首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AIMS: The purpose of this study was to investigate the influence of co-substrates, such as glucose and cysteine, on the structure of microbial aggregates in anaerobic digesters treating oleate, a long-chain fatty acid (LCFA). METHODS AND RESULTS: Transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) were used to examine the structure of microbial aggregates. Fluorescence in situ hybridization (FISH) techniques were also used to characterize and localize the different trophic groups present in the aggregates. Oleate was found to inhibit the methanogenic activity and formation of granular biomass in digesters. The addition of co-substrates, such as glucose and cysteine either singly or in combination, increased the methanogenic activity and formation of granular biomass. Glucose was more effective than cysteine in reducing the inhibition by oleate on the methanogenic bacteria and in enhancing the formation of granules. CONCLUSIONS: The addition of nutrient substrate, such as glucose and cysteine could decrease the toxicity of LCFA on anaerobic granulation. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that the addition of other substrates might decrease the toxicity of LCFA on the granulation of biomass in anaerobic digesters and enhance methanogenic activity. A combination of TEM, CLSM and FISH techniques provides a better tool for visualizing microbial aggregates and for differentiating and localizing different microbial groups within these aggregates.  相似文献   

2.
An aggressive start-up strategy was used to initiate codigestion in two anaerobic, continuously mixed bench-top reactors at mesophilic (37 degrees C) and thermophilic (55 degrees C) conditions. The digesters were inoculated with mesophilic anaerobic sewage sludge and cattle manure and were fed a mixture of simulated municipal solid waste and biosolids in proportions that reflect U.S. production rates. The design organic loading rate was 3.1 kg volatile solids/m3/day and the retention time was 20 days. Ribosomal RNA-targeted oligonucleotide probes were used to determine the methanogenic community structure in the inocula and the digesters. Chemical analyses were performed to evaluate digester performance. The aggressive start-up strategy was successful for the thermophilic reactor, despite the use of a mesophilic inoculum. After a short start-up period (20 days), stable performance was observed with high gas production rates (1.52 m3/m3/day), high levels of methane in the biogas (59%), and substantial volatile solids (54%) and cellulose (58%) removals. In contrast, the mesophilic digester did not respond favorably to the start-up method. The concentrations of volatile fatty acids increased dramatically and pH control was difficult. After several weeks of operation, the mesophilic digester became more stable, but propionate levels remained very high. Methanogenic population dynamics correlated well with performance measures. Large fluctuations were observed in methanogenic population levels during the start-up period as volatile fatty acids accumulated and were subsequently consumed. Methanosaeta species were the most abundant methanogens in the inoculum, but their levels decreased rapidly as acetate built up. The increase in acetate levels was paralleled by an increase in Methanosarcina species abundance (up to 11.6 and 4.8% of total ribosomal RNA consisted of Methanosarcina species ribosomal RNA in mesophilic and thermophilic digesters, respectively). Methanobacteriaceae were the most abundant hydrogenotrophic methanogens in both digesters, but their levels were higher in the thermophilic digester.  相似文献   

3.
A meta-analysis of the microbial diversity observed in anaerobic digesters   总被引:2,自引:0,他引:2  
In this study, the collective microbial diversity in anaerobic digesters was examined using a meta-analysis approach. All 16S rRNA gene sequences recovered from anaerobic digesters available in public databases were retrieved and subjected to phylogenetic and statistical analyses. As of May 2010, 16,519 bacterial and 2869 archaeal sequences were found in GenBank. The bacterial sequences were assigned to 5926 operational taxonomic units (OTUs, based on ?97% sequence identity) representing 28 known bacterial phyla, with Proteobacteria (1590 OTUs), Firmicutes (1352 OTUs), Bacteroidetes (705 OTUs), and Chloroflexi (693 OTUs) being predominant. Archaeal sequences were assigned to 296 OTUs, primarily Methanosaeta and the uncharacterized WSA2 group. Nearly 60% of all sequences could not be classified to any established genus. Rarefaction analysis indicates that approximately 60% of bacterial and 90% of archaeal diversity in anaerobic digesters has been sampled. This analysis of the global bacterial and archaeal diversity in AD systems can guide future studies to further examine the microbial diversity involved in AD and development of comprehensive analytical tools.  相似文献   

