首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review will first recall the phenomena of “cortical inheritance” observed and genetically demonstrated in Paramecium 40 years ago, and later in other ciliates (Tetrahymena, Oxytricha, Paraurostyla), and will analyze the deduced concept of “cytotaxis” or “structural memory.” The significance of these phenomena, all related (but not strictly restricted) to the properties of ciliary basal bodies and their mode of duplication, will be interpreted in the light of present knowledge on the mechanism and control of basal body/centriole duplication. Then other phenomena described in a variety of organisms will be analyzed or mentioned which show the relevance of the concept of cytotaxis to other cellular processes, mainly (1) cytoskeleton assembly and organization with examples on ciliates, trypanosome, mammalian cells and plants, and (2) transmission of polarities with examples on yeast, trypanosome and metazoa. Finally, I will discuss some aspects of this particular type of non-DNA inheritance: (1) why so few documented examples if structural memory is a basic parameter in cell heredity, and (2) how are these phenomena (which all rely on protein/protein interactions, and imply a formatting role of preexisting proteinic complexes on neo-formed proteins and their assembly) related to prions?Key words: Paramecium, basal-body, centriole, basal-body duplication, cell polarity, structural inheritance, cytotaxis, cell memory, epigenetics  相似文献   

2.
Centrins, small calcium binding EF-hand proteins, function in the duplication of a variety of microtubule organizing centers. These include centrioles in humans, basal bodies in green algae, and spindle pole bodies in yeast. The ciliate Tetrahymena thermophila contains at least four centrin genes as determined by sequence homology, and these have distinct localization and expression patterns. CEN1's role at the basal body was examined more closely. The Cen1 protein localizes primarily to two locations: one is the site at the base of the basal body where duplication is initiated. The other is the transition zone between the basal body and axoneme. CEN1 is an essential gene, the deletion of which results in the loss of basal bodies, which is likely due to defects in both basal body duplication and basal body maintenance. Analysis of the three other centrins indicates that two of them function at microtubule-rich structures unique to ciliates, whereas the fourth is not expressed under conditions examined in this study, although when artificially expressed it localizes to basal bodies. This study provides evidence that in addition to its previously known function in the duplication of basal bodies, centrin is also important for the integrity of these organelles.  相似文献   

3.
Spindle pole bodies, basal bodies and centrosomes are morphologically quite different structures that nevertheless perform similar microtubule-organizing functions in diverse cell types. The recent discoveries that both centrins and gamma-tubulin are common components of these structures suggest a molecular basis for their common functions. The role of centrins is just beginning to be investigated. These filament-associated proteins bind Ca2+. The filaments contract at least in certain circumstances by an ATP-independent mechanism. However, yeast centrin is clearly involved in the duplication of the spindle pole body. A common molecular mechanism may underlie these two apparently different functions.  相似文献   

4.
5.
The long-standing interest in centrioles and basal bodies stems from the evolutionary conservation of their structural design and from their dual mode of assembly (templated versus de novo), revealed by electron microscopic studies nearly four decades ago and unique for a subcellular organelle. Molecular dissection of the assembly pathway during the past few years has recently progressed, essentially through direct and reverse genetic approaches. These studies revealed essential roles for centrins and the gamma-, delta-, epsilon - and eta-tubulins in assembly or as specific signals for centriole duplication. Identification of further components of basal bodies and centrioles might help to unravel the two assembly pathways and their regulation.  相似文献   

6.
Centrins are ubiquitous cytoskeletal proteins that are generally associated with the centrosome and form large cytoskeletal networks in protists. To obtain more data on the respective role of different centrin proteins, we studied their distribution and behavior in one ciliate species, Paraurostyla weissei, using specific antibodies. In this species, only two major proteins of 21 and 24 kDa corresponding to centrins, were identified by 1D and 2D electrophoresis. Immunofluorescence analysis showed that these two proteins displayed non-overlapping localization in the interphase cell and during morphogenesis. Both centrin proteins localize on the fibrous network linking the oral basal bodies in the interphase cell and in the form of marginal dots, which correspond to the proximal ends of the striated rootlets; the 21 kDa centrin was also detected within the basal bodies, whereas the 24 kDa centrin allowed identifying new structures, the frontal dashes. During morphogenesis, the 21 kDa centrin locates at the basal bodies, while the 24 kDa centrin is detected along the striated rootlets and in close association with the basal bodies pairs. These data are discussed in terms of the potential roles of the two centrins in different cellular functions.  相似文献   

