首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tocopherols are amphipathic antioxidant synthesized by photosynthetic organisms, which forms the essential component in the human diet. To increase the α-tocopherol content in tobacco, two approaches have been attempted in this study: (1) transgenic approach, by constitutive overexpression of the genes encoding Arabidopsis homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) through Agrobacterium-mediated genetic transformation; (2) non-transgenic approach, by supplementation of intermediates/precursors of vitamin E biosynthesis like tyrosine, p-hydroxyphenyl pyruvic acid, homogentisic acid (HGA) and phytol in different concentrations and combinations using cell suspension culture system. Molecular analyses by PCR, RT-PCR and Southern hybridization were carried out to confirm the HPT and TC expressing transgenic tobacco lines. The α-tocopherol content in transgenic plants expressing HPT and TC increase by 5.5 and 4.1, respectively, over the wild type. These results indicate that, HPT and TC activities are important in tobacco plants for enhancing the vitamin E content. In the second approach, the supplementation of precursor in cell suspension cultures, i.e., combination of 150 μM HGA + 100 μM phytol, showed the maximum enhancement of α-tocopherol, i.e., 36-fold. These findings clearly imply that enhancement of α-tocopherol levels in tobacco system is possible, if we could modulate the vitamin E metabolic pathway. This is a very useful finding for the large-scale production of natural Vitamin E. Among the two systems tested, cell suspension culture-based system is ideal over the transgenic technology due to its efficiency and no biosafety concerns.  相似文献   

2.
Plant Cell, Tissue and Organ Culture (PCTOC) - A high yield of isolated protoplasts and efficient regeneration protocols are prerequisites for successful development of somatic hybrids. In the...  相似文献   

3.
Recombinant human α1-antitrypsin (rAAT) was expressed and secreted from transgenic rice cell suspension cultures in its biologically active form. This was accomplished by transforming rice callus tissues with an expression vector, p3D-AAT, containing the cDNA for mature human AAT protein. Regulated expression and secretion of rAAT from this vector was achieved using the promoter, signal peptide, and terminator from a rice α-amylase gene Amy3D. The Amy3D gene of rice is tightly controlled by simple sugars such as sucrose. It was possible, therefore, to induce the expression of the rAAT by removing sucrose from the cultured media or by allowing the rice suspension cells to deplete sucrose catabolically. Although transgenic rice cell produced a heterogeneous population of the rAAT molecules, they had the same N-terminal amino acids as those found in serum-derived (native) AAT from humans. This result indicates that the rice signal peptidase recognizes and cleaves the novel sequence between the Amy3D signal peptide and the first amino acid of the mature human AAT. The highest molecular weight band seen on Western blots (AAT top band) was found to have the correct C-terminal amino acid sequence and normal elastase binding activity. Staining with biotin-concanavalin A and avidin horseradish peroxidase confirmed the glycosylation of the rAAT, albeit to a lesser extent than that observed with native AAT. The rAAT, purified by immunoaffinity chromatography, had the same association rate constant for porcine pancreatic elastase as the native AAT. Thermostability studies revealed that the rAAT and native AAT decayed at the same rate, suggesting that the rAAT is correctly folded. The productivity of rice suspension cells expressing rAAT was 4.6–5.7 mg/g dry cell. Taken together, these results support the use of rice cell culture as a promising new expression system for production of biologically active recombinant proteins. Received: 18 January 1999 / Received revision: 26 April 1999 / Accepted: 1 May 1999  相似文献   

4.
Sunflower anthers placed on solid medium developed calli and embryos after 12 days. Embryogenesis was improved by the addition of 0.1% polyvinylpyrrolidone (PVP) that alleviated anther and medium browning. As in other species, genotypic variability was an important parameter in the anther response and a medium genotype interaction was suggested with a different PVP effect depending on the genotype. Embryo germination was largely increased by the successive use of germination media with decreasing sucrose concentrations (10%6%3%). Histological examination of the anthers during the first ten days of culture showed that, under our conditions, the embryos were of somatic origin, arising directly from the anther wall on the outside or inside of the anther loculus, or indirectly from proliferating anther wall- or connective tissue-derived callus. Finally, the ploidy status of 78 embryo-derived plants was determined by Feulgen stain or flow cytometry: all plants were diploid (2n=34).Abbreviations PVP polyvinylpyrrolidone  相似文献   

