共查询到20条相似文献,搜索用时 15 毫秒
1.
Hawiger D Tran E Du W Booth CJ Wen L Dong C Flavell RA 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(5):3140-3147
Initiation of diabetes in NOD mice can be mediated by the costimulatory signals received by T cells. The ICOS is found on Ag-experienced T cells where it acts as a potent regulator of T cell responses. To determine the function of ICOS in diabetes, we followed the course of autoimmune disease and examined T cells in ICOS-deficient NOD mice. The presence of ICOS was indispensable for the development of insulitis and hyperglycemia in NOD mice. In T cells, the deletion of ICOS resulted in a decreased production of the Th1 cytokine IFN-gamma, whereas the numbers of regulatory T cells remained unchanged. We conclude that ICOS is critically important for the induction of the autoimmune process that leads to diabetes. 相似文献
2.
B Dong D Qi L Yang Y Huang X Xiao N Tai L Wen FS Wong 《American journal of physiology. Heart and circulatory physiology》2012,303(6):H732-H742
Toll-like receptor (TLR)4 regulates inflammation and metabolism and has been linked to the pathogenesis of heart disease. TLR4 is upregulated in diabetic cardiomyocytes, and we examined the role of TLR4 in modulating cardiac fatty acid (FA) metabolism and the pathogenesis of diabetic heart disease in nonobese diabetic (NOD) mice. Both wild-type (WT) NOD and TLR4-deficient NOD animals had increased plasma triglyceride levels after the onset of diabetes. However, by comparison, TLR4-deficient NOD mouse hearts had lower triglyceride accumulation in the early stages of diabetes, which was associated with a reduction in myeloid differentiation primary response gene (88) (MyD88), phosphorylation of p38 MAPK (phospho-p38), lipoprotein lipase (LPL), and JNK levels but increased phospho-AMP-activated protein kinase (AMPK). Oleic acid treatment in H9C2 cardiomyocytes also led to cellular lipid accumulation, which was attenuated by TLR4 small interfering RNA. TLR4 deficiency in the cells decreased FA-induced augmentation of MyD88, phospho-p38, and LPL, suggesting that TLR4 may modulate FA-induced lipid metabolism in cardiomyocytes. In addition, although cardiac function was impaired in both diabetic WT NOD and TLR4-deficient NOD animals compared with control nondiabetic mice, this deficit was less in the diabetic TLR4-deficient NOD mice, which had greater ejection fraction, greater fractional shortening, and increased left ventricular developed pressure in the early stages after the development of diabetes compared with their diabetic WT NOD counterparts. Thus, we conclude that TLR4 plays a role in regulating lipid accumulation in cardiac muscle after the onset of type 1 diabetes, which may contribute to cardiac dysfunction. 相似文献
3.
Neuroendocrine immuno-ontogeny of the pathogenesis of autoimmune disease in the nonobese diabetic (NOD) mouse 总被引:2,自引:0,他引:2
Homo-Delarche F 《ILAR journal / National Research Council, Institute of Laboratory Animal Resources》2004,45(3):237-258
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease in which insulin-producing beta cells of the pancreatic islets of Langerhans are destroyed. The nonobese diabetic (NOD) mouse is one of the rare spontaneous models that enable the study of prediabetic pancreatic events. The etiology of the autoimmune attack in human and animal T1D is still unknown, but genetic and environmental factors are involved in both cases. Although several autoantigens have been identified and defective immune-system regulation is implicated, this information does not satisfactorily explain the generally accepted beta-cell specificity of the disease or how so many and diverse environmental factors intervene in its pathogenesis. Based on data obtained from evaluating glucose homeostasis in a variety of situations, particularly stress and cytokine administration, in young prediabetic NOD mice, the author hypothesizes that the islet of Langerhans is a major actor, and its altered regulation through environmentally induced insulin resistance might reveal latent T1D. It is also postulated that T1D pathogenesis might be linked to abnormal pancreas development, probably due to disturbances of glutamic acid decarboxylase (GAD)+ innervation phagocytosis by defective macrophages during the early postnatal period. Also discussed is the role of defective presentation of pancreatic hormones and GAD in the thymus, and its potential repercussion on T-cell tolerance. Observations have demonstrated that the diabetogenic process in the NOD mouse is extremely complex, involving neuroendocrine immune interaction from fetal life onward. 相似文献
4.