7.
A role for centrin 3 in centrosome reproduction   总被引:9,自引:0,他引:9       下载免费PDF全文
Centrosome reproduction by duplication is essential for the bipolarity of cell division, but the molecular basis of this process is still unknown. Mutations in Saccharomyces cerevisiae CDC31 gene prevent the duplication of the spindle pole body (SPB). The product of this gene belongs to the calmodulin super-family and is concentrated at the half bridge of the SPB. We present a functional analysis of HsCEN3, a human centrin gene closely related to the CDC31 gene. Transient overexpression of wild-type or mutant forms of HsCen3p in human cells demonstrates that centriole localization depends on a functional fourth EF-hand, but does not produce mitotic phenotype. However, injection of recombinant HsCen3p or of RNA encoding HsCen3p in one blastomere of two-cell stage Xenopus laevis embryos resulted in undercleavage and inhibition of centrosome duplication. Furthermore, HsCEN3 does not complement mutations or deletion of CDC31 in S. cerevisiae, but specifically blocks SPB duplication, indicating that the human protein acts as a dominant negative mutant of CDC31. Several lines of evidence indicate that HsCen3p acts by titrating Cdc31p-binding protein(s). Our results demonstrate that, in spite of the large differences in centrosome structure among widely divergent species, the centrosome pathway of reproduction is conserved.  相似文献   

8.
kin241 is a monogenic nuclear recessive mutation producing highly pleiotropic effects on cell size and shape, generation time, thermosensitivity, nuclear reorganization and cortical organization. We have analyzed the nature of the cortical disorders and their development during division, using various specific antibodies labelling either one of the cortical cytoskeleton components, as was previously done for analysis of cortical pattern formation in the wild type. Several abnormalities in basal body properties were consistently observed, although with a variable frequency: extra microtubules in either the triplets or in the lumen; nucleation of a second kinetodesmal fiber; abnormal orientation of the newly formed basal body with respect to the mother one. The latter effect seems to account for the major observed cortical disorders (reversal, intercalation of supplementary ciliary rows). The second major effect of the mutation concerns the spatiotemporal map of cortical reorganization during division. Excess basal body proliferation occurs and is correlated with modified boundaries of some of the cortical domains identified in the wild type on the basis of their basal body duplication pattern. This is the first mutant described in a ciliate in which both the structure and duplication of basal bodies and the body plan are affected. The data support the conclusion that the mutation does not alter the nature of the morphogenetic signal(s) which pervade the dividing cell, nor the competence of cytoskeletal structures to respond to signalling, but affects the local interpretation of the signals.  相似文献   

9.
Basal body duplication in the green alga Spermatozopsis similis was reinvestigated using GT335, an antibody binding to polyglutamylated tubulins, and antibodies directed to p210, a component of the flagellar transition region which represents the distal border of the basal body. p210 was also detected in small spots at the base of each basal body which increased in size prior to mitosis. The presence of p210 on one of the microtubular flagellar roots suggested a transport of basal body material along these tracks. Immunogold electron microscopy confirmed the presence of p210 in the probasal bodies. Further, small probasal bodies are apparently connected to the mature basal bodies by centrin fibers as observed after artificially induced basal body separation in Xenopus egg extract. While basal bodies grew, most of the p210 remained at the tip of elongating basal bodies, but two or four additional spots were observed in distinct patterns near the base of the basal bodies. In cytokinesis, basal body pairs separated and p210 was observed in a strong signal at the tip and a weaker one in the vicinity of the proximal end of each basal body. We interpret the data as indicating that a new p210-containing structure forms near the proximal end of the basal bodies during basal body elongation, representing the precursor of the next generation of basal bodies. Thus, basal bodies appear to seed the succeeding generation already during their own development, a mechanism which could ensure the correct number and position of basal bodies.  相似文献   