4.
High activity levels and balanced anaerobic microbial communities are necessary to attain proper anaerobic digestion performance. Therefore, this work was focused on the kinetic performance and the microbial community structure of six full-scale anaerobic digesters and one lab-scale co-digester. Hydrolytic (0.6–3.5 g COD g?1 VSS d?1) and methanogenic (0.01–0.84 g COD g?1 VSS d?1) activities depended on the type of biomass, whereas no significant differences were observed among the acidogenic activities (1.5–2.2 g COD g?1 VSS d?1). In most cases, the higher the hydrolytic and the methanogenic activity, the higher the Bacteroidetes and Archaea percentages, respectively, in the biomasses. Hydrogenotrophic methanogenic activity was always higher than acetoclastic methanogenic activity, and the highest values were achieved in those biomasses with lower percentages of Methanosaeta. In sum, the combination of molecular tools with activity tests seems to be essential for a better characterization of anaerobic biomasses.  相似文献   

5.
A study of the performance and microbial communities of a continuous stirred tank reactor (CSTR) treating two-phases olive mill solid wastes (OMSW) was carried out at laboratory-scale. The reactor operated at a mesophilic temperature (35 degrees C) and an influent substrate concentration of 162 g total chemical oxygen demand (COD)L(-1) and 126 g volatile solids (VS)L(-1). The data analyzed in this work corresponded to a range of organic loading rates (OLR) of between 0.75 and 3.00 g CODL(-1)d(-1), getting removal efficiencies in the range of 97.0-95.6%. Methane production rate increased from 0.164 to 0.659 L CH(4)L(reactor)(-1)d(-1) when the OLR increased within the tested range. Methane yield coefficients were 0.225 L CH(4)g(-1) COD removed and 0.290 L CH(4)g(-1) VS removed and were virtually independent of the OLR applied. A molecular characterization of the microbial communities involved in the process was also accomplished. Molecular identification of microbial species was performed by PCR amplification of 16S ribosomal RNA genes, denaturing gradient gel electrophoresis (DGGE), cloning and sequencing. Among the predominant microorganisms in the bioreactor, the Firmicutes (mainly represented by Clostridiales) were the most abundant group, followed by the Chloroflexi and the Gamma-Proteobacteria (Pseudomonas species as the major representative). Other bacterial groups detected in the bioreactor were the Actinobacteria, Bacteroidetes and Deferribacteres. Among the Archaea, the methanogen Methanosaeta concilii was the most representative species.  相似文献   

6.
The aim of this paper was to analyze the biomethanization process of food waste (FW) from a university campus restaurant in six reactors with three different total solid percentages (20%, 25% and 30% TS) and two different inoculum percentages (20-30% of mesophilic sludge). The experimental procedure was programmed to select the initial performance parameters (total solid and inoculum contents) in a lab-reactor with V: 1100mL and, later, to validate the optimal parameters in a lab-scale batch reactor with V: 5000mL. The best performance for food waste biodegradation and methane generation was the reactor with 20% of total solid and 30% of inoculum: give rise to an acclimation stage with acidogenic/acetogenic activity between 20 and 60 days and methane yield of 0.49L CH4/g VS. Also, lab-scale batch reactor (V: 5000mL) exhibit the classical waste decomposition pattern and the process was completed with high values of methane yield (0.22L CH4/g VS). Finally, a protocol was proposed to enhance the start-up phase for dry thermophilic anaerobic digestion of food waste.  相似文献   