A factor of inducing IgE from a filarial parasite prevents insulin-dependent diabetes mellitus in nonobese diabetic mice 总被引:5,自引:0,他引:5
Parasitic helminth infections are characterized by eosinophilia and markedly elevated levels of circulating antigen-nonspecific immunoglobulin E (IgE), responses from which concern helminth protection. We previously purified a factor from Dirofilaria immitis that induces antigen-nonspecific IgE in mice and rats. Recombinant DiAg (rDiAg) has various biological activities. It is also known that parasitic helminth infection generates tremendous Th2 responses. The nonobese diabetic (NOD) mouse spontaneously develops Th1 cell-dependent autoimmune diabetes. Here we investigated the effects of rDiAg on the initiation and progression of this disease. rDiAg treatment of 6-week-old NOD females (the age at which insulitis typically begins) completely prevented insulitis and diabetes. Thus, rDiAg impaired the islet Ag-specific Th1 cell response in vivo, and the prevention of diabetes by rDiAg was associated with switching of the response from a Th1 to a Th2 profile. Since rDiAg clearly prevented insulitis by inhibiting the development and further accumulation of pathogenic Th1 cells to islets of Langerhans, we conclude that DiAg is a native Th2 inducer in filarial helminth and that Th1 responses are required for early events in the development of spontaneous autoimmune diabetes. In conclusion, the presence of parasitic helminth infections may play an important role as an immunomodulator in some autoimmune diseases or allergies. 相似文献
5.
Martinez X Kreuwel HT Redmond WL Trenney R Hunter K Rosen H Sarvetnick N Wicker LS Sherman LA 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(3):1677-1685
Although candidate genes controlling autoimmune disease can now be identified, a major challenge that remains is defining the resulting cellular events mediated by each locus. In the current study we have used NOD-InsHA transgenic mice that express the influenza hemagglutinin (HA) as an islet Ag to compare the fate of HA-specific CD8+ T cells in diabetes susceptible NOD-InsHA mice with that observed in diabetes-resistant congenic mice having protective alleles at insulin-dependent diabetes (Idd) 3, Idd5.1, and Idd5.2 (Idd3/5 strain) or at Idd9.1, Idd9.2, and Idd9.3 (Idd9 strain). We demonstrate that protection from diabetes in each case is correlated with functional tolerance of endogenous islet-specific CD8+ T cells. However, by following the fate of naive, CFSE-labeled, islet Ag-specific CD8+ (HA-specific clone-4) or CD4+ (BDC2.5) T cells, we observed that tolerance is achieved differently in each protected strain. In Idd3/5 mice, tolerance occurs during the initial activation of islet Ag-specific CD8+ and CD4+ T cells in the pancreatic lymph nodes where CD25+ regulatory T cells (Tregs) effectively prevent their accumulation. In contrast, resistance alleles in Idd9 mice do not prevent the accumulation of islet Ag-specific CD8+ and CD4+ T cells in the pancreatic lymph nodes, indicating that tolerance occurs at a later checkpoint. These results underscore the variety of ways that autoimmunity can be prevented and identify the elimination of islet-specific CD8+ T cells as a common indicator of high-level protection. 相似文献
6.
Mabley JG Rabinovitch A Suarez-Pinzon W Haskó G Pacher P Power R Southan G Salzman A Szabó C 《Molecular medicine (Cambridge, Mass.)》2003,9(3-4):96-104
Inosine, a naturally occurring purine, was long considered to be an inactive metabolite of adenosine. However, recently inosine has been shown to be an immunomodulator and anti-inflammatory agent. The aim of this study was to determine whether inosine influences anti-inflammatory effects and affects the development of type 1 diabetes in murine models. Type 1 diabetes was induced either chemically by streptozotocin or genetically using the nonobese diabetic mouse (NOD) model. Mice were treated with inosine (100 or 200 mg kg(-1)d(-1)d) and diabetes incidence was monitored. The effect of inosine on pancreas immune cell infiltration, oxidative stress, and cytokine profile also was determined. For the transplantation model islets were placed under the renal capsule of NOD mice and inosine (200 mg kg(-1)d d(-1)d) treatment started the day of islet transplantation. Graft rejection was diagnosed by return of hyperglycemia accompanied by glucosuria and ketonuria. Inosine reduced the incidence of diabetes in both streptozotocin-induced diabetes and spontaneous diabetes in NOD mice. Inosine decreased pancreatic leukocyte infiltration and oxidative stress in addition to switching the cytokine profile from a Th1 to a Th2 profile. Inosine prolonged pancreatic islet graft survival, increased the number of surviving beta cells, and reduced the number of infiltrating leukocytes. Inosine protects against both the development of diabetes and against the rejection of transplanted islets. The purine exerts anti-inflammatory effects in the pancreas, which is its likely mode of action. The use of inosine should be considered as a potential preventative therapy in humans susceptible to developing Type 1 diabetes and as a possible antirejection therapy for islet transplant recipients. 相似文献
7.