10.
Summary The mammalian centrosome monoclonal antibody MPM-13 recognized component(s) of the well defined MTOC basal-body root complex in the green plantChlamydomonas. The antibody reaction coincided in location with the basal-body root complex and the cruciate nature of the staining pattern corresponded to the configuration of the root microtubules. During mitosis the behaviour of MPM-13 stained material mirrored the duplication, separation and migration to the spindle poles of the basal body-root complex. It is suggested that conserved MTOC components were recognized and that these may have retained a similar, perhaps universal, function in microtubule organization.Abbreviations BSA bovine serum albumin - DAPI 4,6-diamidine-2-phenylindole dihydrochloride - mt mating type - MT microtubule - MTOC microtubule organizing centre - PFA paraformaldehyde - PBS phosphate buffered saline  相似文献   

11.
The principal microtubule-organizing center in animal cells, the centrosome, contains centrin, a small, conserved calcium-binding protein unique to eukaryotes. Several centrin isoforms exist and have been implicated in various cellular processes including nuclear export and deoxyribonucleic acid (DNA) repair. Although centrins are required for centriole/basal body duplication in lower eukaryotes, centrin functions in vertebrate centrosome duplication are less clear. To define these roles, we used gene targeting in the hyperrecombinogenic chicken DT40 cell line to delete all three centrin genes in individual clones. Unexpectedly, centrin-deficient cells underwent normal cellular division with no detectable cell cycle defects. Light and electron microscopy analyses revealed no significant difference in centrosome composition or ultrastructure. However, centrin deficiency made DT40 cells highly sensitive to ultraviolet (UV) irradiation, with Cetn3 deficiency exacerbating the sensitivity of Cetn4/Cetn2 double mutants. DNA damage checkpoints were intact, but repair of UV-induced DNA damage was delayed in centrin nulls. These data demonstrate a role for vertebrate centrin in nucleotide excision repair.  相似文献   

12.
Centrioles and basal bodies are two versions of the same conserved eukaryotic organelle and share two remarkable properties: nine-fold symmetry of their microtubular shaft and capacity to generate a new organelle in a fixed geometrical relationship to the mother organelle. It can thus be postulated that what is true for basal bodies is likely to be true also for centrioles. While the functions of centrioles are difficult to dissect, the functions of basal bodies are easier to approach. Over more than two decades, studies on protists have led to the notion that ciliary and flagellar basal bodies display polarities, not only a proximo-distal polarity, like in centrioles, but also a circumferential polarity accorded to the polarities of the cell and of its cytoskeleton. The major cytological and genetical data, mainly of Chlamydomonas, Paramecium and Tetrahymena, which support the notion that the microtubule triplets of basal bodies are non-equivalent, are reviewed. The morphogenetic implications of this circumferential anisotropy, perpetuated through the process of basal body duplication itself, are discussed. The question is raised of the possibility that centrioles also display a circumferential polarity, like basal bodies, and whether at least certain of their functions depend on such asymmetries.  相似文献   

13.
Centrins are calmodulin-like proteins present in centrosomes and yeast spindle pole bodies (SPBs) and have essential functions in their duplication. The Saccharomyces cerevisiae centrin, Cdc31p, binds Sfi1p on multiple conserved repeats; both proteins localize to the SPB half-bridge, where the new SPB is assembled. The crystal structures of Sfi1p-centrin complexes containing several repeats show Sfi1p as an alpha helix with centrins wrapped around each repeat and similar centrin-centrin contacts between each repeat. Electron microscopy (EM) shadowing of an Sfi1p-centrin complex with 15 Sfi1 repeats and 15 centrins bound showed filaments 60 nm long, compatible with all the Sfi1 repeats as a continuous alpha helix. Immuno-EM localization of the Sfi1p N and C termini showed Sfi1p-centrin filaments spanning the length of the half-bridge with the Sfi1p N terminus at the SPB. This suggests a model for SPB duplication where the half-bridge doubles in length by association of the Sfi1p C termini, thereby providing a new Sfi1p N terminus to initiate SPB assembly.  相似文献   