5.
Summary In a continuous culture of Bacillus caldolyticus strain SP, which requires maltose as an inducer for production of -amylase in batch culture, a predominant mutant strain M1 which produced high amounts of -amylase in the absence of maltose in batch culture, developed. The change of cell population from strain SP to strain M1 in maltose-casitone medium was linear with time in the transient state after the change from batch to continuous culture at a dilution rate of 0.17 h-1, and was completed in about 11 generations of bacterial growth. The dilution rate effect of continuous culture on -amylase activity was almost the same with both strains SP and M1. The maximum -amylase activity of 380 units/ml was observed at an intermediate dilution rate that was 11.5 times higher than -amylase activity at the end of a batch culture using the same medium. It was deduced that the enhancement of -amylase production in continuous culture was attributed partly to the predominant growth of a mutant strain with higher -amylase productivity.  相似文献   

6.
Elevated concentrations of salts in soil and water represent abiotic stresses. It considerably restricts plant productivity. However, the use of alpha-tocopherol (α-toc) as foliar can overcome this problem. It can improve crop productivity grown under salinity stress. Limited literature is documented regarding its optimum foliar application on sunflower. That’s why the need for the time is to optimize α-toc foliar application rates for sunflower cultivated in salt-affected soil. A pot experiment was performed to select a better α-toc foliar application for mitigation of salt stress in different sunflower cultivars FH (572 and 621). There were 2 levels of salts, i.e., control (no salt stress) and sodium chloride (120 mM) and four α-toc foliar application (0, 100, 200, and 300 mg L?1). Results showed that foliar application of 100 mg/L- α-toc triggered the remarkable increase in fresh shoot weight, fresh root weight, shoot, and root lengths under salinity stress in FH-572 and FH-621 over 0 mg/L- α-toc. Foliar application of 200 mg/L- α-toc was most effective for improvement in chlorophyll a, chlorophyll b, total chlorophyll and carotenoids compared to 0 mg/L- α-toc. Furthermore, an increase in A was noted in FH-572 (17%) and FH-621 (22%) with α-toc (300 mg L?1) application under saline condition. In conclusion, the 100 and 200 mg/L- α-toc are the best application rates for the improvement in sunflower FH-572 and FH-621 growth, chlorophyll contents and gas exchange attributes. Further investigations are needed to select a better foliar application rate between 100 and 200 mg/L- α-toc at the field level under the different agro-climatic zone and soil types.  相似文献   

7.
An efficient protocol for plant regeneration from leaves of the interspecific hybrid Helianthus eggertii Small. × Helianthus annuus L. was developed. The regeneration capacity of the first backcross progeny is reported. Leaves from the F1 interspecific hybrid were cultured on Murashige and Skoog basal media (MS) supplemented with -naphthalenacetic acid (NAA), N 6-benzyladenine (BA), AgNO3, KNO3, casein hydrolysate and adenine sulfate. Embryo-like structures and/or shoots regeneration were observed on most of the tested media. The best results were obtained on media with a higher concentration of cytokinin (8.8 M BA) and lower concentration of auxin (1.08 M NAA). The addition of casein hydrolysate in the media increased the regeneration efficiency. Plant regeneration was achieved via somatic embryogenesis and direct organogenesis. The regeneration potential of leaf, stem and root explants of eighteen first backcross lines was studied. Most of the tested lines were highly regenerable and some of them had DNA content closely related to that of Helianthus annuus L.  相似文献   

8.
Previously prepared fluorescent derivatives of α-tocopherol have shown tremendous utility in both in vitro exploration of the mechanism of ligand transfer by the α-tocopherol transfer protein (α-TTP) and the intracellular transport of α-tocopherol in cells and tissues. We report here the synthesis of a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) containing α-tocopherol analog having extended conjugation with an alkenyl thiophene group that extends the absorption and emission maxima to longer wavelengths (λex = 571 nm and λem = 583 nm). The final fluorophore thienyl-ene-BODIPY-α-tocopherol, 2, binds to recombinant human α-TTP with a Kd = 8.7 ± 1.1 nM and is a suitable probe for monitoring the secretion of α-tocopherol from cultured Mcf7#189 cells.  相似文献   