IL-10 exterts profound immunostimulatory and immunoinhibitory effects. To explore the role of IL-10 in autoimmune diabetes of nonobese diabetic (NOD) mice, we generated IL-10-deficient NOD mice. In contrast to our previous results with neutralizing antibodies to IL-10, IL-10-deficient NOD mice developed insulitis and their splenocytes readily responded to islet antigen glutamic acid decarboxylase 65. IL-10-deficient NOD mice did not develop accelerated spontaneous diabetes. On the other hand, IL-10-deficient NOD mice developed accelerated disease following cyclophosphamide (CYP) injection. These findings demonstrate that IL-10 is dispensable for autoimmune diabetes. IL-10's absence fails to accelerate endogenous diabetes but potentiates CYP-induced diabetes. 相似文献
8.
The countervailing actions of myeloid and plasmacytoid dendritic cells control autoimmune diabetes in the nonobese diabetic mouse 总被引:3,自引:0,他引:3
Saxena V Ondr JK Magnusen AF Munn DH Katz JD 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(8):5041-5053
Islet Ag-specific CD4(+) T cells receive antigenic stimulation from MHC class II-expressing APCs. Herein, we delineate the direct in vivo necessity for distinct subsets of macrophages and dendritic cells (DC) in type 1 diabetes mellitus of the NOD mouse by using diphtheria toxin-mediated cell ablation. The ablation of macrophages had no impact on islet Ag presentation or on the induction of insulitis or diabetes in either transfer or spontaneous models. However, the ablation of CD11b(+)CD11c(+) DC led to the loss of T cell activation, insulitis, and diabetes mediated by CD4(+) T cells. When the specific myeloid DC subset was "added-back" to mice lacking total DC, insulitis and diabetes were restored. Interestingly, when NOD mice were allowed to progress to the insulitis phase, the ablation of DC led to accelerated insulitis. This accelerated insulitis was mediated by the loss of plasmacytoid DC (pDC). When pDC were returned to depleted mice, the localized regulation of insulitis was restored. The loss of pDC in the pancreas itself was accompanied by the localized loss of IDO and the acceleration of insulitis. Thus, CD11c(+)CD11b(+) DC and pDC have countervailing actions in NOD diabetes, with myeloid DC providing critical antigenic stimulation to naive CD4(+) T cells and pDC providing regulatory control of CD4(+) T cell function in the target tissue. 相似文献
9.
Down-regulation of blood-brain glucose transport in the hyperglycemic nonobese diabetic mouse 总被引:2,自引:0,他引:2
Eain M. Cornford Shigeyo Hyman Marcia E. Cornford Michael Clare-Salzler 《Neurochemical research》1995,20(7):869-873
The intracarotid injection method has been utilized to examine blood-brain barrier (BBB) glucose transport in hyperglycemic (4–6 days) mice. In anesthetized mice, Brain Uptake Indices were measured over a range of glucose concentrations from 0.010–50 mmol/l; glucose uptake was found to be saturable and kinetically characterized. The maximal velocity (Vmax) for glucose transport was 989±214 nmol·min–1·g–1· and the half-saturation constant estimated to be 5.80±1.38 mmol/l. The unsaturated Permeability Surface are product (PS) is=171+8 l·min.–1·g–1. A rabbit polyclonal antiserum to a synthetic peptide encoding the 13 C-terminal amino acids of the human erythrocyte glucose transporter immunocytochemically confirmed the presence of the GLUT1 isoform in non-obese diabetic (NOD) mouse brain capillary endothelia. These studies indicate that a down-regulation of BBB glucose transport occurs in these spontaneously hyperglycemic mice; both BBB glucose permeability (as indicated by PS product) and transporter maximal velocity are reduced (in comparison to normoglycemic CD-1 mice), but the half-saturation constant remains unchanged. 相似文献
10.
