol, but not with complex nutrients. Bioaugmentation stimulated DCM biodegradation in both complex nutrient and methanol-amended microcosms, but appeared to inhibit DCM biodegradation in benzoate/sulfate-amended microcosms. TCE dechlorination occurred before DCM biodegradation in bioaugmented microcosms when both compounds were present.  相似文献   

18.
While many anaerobic microbial communities are capable of reductively dechlorinating tetrachloroethene (PCE) and trichloroethene (TCE) to dichloroethene (DCE), vinyl chloride (VC), and finally ethene, the accumulation of the highly toxic intermediates, cis-DCE (cDCE) and VC, presents a challenge for bioremediation processes. Members of the genus Dehalococcoides are apparently solely responsible for dechlorination beyond DCE, but isolates of Dehalococcoides each metabolize only a subset of PCE dechlorination intermediates and the interactions among distinct Dehalococcoides strains that result in complete dechlorination are not well understood. Here we apply quantitative PCR to 16S rRNA and reductase gene sequences to discriminate and track Dehalococcoides strains in a TCE enrichment derived from soil taken from the Alameda Naval Air Station (ANAS) using a four-gene plasmid standard. This standard increased experimental accuracy such that 16S rRNA and summed reductase gene copy numbers matched to within 10%. The ANAS culture was found to contain only a single Dehalococcoides 16S rRNA gene sequence, matching that of D. ethenogenes 195, but both the vcrA and tceA reductive dehalogenase genes. Quantities of these two genes in the enrichment summed to the quantity of the Dehalococcoides 16S rRNA gene. Further, between ANAS subcultures enriched on TCE, cDCE, or VC, the relative copy number of the two dehalogenases shifted 14-fold, indicating that the genes are present in two different Dehalococcoides strains. Comparison of cell yields in VC-, cDCE-, and TCE-enriched subcultures suggests that the tceA-containing strain is responsible for nearly all of the TCE and cDCE metabolism in ANAS, whereas the vcrA-containing strain is responsible for all of the VC metabolism.  相似文献   

19.
The discovery of Dehalococcoides mccartyi reducing perchloroethene and trichloroethene (TCE) to ethene was a key landmark for bioremediation applications at contaminated sites. D. mccartyi-containing cultures are typically grown in batch-fed reactors. On the other hand, continuous cultivation of these microorganisms has been described only at long hydraulic retention times (HRTs). We report the cultivation of a representative D. mccartyi-containing culture in continuous stirred-tank reactors (CSTRs) at a short, 3-d HRT, using TCE as the electron acceptor. We successfully operated 3-d HRT CSTRs for up to 120 days and observed sustained dechlorination of TCE at influent concentrations of 1 and 2 mM TCE to ≥97 % ethene, coupled to the production of 1012 D. mccartyi cells Lculture ?1. These outcomes were possible in part by using a medium with low bicarbonate concentrations (5 mM) to minimize the excessive proliferation of microorganisms that use bicarbonate as an electron acceptor and compete with D. mccartyi for H2. The maximum conversion rates for the CSTR-produced culture were 0.13?±?0.016, 0.06?±?0.018, and 0.02?±?0.007 mmol Cl? Lculture ?1 h?1, respectively, for TCE, cis-dichloroethene, and vinyl chloride. The CSTR operation described here provides the fastest laboratory cultivation rate of high-cell density Dehalococcoides cultures reported in the literature to date. This cultivation method provides a fundamental scientific platform for potential future operations of such a system at larger scales.  相似文献   

20.
A highly enriched culture that reductively dechlorinates trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC) to ethene without methanogenesis is described. The Dehalococcoides strain in this enrichment culture had a yield of (5.6 ± 1.4) × 108 16S rRNA gene copies/μmol of Cl when grown on VC and hydrogen. Unlike the other VC-degrading cultures described in the literature, strains VS and BAV1, this culture maintained the ability to grow on TCE with a yield of (3.6 ± 1.3) × 108 16S rRNA gene copies/μmol of Cl. The yields on an electron-equivalent basis measured for the culture grown on TCE and on VC were not significantly different, indicating that both substrates supported growth equally well. PCR followed by denaturing gradient gel electrophoresis, cloning, and phylogenetic analyses revealed that this culture contained one Dehalococcoides 16S rRNA gene sequence, designated KB-1/VC, that was identical (over 1,386 bp) to the sequences of previously described organisms FL2 and CBDB1. A second Dehalococcoides sequence found in separate KB-1 enrichment cultures maintained on cDCE, TCE, and tetrachloroethene was no longer present in the VC-H2 enrichment culture. This second Dehalococcoides sequence was identical to that of BAV1. As neither FL2 nor CBDB1 can dechlorinate VC to ethene in a growth-related fashion, it is clear that current 16S rRNA gene-based analyses do not provide sufficient information to distinguish between metabolically diverse members of the Dehalococcoides group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号