14.
Centrins are a ubiquitous family of small Ca2+-binding proteins found at basal bodies that are placed into two groups based on sequence similarity to the human centrins 2 and 3. Analyses of basal body composition in different species suggest that they contain a centrin isoform from each group. We used the ciliate protist Tetrahymena thermophila to gain a better understanding of the functions of the two centrin groups and to determine their potential redundancy. We have previously shown that the Tetrahymena centrin 1 (Cen1), a human centrin 2 homologue, is required for proper basal body function. In this paper, we show that the Tetrahymena centrin 2 (Cen2), a human centrin 3 homologue, has functions similar to Cen1 in basal body orientation, maintenance, and separation. The two are, however, not redundant. A further examination of human centrin 3 homologues shows that they function in a manner distinct from human centrin 2 homologues. Our data suggest that basal bodies require a centrin from both groups in order to function correctly.  相似文献   

15.
In the yeast Saccharomyces cerevisiae, septins form a scaffold in the shape of a ring at the future budding site that rearranges into a collar at the mother-bud neck. Many proteins bind asymmetrically to the septin collar. We found that the protein Bni4-CFP was located on the exterior of the septin ring before budding and on the mother side of the collar after budding, whereas the protein kinase Kcc4-YFP was located on the interior of the septin ring before budding and moved into the bud during the formation of the septin collar. Unbudded cells treated with the actin inhibitor latrunculin-A assembled cortical caps of septins on which Bni4-CFP and Kcc4-YFP colocalized. Bni4-CFP and Kcc4-YFP also colocalized on cortical caps of septins found in strains deleted for the genes encoding the GTPase activating proteins of Cdc42 (RGA1, RGA2, and BEM3). However, Bni4-CFP and Kcc4-YFP were still partially separated in mutants (gin4, elm1, cla4, and cdc3-1) in which septin morphology was severely disrupted in other ways. These observations provide clues to the mechanisms for the asymmetric localization of septin-associated proteins.  相似文献   

16.
Trichodinids are ciliated protozoans that reversibly attach to the tegument of marine and freshwater host-organisms via an adhesive disc. In this study, we have used permeabilized cell models of Trichodina pediculus to examine the distribution of centrins, a Ca2+-binding protein associated with centrioles and/or contractile filamentous structures in a large number of protists. The previous finding that filamentous material of the adhesive disc comprised a 23-kDa centrin analog suggested that this protein might be a disc-specific isoform. This possibility was explored through immunolabeling methods using two distinct antibodies, anti-ecto-endoplasmic boundary (EEB) and anti-Hscen2 previously shown to react respectively with centrin-based filament networks and with centrioles. Immunofluorescence microscopy showed that anti-EEB reacts with filamentous material of the disc but not with basal bodies. Conversely, anti-Hscen2 cross-reacted with basal bodies but failed to label any type of structure occurring in the disc area. More detailed data on localization of this protein was obtained by immunoelectron microscopy showing gold particles deposits in the lumen of basal bodies. The different patterns revealed by this immunochemical approach suggest that the two protein antigens concerned by this study are distinct centrin isoforms that presumably perform organelle-specific function in the ciliate T. pediculus.  相似文献   