Toward testing the hypothesis that group B coxsackieviruses (CVB) trigger insulin-dependent diabetes: inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence 总被引:4,自引:0,他引:4
下载免费PDF全文

Tracy S Drescher KM Chapman NM Kim KS Carson SD Pirruccello S Lane PH Romero JR Leser JS 《Journal of virology》2002,76(23):12097-12111
Insulin-dependent (type 1) diabetes mellitus (T1D) onset is mediated by individual human genetics as well as undefined environmental influences such as viral infections. The group B coxsackieviruses (CVB) are commonly named as putative T1D-inducing agents. We studied CVB replication in nonobese diabetic (NOD) mice to assess how infection by diverse CVB strains affected T1D incidence in a model of human T1D. Inoculation of 4- or 8-week-old NOD mice with any of nine different CVB strains significantly reduced the incidence of T1D by 2- to 10-fold over a 10-month period relative to T1D incidences in mock-infected control mice. Greater protection was conferred by more-pathogenic CVB strains relative to less-virulent or avirulent strains. Two CVB3 strains were employed to further explore the relationship of CVB virulence phenotypes to T1D onset and incidence: a pathogenic strain (CVB3/M) and a nonvirulent strain (CVB3/GA). CVB3/M replicated to four- to fivefold-higher titers than CVB3/GA in the pancreas and induced widespread pancreatitis, whereas CVB3/GA induced no pancreatitis. Apoptotic nuclei were detected by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay in CVB3/M-infected pancreata but not in CVB3/GA-infected pancreata. In situ hybridization detected CVB3 RNA in acinar tissue but not in pancreatic islets. Although islets demonstrated inflammatory infiltrates in CVB3-protected mice, insulin remained detectable by immunohistochemistry in these islets but not in those from diabetic mice. Enzyme-linked immunosorbent assay-based examination of murine sera for immunoglobulin G1 (IgG1) and IgG2a immunoreactivity against diabetic autoantigens insulin and HSP60 revealed no statistically significant relationship between CVB3-protected mice or diabetic mice and specific autoimmunity. However, when pooled sera from CVB3/M-protected mice were used to probe a Western blot of pancreatic proteins, numerous proteins were detected, whereas only one band was detected by sera from CVB3/GA-protected mice. No proteins were detected by sera from diabetic or normal mice. Cumulatively, these data do not support the hypothesis that CVB are causative agents of T1D. To the contrary, CVB infections provide significant protection from T1D onset in NOD mice. Possible mechanisms by which this virus-induced protection may occur are discussed. 相似文献
11.
A mechanism for IL-10-mediated diabetes in the nonobese diabetic (NOD) mouse: ICAM-1 deficiency blocks accelerated diabetes 总被引:4,自引:0,他引:4
Balasa B La Cava A Van Gunst K Mocnik L Balakrishna D Nguyen N Tucker L Sarvetnick N 《Journal of immunology (Baltimore, Md. : 1950)》2000,165(12):7330-7337
Neonatal islet-specific expression of IL-10 in nonobese diabetic (NOD) mice accelerates the onset of diabetes, whereas systemic treatment of young NOD mice with IL-10 prevents diabetes. The mechanism for acceleration of diabetes in IL-10-NOD mice is not known. Here we show, by adoptive transfers, that prediabetic or diabetic NOD splenocytes upon encountering IL-10 in the pancreatic islets readily promoted diabetes. This outcome suggests that the compartment of exposure, not the timing, confers proinflammatory effects on this molecule. Moreover, injection of IL-10-deficient NOD splenocytes into transgenic IL-10-NOD.scid/scid mice elicited accelerated disease, demonstrating that pancreatic IL-10 but not endogenous IL-10 is sufficient for the acceleration of diabetes. Immunohistochemical analysis revealed hyperexpression of ICAM-1 on the vascular endothelium of IL-10-NOD mice. The finding suggests that IL-10 may promote diabetes via an ICAM-1-dependent pathway. We found that introduction of ICAM-1 deficiency into IL-10-NOD mice as well as into NOD mice prevented accelerated insulitis and diabetes. Failure to develop insulitis and diabetes was preceded by the absence of GAD65-specific T cell responses. The data suggest that ICAM-1 plays a role in the formation of the "immunological synapse", thereby affecting the generation and/or expansion of islet-specific T cells. In addition, ICAM-1 also played a role in the effector phase of autoimmune diabetes because adoptive transfer of diabetogenic BDC2.5 T cells failed to elicit clinical disease in ICAM-1-deficient IL-10-NOD and NOD mice. These findings provide evidence that pancreatic IL-10 is sufficient to drive pathogenic autoimmune responses and accelerates diabetes via an ICAM-1-dependent pathway. 相似文献
12.