9.
10.
The objectives were to evaluate postthaw sperm quality and the response to an inducer of in vitro sperm capacitation in boar sperm, cryopreserved with (T) or without (C) α-tocopherol. Boar sperm frozen in 0.2-mL pellets were thawed and washed (W) or selected by three methods: Percoll discontinuous gradient (PS) or Sephadex (Sigma-Aldrich, St. Louis, MO, USA) (neutral [S] or with ion exchange [S+IO] columns). All separation methods enhanced sperm motility, plasma membrane integrity, and functionality and acrosome integrity for both C and T samples (P < 0.05). The best results were obtained with S and ionic Sephadex column. There was a decrease (P < 0.05) in capacitation-like changes in C samples separated with Sephadex (W: 19 ± 0.9%, PS: 22 ± 2.5%, S: 17 ± 1.2%, and S+IO: 17 ± 2.0%). Cryopreservation with α-tocopherol decreased (P < 0.05) the percentage of cryocapacitated sperm (W: 14 ± 0.7%, PS: 14 ± 1.0%, S: 13 ± 1.0%, and S+IO: 14 ± 0.9%) compared with C samples, without differences among selection techniques. Freezing with α-tocopherol and subsequent selection decreased lipid peroxidation (W: 20.79 ± 2.64 nmol thiobarbituric acid reactive substances (TBARS)/108 sperm; PS: 13.15 ± 2.39 nmol TBARS/108 sperm; S: 13.20 ± 2.18 nmol TBARS/108 sperm, and S+IO: 13.62 ± 2.76 nmol TBARS/108 sperm), with respect to washed and selected C samples (W: 37.69 ± 5.34 nmol TBARS/108 sperm, PS: 25.61 ± 5.85 nmol TBARS/108 sperm, S: 19.16 ± 3.28 nmol TBARS/108 sperm, and S+IO: 22.16 ± 6.09 nmol TBARS/108 sperm). In vitro capacitation levels were significantly higher for neutral Sephadex-selected T samples in comparison with C and unselected samples. These results were confirmed with a follicular fluid-induced acrosome reaction. In conclusion, cryopreserved sperm with α-tocopherol and subsequent Sephadex selection, improved postthaw quality and functionality of boar sperm, which could be useful for assisted reproductive techniques.  相似文献   

11.
Leaf and stem segments of Gomphrena officinalis originated from aseptically grown seedlings were used to initiate cultures. Callus production was obtained on gelled Murashige & Skoog medium supplemented with 6-benzylaminopurine alone (1.0, 5.0 or 10.0 mgl-1) or combined with -naphthalene acetic acid (0.1, 0.5 and 1.0 mgl-1) after 10 to 15 days of culture, and can be transferred to fresh medium every 30 days. The combinations of 5.0 or 10.0 mgl-1 of 6-benzylaminopurine with 0.1 mgl-1 of -naphthalene acetic acid were found to be the best for shoot regeneration. Adventitious shoot formation occurred after 50 to 60 days of culture in leaf and internode stem explants. Nodal segments developed actively growing lateral buds after 30 days of culture. Gelled Murashige & Skoog medium containing 10 mgl-1 of indole-3-butyric acid was considered optimal for the rooting of shoots. Rooted plants transferred to potting soil could be successfully established.Abbreviations BA 6-benzylaminopurine - IAA indole-3-acetic acid - IBA indole-3-butyric acid - MS Murashige & Skoog - NAA -naphthalene acetic acid  相似文献   

12.
Cyclotides are naturally occurring mini-proteins that have a cyclic backbone and a knotted arrangement of three disulfide bonds. They are remarkably stable and have a diverse range of therapeutically useful biological activities, including antimicrobial and anti-HIV activity, although their natural function appears to be plant defence agents. Cyclotides are amenable to chemical synthesis; however currently most bioactivity studies have involved the use of peptides extracted from plants. Plant cell culture technology shows promise towards the goal of producing therapeutically active cyclotides in qualities and quantities required for drug development.  相似文献   