17.
The infraciliary lattice, a contractile cortical cytoskeletal network of Paramecium, is composed of a small number of polypeptides including centrins. Its overall pattern reflects a hierarchy of structural complexity, from assembly and bundling of microfilaments to formation of polygonal meshes arranged in a continuous network subtending the whole cell surface, with local differentiations in the shape and size of the meshes. To analyse how the geometry of this complex network is generated and maintained, we have taken two approaches. Firstly, using monoclonal antibodies raised against the purified network, we have shown that all the component polypeptides colocalize, in agreement with previous biochemical data indicating that the infraciliary lattice is formed of large complexes comprising all the component polypeptides. Secondly, by taking advantage of different experimental conditions leading to disassembly of the network, we have followed its reassembly. Cytological analysis of the process revealed 1) that the network regrows exclusively from specific infraciliary lattice organizing centers (ICLOC), precisely localized near each basal body and, 2) that the global organization is not precisely controlled by genetic information but by the basal body pattern. Finally, slight ultrastuctural differences between reassembled and control lattices suggest that the organization of the filament bundles is partly templated by that of the preexisting ones.  相似文献   

18.
In many organisms, the geometry of encounter of haploid germ cells is arbitrary. In Saccharomyces cerevisiae, the resulting zygotes have been seen to bud asymmetrically in several directions as they produce diploid progeny. What mechanisms account for the choice of direction, and do the mechanisms directing polarity change over time? Distinct subgroups of cortical “landmark” proteins guide budding by haploid versus diploid cells, both of which require the Bud1/Rsr1 GTPase to link landmarks to actin. We observed that as mating pairs of haploid cells form zygotes, bud site specification progresses through three phases. The first phase follows disassembly and limited scattering of proteins that concentrated at the zone of cell contact, followed by their reassembly to produce a large medial bud. Bud1 is not required for medial placement of the initial bud. The second phase produces a contiguous bud(s) and depends on axial landmarks. As the titer of the Axl1 landmark diminishes, the third phase ultimately redirects budding toward terminal sites and is promoted by bipolar landmarks. Thus, following the initial random encounter that specifies medial budding, sequential spatial choices are orchestrated by the titer of a single cortical determinant that determines whether successive buds will be contiguous to their predecessors.  相似文献   

19.
Dividing cells of Tetrahymena pyriformis were observed by transmission electron microscopy for signs of morphogenesis of cortical structures. The earliest stage of basal body development observed was of a short cylinder of nine single tubules connected by an internal cartwheel structure. This is set perpendicular to the mature basal body at its anterior proximal surface under the transverse microtubules and next to the basal microtubules. Sequential stages show that the single tubules become triplet tubules and that the "probasal bodies" then elongate and tilt toward the organism's surface while maintaining a constant distance of 75–100 mµ with the "parent." The new basal body after it is fully extended contacts the pellicle, and then assumes a parallel orientation with and moves anterior to the parent basal body. The electron-opaque core in the lumen of the basal body and accessory structures around its outer proximal surface appear after the developing basal body has elongated. These accessory structures associating with their counterparts from other basal bodies and with the longitudinal microtubules may play a role in the final positioning of basal bodies and thus in the maintenance of cortical patterns. Observations on a second sequence of basal body formation suggest that the oral anlage arises by multiple duplication of somatic basal bodies.  相似文献   

20.
Centrin, an EF hand Ca(2+) binding protein, has been cloned in Tetrahymena thermophila. It is a 167 amino acid protein of 19.4 kDa with a unique N-terminal region, coded by a single gene containing an 85-base pair intron. It has > 80% homology to other centrins and high homology to Tetrahymena EF hand proteins calmodulin, TCBP23, and TCBP25. Specific cellular localizations of the closely related Tetrahymena EF hand proteins are different from centrin. Centrin is localized to basal bodies, cortical fibers in oral apparatus and ciliary rootlets, the apical filament ring and to inner arm (14S) dynein (IAD) along the ciliary axoneme. The function of centrin in Ca(2+) control of IAD activity was explored using in vitro microtubule (MT) motility assays. Ca(2+) or the Ca(2+)-mimicking peptide CALP1, which binds EF hand proteins in the absence of Ca(2+), increased MT sliding velocity. Antibodies to centrin abrogated this increase. This is the first demonstration of a specific centrin function associated with axonemal dynein. It suggests that centrin is a key regulatory protein for Tetrahymena axonemal Ca(2+) responses, including ciliary reversal or chemotaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号