7.
8.
The development of a pulse-driven loop reactor (PDLR), a pulsed anaerobic filter (PAF) and a pulsed anaerobic baffled reactor (PABR) is described. In an anaerobic PDLR internal circulation is achieved by a specially designed pulse-nozzle. In a PAF and PABR an oscillation is superimposed onto the liquid content of the fermenters by means of a pulse pump without any moving devices in the reactors. Pulsed digesters faciliate degassing, avoid reactor clogging as well as short-circuiting and allow a variety of packed-bed to fluidized-bed operations. Anaerobic fermentation of acetic acid and distillery slops in pulsed digesters on a laboratory scale shows that hydrodynamic stress caused by pulsation is well compatible to degrading bacteria.List of Symbols PAF Pulsed Anaerobic Filter - PDLR Pulse-Driven Loop Reactor - PABR Pulsed Anaerobic Baffled Reactor  相似文献   

9.
A three-dimensional CFD model incorporating the rheological properties of sludge was developed and applied to quantify mixing in a full-scale anaerobic digester. The results of the model were found to be in good agreement with experimental tracer response curve. In order to predict the dynamics of mixing, a new parameter, UI (uniformity index) was defined. The visual patterns of tracer mixing in simulation were well reflected in the dynamic variation in the value of UI. The developed model and methods were applied to determine the required time for complete mixing in a full-scale digester at different solid concentrations. This information on mixing time is considered to be useful in optimizing the feeding cycles for better digester performance.  相似文献   

10.
Expert system for control of anaerobic digesters   总被引:1,自引:0,他引:1  
Continuous anaerobic digesters are systems that present challenging control problems including the possibility that an unmeasured disturbance can change the sign of the steady-state process gain. An expert system is developed that recognizes changes in the sign of process gain and implements appropriate control laws. The sole on-line measured variable is the methane production rate, and the manipulated input is the dilution rate. The expert system changes the dilution rate according to one of four possible strategies: a constrained conventional set-point control law, a constant yield control law (CYCL) that is nearly optimal for the most common cause of change in the sign of the process gain, batch operation, or constant dilution rate. The algorithm uses a t test for determining when to switch to the CYCL and returns to the conventional set-point control law with bumpless transfer. The expert system has proved successful in several experimental tests: severe overload; mild, moderate, and severe underload; and addition of phenol in low and high levels. Phenol is an inhibitor that in high concentrations changes the sign of the process gain.  相似文献   

11.
 The influence of four different granulation precursors, syntroph-enriched methanogenic consortia, Methanosaeta-enriched, Methanosarcina-enriched nuclei and acidogenic flocs, on the time course of complex granule development and the lag time for start-up was investigated in four upflow anaerobic sludge-bed and filter reactors. Although the operational conditions allowed the maintenance of the same specific growth rate of biomass in the four reactors, granulation proceeded rapidly with syntroph/methanogenic consortia, Methanosaeta and Methanosarcina nuclei. However, granulation was significantly retarded when acidogenic flocs were used as precursors. The granule mean Sauter diameter increased rapidly in the reactor inoculated with syntroph/methanogenic consortia, Methanosaeta and Methanosarcina nuclei and reached, at the end of the experiment, 3.1, 2.7 and 2.4 mm compared to 1.1 mm in that inoculated with acidogenic flocs. This corresponded to a rate of granule size increase of 31, 21, 18 μm/day in syntroph/methanogenic consortia, Methanosaeta and Methanosarcina nuclei, respectively, compared to 7 μm/day in acidogenic flocs. Biomass specific activities (i.e. acidogenic, syntrophic and methanogenic activities) increased stepwise in all reactors with time, especially in those inoculated with syntroph/methanogenic consortia and Methanosaeta nuclei. From these results it appears that syntrophs and Methanosaeta spp. play an important role in the anaerobic granulation process. Received: 25 January 1996 / Received revision: 3 September 1996 / Accepted: 13 September 1996  相似文献   