13.
α-Amylase activities of Aspergillus oryzae grown on dextrin or indigestible dextrin were 7·8 and 27·7 U ml−1, respectively. Glucoamylase activities of the cultures grown on dextrin or indigestible dextrin were 5·4 and 301 mU ml−1, respectively. The specific glucoamylase production rate in indigestible dextrin batch culture reached 1·35 U g DW−1 h−1. In contrast, biomass concentration of A. oryzae in indigestible dextrin culture was 35% of that in dextrin culture. Thus, the culture method using indigestible dextrin has the potential to improve amylolytic enzyme production and fungal fermentation broth rheology.  相似文献   

14.
Human interferon α2b gene was cloned in the methylotrophic yeast Pichia pastoris under the control of the AOX1 methanol inducible promoter. To optimise the volumetric productivity, we performed different fed-batch studies in a 5-L bioreactor. We demonstrated that hIFNα2b was highly sensitive to proteases activity during high cell density culture. The target protein was totally degraded 20h after the start of methanol feeding. Replacement of culture medium with fresh medium after glycerol fed-batch culture mode as well as medium enrichment with casamino acids at 0.1% and EDTA at 10mM, had significantly improved hIFNα2b expression and prevented its proteolysis. Moreover, to further improve hIFNα2b production, three different methanol fed-batch strategies had been assayed in high cell density culture. The optimal strategy resulted in a production level of 600mg/l while residual methanol level was maintained below 2g/l. Clarification of culture supernatant through a 0.1μm hollow fiber cartridge showed that almost 95% of the target protein was retained within the retentate. Triton X-100 or NaCl addition to the culture harvest before microfiltration had improved the recovery yield of this step. rhIFNα2b was further purified by cation exchange on Sepharose SP resin followed by gel permeation on Sephacryl S-100. The overall yield of the process was equal to 30% (180mg/l). The biological activity of the purified protein based on the antiviral activity test was 1.5×10(8)IU/mg. The optimised process has a great potential for large scale production of fully functional hIFNα2b.  相似文献   

15.
Using Response Surface Methodology, carbon and nitrogen sources and agitation speed for cultivation of Aspergillus sojae expressing the α-galactosidase gene, aglB of Aspergillus fumigatus IMI 385708 were optimized. Compared to cultivation in modified YpSs medium, cultivation in 250-mL Erlenmeyer flasks agitated at 276 rpm and containing 100 mL of optimized medium consisting of 10.5% molasses (w/v) and 1.3% NH4NO3 (w/v), 0.1% K2HPO4, and 0.005% MgSO4·7H2O achieved a 4-fold increase in α-galactosidase production (10.4 U/mL). These results suggest the feasibility of industrial large scale production of an α-galactosidase known to be valuable in galactomannan modification.  相似文献   

16.
Methods of regulating the ratio of photoautotrophic to heterotrophic growth rates in photoheterotrophic culture of Euglena gracilis were investigated. In normal photoheterotrophic culture (in the presence of excess organic carbon), the cells grew mainly by organic carbon assimilation (heterotrophic metabolism). The relative contribution of photoautotrophic metabolism increased with the increase in the light supply coefficient, the increase in the CO2 concentration in the aeration gas and the decrease in the feed rate of organic carbon source. However, limiting the organic carbon supply was the most effective method of shifting the metabolic balance to the photoautotrophic side. In the presence of excess organic carbon source, the -tocopherol contents of the cells in photoheterotrophic culture were low even when the light supply coefficient and CO2 concentration in the aeration gas were high. By limiting the organic carbon supply to the photoheterotrophic culture, the intracellular content of -tocopherol increased to the same level as those obtained in photoautotrophic cultures.  相似文献   

17.
A strong tendency is currently emerging to remove not only serum but also any product of animal origin from animal cell culture media during production of recombinant proteins. This should facilitate downstream processing and improve biosafety. One way consists in the fortification of protein-free nutritive media with plant protein hydrolysates. To investigate the effects of plant peptones on mammalian cell cultivation and productivity, CHO 320 cells, a clone of CHO K1 cells genetically modified to secrete human interferon-gamma (IFN-gamma), were first adapted to cultivation in suspension in a protein-free medium. Both cell growth and IFN-gamma secretion were found to be equivalent to those reached in serum-containing medium. Eight plant peptones, selected on the basis of their content in free amino acids and oligopeptides, as well as molecular weight distribution of oligopeptides, were tested for their ability to improve culture parameters. These were improved in the presence of three peptones, all having an important fraction of oligopeptides ranging from 1 to 10 kDa and a small proportion of peptides higher than 10 kDa. These peptones do not seem to add significantly to the nutritive potential to basal protein-free nutritive medium. Nevertheless, supplementation of an oligopeptide-enriched wheat peptone improved cell growth by up to 30% and IFN-gamma production by up to 60% in shake-flask experiments. These results suggest that the use of plant peptones with potential growth factor-like or antiapoptotic bioactivities could improve mammalian cell cultivation in protein-free media while increasing the product biosafety.  相似文献   