12.
13.
14.
Western Australian bauxite deposits are naturally associated with high amounts of humic and fulvic materials that co-digest during Bayer processing. Sodium oxalate remains soluble and can co-precipitate with aluminium hydroxide unless it is removed. Removal of sodium oxalate requires a secondary crystallisation step followed by storage. Bioreactors treating oxalate wastes have been developed as economically and environmentally viable treatment alternatives but the microbial ecology and physiology of these treatment processes are poorly understood. Analysis of samples obtained from two pilot-scale moving bed biofilm reactors (MBBRs) and one aerobic suspended growth bioreactor (ASGB) using polymerase chain reaction- denaturing gradient gel electrophoresis of 16S rRNA genes showed that members of the α-, β- and γ-Proteobacteria subgroups were prominent in all three processes. Despite differing operating conditions, the composition of the microbial communities in the three reactors was conserved. MBBR2 was the only configuration that showed complete degradation of oxalate from the influent and the ASGB had the highest degradation rate of all three configurations. Several strains of the genus Halomonas were isolated from the bioreactors and their morphology and physiology was also determined.  相似文献   

15.
This paper describes the improved effluent control of industrial anaerobic digestion treatment systems. Previous research has shown the possibility of applying a model-based adaptive control technique to these processes. This paper reviews this technique and shows that improved controllability can be obtained by a modification to the existing algorithm, based on a new control technique known as Generic Model Control, that simplifies and improves the robustness of the control algorithm.  相似文献   

16.
17.
Anaerobic digestion treatments have often been used for biological stabilization of solid wastes. These treatment processes generate biogas which can be used as a renewable energy sources. Recently, anaerobic digestion of solid wastes has attracted more interest because of current environmental problems, most especially those concerned with global warming. Thus, laboratory-scale research on this area has increased significantly. In this review paper, the summary of the most recent research activities covering production of biogas from solid wastes according to its origin via various anaerobic technologies was presented.  相似文献   

18.
Phase-separated two-stage anaerobic process was examined and evaluated using artificial organic solid waste in laboratory scale. Acidogenic process, which was combined with subsequent methanogenic process using packed-bed reactor, was operated emphasizing on either hydrogen production, or solublizing efficiency of solid materials. In either effluent from hydrogenogenic, or solublizing operation, maximum allowable OLR achieved at methanogenesis was higher than the single methanogenic process. Hydrogenogenic operation was more suitable to combine methanogenic process than solublizing operation, since retention time of hydrogenogenic operation was much shorter than the solublizing operation, obtaining almost the same levels of overall removal efficiency in both COD and VSS. The combination of hydrogenogenic operation in acidogenic process and methanogenic process produced approximately 442mmoll-reactor(1)days(-1) of methane and 199mmoll-reactor(1)days(-1) of hydrogen at 25h of total retention time indicating 82% of COD removal with 96% of VSS decomposition.  相似文献   

19.
Applied Microbiology and Biotechnology - The methanogenic communities in alternative inocula and their potential to increase CH4 production in mesophilic and psychrophilic dairy manure-based...  相似文献   

20.
Seasonal changes in microbial populations and the activities of cellulolytic enzymes were investigated during the composting of municipal solid wastes at Damietta compost plant, Egypt. The changes in temperature, pH and carbon/nitrogen (C/N) ratio were also monitored. The results obtained showed that the temperatures of the windrows in all seasons reached the maximum after 3 weeks of composting and then decreased by the end of the composting period (35 days), but did not reach ambient temperature. Marked changes in pH values of the composts in all seasons were found, but generally, the pH was near neutrality. Significant increases in the size of the microbial populations were obtained in autumn and spring seasons compared to summer and winter seasons. The activities of cellulases were also higher in the autumn and spring seasons than in the summer and winter seasons. The decrease in C/N ratio in autumn and spring was higher than in summer and winter. It was evident that the degradation of organic matter increased by an increase in the microflora and its cellulolytic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号