18.
The reaction conditions of galactose oxidase-catalyzed, targeted C-6 oxidation of galactose derivatives were optimized for aldehyde production and to minimize the formation of secondary products. Galactose oxidase, produced in transgenic Pichia pastoris carrying the galactose oxidase gene from Fusarium spp., was used as catalyst, methyl α-d-galactopyranoside as substrate, and reaction medium, temperature, concentration, and combinations of galactose oxidase, catalase, and horseradish peroxidase were used as variables. The reactions were followed by 1H NMR spectroscopy and the main products isolated, characterized, and identified. An optimal combination of all the three enzymes gave aldehyde (methyl α-d-galacto-hexodialdo-1,5-pyranoside) in approximately 90% yield with a substrate concentration of 70 mM in water at 4 °C using air as oxygen source. Oxygen flushing of the reaction mixture was not necessary. The aldehyde existed as a hydrate in water. The main secondary products, a uronic acid (methyl α-d-galactopyranosiduronic acid) and an α,β-unsaturated aldehyde (methyl 4-deoxy-α-d-threo-hex-4-enodialdo-1,5-pyranoside), were observed for the first time to form in parallel. Formation of uronic acid seemed to be the result of impurities in the galactose oxidase preparation. 1H and 13C NMR data of the products are reported for the α,β-unsaturated aldehyde for the first time, and chemical shifts in DMSO-d6 for all the products for the first time. Oxidation of d-raffinose (α-d-galactopyranosyl-(1-6)-α-d-glucopyranosyl-(1-2)-β-d-fructofuranoside) in the same optimum conditions also proceeded well, resulting in approximately 90% yield of the corresponding aldehyde.  相似文献   

19.
The phytochemical analysis of the ethanolic extract of branches of Cotoneaster horizontalis, Decne revealed the presence of: β-carotene, ascorbic acid and less amounts of α-tocopherol and amygdalin (vitamin B17) in proportions of: 2,500, 70, 0.093, 0.334 mg 100 g?1, respectively. Acute oral toxicity test revealed its safety profile. In vitro study revealed its good 2, 2-diphenyl-1-picrylhydrazyl radical scavenging and anticancer activities. Invivo study, simultaneous administration of this extract at a dose of 100 or 200 mg kg?1 body weight for 4 weeks, exhibited a significant protection in a dose-dependant manner against hepatotoxicity induced by repeated dose of acetaminophen (1 g kg?1 body weight day?1, p.o.) by preserving the liver function parameters, hepatic redox state and serum lipid profile near the healthy levels. Consequently, in vitro culture was carried out on full or half strength of Murashige and Skoog medium supplemented with different concentrations of benzyl amino purine or kinetin provided shootlets production; different concentrations of 2,4-dichlorophenoxy acetic acid and naphthalene acetic acid showed an increase of callus. Determination of α-tocopherol and amygdalin in different shootlets and callus extracts showed a pronounced increases up to 30.62 and 3.69 mg 100 g?1 in shootlet extract, respectively as well as 26.61 and 12.71 mg 100 g?1 in callus extract, respectively, as compared with those of the mother plant (0.76 and 0.11 mg 100 g?1 extract, respectively).  相似文献   

20.
The production of -amylase (-1,4-glucan 4-glucanohydrolase; EC. 3.2.1.1) by a strain of Bacillus stearothermophilus isolated from leaf litter was investigated in a tryptone-maltose medium at 55°C in batch and chemostat culture. Amylase production was growth-limited and restricted to the exponential phase in batch culture. The enzyme yield was reduced by 40% when the culture pH was maintained at pH 7.2. Amylase production in chemostat culture was influenced by the growth rate throughout the dilution rate range used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号