Genetic control of diabetes and insulitis in the nonobese diabetic mouse. Pedigree analysis of a diabetic H-2nod/b heterozygote 总被引:6,自引:0,他引:6
L S Wicker B J Miller P A Fischer A Pressey L B Peterson 《Journal of immunology (Baltimore, Md. : 1950)》1989,142(3):781-784
The development of autoimmune type 1 diabetes mellitus in man and the nonobese diabetic (NOD) mouse is greatly influenced by a gene linked to the MHC. Although homozygosity at the NOD MHC is required for a high prevalence of disease, during backcross studies we have found a small number of diabetic H-2nod/b MHC heterozygotes. These diabetic heterozygotes could either represent a crossover event between the MHC and a putative MHC-linked diabetogenic gene or, alternatively, they could indicate that there is a dominant MHC-linked diabetic gene that has low penetrance in the heterozygous state. Pedigree analysis of a diabetic H-2nod/b MHC heterozygote favors the latter hypothesis. 相似文献
13.
Elimination of maternally transmitted autoantibodies prevents diabetes in nonobese diabetic mice 总被引:7,自引:0,他引:7
Greeley SA Katsumata M Yu L Eisenbarth GS Moore DJ Goodarzi H Barker CF Naji A Noorchashm H 《Nature medicine》2002,8(4):399-402
The influence of maternally transmitted immunoglobulins on the development of autoimmune diabetes mellitus in genetically susceptible human progeny remains unknown. Given the presence of islet beta cell-reactive autoantibodies in prediabetic nonobese diabetic (NOD) mice, we abrogated the maternal transmission of such antibodies in order to assess their influence on the susceptibility of progeny to diabetes. First, we used B cell-deficient NOD mothers to eliminate the transmission of maternal immunoglobulins. In a complementary approach, we used immunoglobulin transgenic NOD mothers to exclude autoreactive specificities from the maternal B-cell repertoire. Finally, we implanted NOD embryos in pseudopregnant mothers of a non-autoimmune strain. The NOD progeny in all three groups were protected from spontaneous diabetes. These findings demonstrate that the maternal transmission of antibodies is a critical environmental parameter influencing the ontogeny of T cell-mediated destruction of islet beta cells in NOD mice. It will be important to definitively determine whether the transmission of maternal autoantibodies in humans affects diabetes progression in susceptible offspring. 相似文献
14.
We have produced a panel of cloned T cell lines from the BDC-2.5 TCR transgenic (Tg) mouse that exhibit a Th2 cytokine phenotype in vitro but are highly diabetogenic in vivo. Unlike an earlier report in which T cells obtained from the Tg mouse were cultured for 1 wk under Th2-promoting conditions and were found to induce disease only in NOD.scid recipients, we found that long-term T cell clones with a fixed Th2 cytokine profile can transfer disease only to young nonobese diabetic (NOD) mice and never to NOD.scid recipients. Furthermore, the mechanism by which diabetes is transferred by a Tg Th2 T cell clone differs from that of the original CD4+ Th1 BDC-2.5 T cell clone made in this laboratory. Whereas the BDC-2.5 clone rapidly causes disease in NOD.scid recipients less than 2 wk old, the Tg Th2 T cell clones can do so only when cotransferred with other diabetogenic T cells, suggesting that the Th2 T cell requires the presence of host T cells for initiation of disease. 相似文献
15.
Genetic analysis of diabetes in the nonobese diabetic mouse. I. MHC and T cell receptor beta gene expression 总被引:3,自引:0,他引:3
A Livingstone C T Edwards J A Shizuru C G Fathman 《Journal of immunology (Baltimore, Md. : 1950)》1991,146(2):529-534
Backcross nonobese diabetic (NOD) ((NOD x SWr)F1 x NOD) mice (108 females and 105 males) were typed for MHC, TCR V beta, and monitored for 350 days for the onset of diabetes. The presence of "antipolar" antibodies in the sera and the occurrence of insulitis was examined in a proportion of these backcross mice. There was no difference in the incidence of diabetes in mice heterozygous for TCR V beta b/a vs those homozygous for TCR V beta b/b. Among the 17 diabetics (all female) detected in this backcross, 14/17 were H-2nod/nod but 3/17 were H-2nod/q. This supports a previous observation suggesting that the MHC-linked diabetogenic gene originally thought to be recessive may rather be dominant but have a low penetrance in the heterozygous state. Antipolar autoantibodies were found in both female and male backcross mice, and were similarly distributed in diabetic and nondiabetic mice. There appeared to be no correlation between the level of these auto-antibodies and development of diabetes. The incidence and severity of insulitis was linked to MHC but no influence of TCR genes on insulitis nor an association between insulitis and antipolar antibodies could be demonstrated in this study. Further analyses of H-2nod/nod intercross mice homozygous for TCR V beta a or TCR V beta b are currently underway. 相似文献
16.
Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice 总被引:11,自引:0,他引:11
The period that precedes onset of insulin-dependent diabetes mellitus corresponds to an active dynamic state in which pathogenic autoreactive T cells are kept from destroying beta cells by regulatory T cells. In prediabetic nonobese diabetic (NOD) mice, CD4+ splenocytes were shown to prevent diabetes transfer in immunodeficient NOD recipients. We now demonstrate that regulatory splenocytes belong to the CD4+ CD62Lhigh T cell subset that comprises a vast majority of naive cells producing low levels of IL-2 and IFN-gamma and no IL-4 and IL-10 upon in vitro stimulation. Consistently, the inhibition of diabetes transfer was not mediated by IL-4 and IL-10. Regulatory cells homed to the pancreas and modified the migration of diabetogenic to the islets, which resulted in a decreased insulitis severity. The efficiency of CD62L+ T cells was dose dependent, independent of sex and disease prevalence. Protection mechanisms did not involve the CD62L molecule, an observation that may relate to the fact that CD4+ CD62Lhigh lymph node cells were less potent than their splenic counterparts. Regulatory T cells were detectable after weaning and persist until disease onset, sustaining the notion that diabetes is a late and abrupt event. Thus, the CD62L molecule appears as a unique marker that can discriminate diabetogenic (previously shown to be CD62L-) from regulatory T cells. The phenotypic and functional characteristics of protective CD4+ CD62L+ cells suggest they are different from Th2-, Tr1-, and NK T-type cells, reported to be implicated in the control of diabetes in NOD mice, and may represent a new immunoregulatory population. 相似文献
17.
Lian G Arimochi H Kitamura A Nishida J Li S Kishihara K Maekawa Y Yasutomo K 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(5):2227-2234
The interplay of CD4(+) and CD8(+) T cells targeting autoantigens is responsible for the progression of a number of autoimmune diseases, including type 1 diabetes mellitus (T1D). Understanding the molecular mechanisms that regulate T cell activation is crucial for designing effective therapies for autoimmune diseases. We probed a panel of Abs with T cell-modulating activity and identified a mAb specific for the H chain of CD98 (CD98hc) that was able to suppress T cell proliferation. The anti-CD98hc mAb also inhibited Ag-specific proliferation and the acquisition of effector function by CD4(+) and CD8(+) T cells in vitro and in vivo. Injection of the anti-CD98hc mAb completely prevented the onset of cyclophosphamide-induced diabetes in NOD mice. Treatment of diabetic NOD mice with anti-CD98hc reversed the diabetic state to normal levels, coincident with decreased proliferation of CD4(+) T cells. Furthermore, treatment of diabetic NOD mice with CD98hc small interfering RNA resolved T1D. These data indicate that strategies targeting CD98hc might have clinical application for treating T1D and other T cell-mediated autoimmune diseases. 相似文献
18.
Adoptive T cell transfer of autoimmune nonobese diabetic mouse diabetes does not require recruitment of host B lymphocytes 总被引:5,自引:0,他引:5
A Bendelac C Boitard P Bedossa H Bazin J F Bach C Carnaud 《Journal of immunology (Baltimore, Md. : 1950)》1988,141(8):2625-2628
The autoimmune nonobese diabetic mouse, a model of human juvenile type I diabetes mellitus, exhibits features of both B and T cell autoreactivity against insulin-producing cells. Using the neonatal cell transfer model of the disease, which we have described previously, we have shown that B cell suppression of newborn recipients by anti-mu treatment did not affect the transfer of diabetes by means of T cells. B cell-depleted, purified T cells from diabetic adults were injected into newborns treated with either IR-52, a control rat myeloma protein, or LOMM.9, a rat anti-mouse mu-chain mAb. Both groups developed diabetes over a similar time scale. Although the pancreases in both groups showed massive infiltration by T lymphocytes, B lymphocytes, presumably recruited in the host, were present in the IR-52-treated group, whereas they were absent in the LOMM.9-treated group. Anti-mu-treated diabetic animals showed substantial B cell suppression in vivo and in vitro when compared with IR-52-treated controls. These results suggest that B cell autoreactivity is a secondary phenomenon that is unimportant during the effector phase of diabetes in nonobese diabetic mice. 相似文献
19.
Halbout P Briand JP Bécourt C Muller S Boitard C 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(5):2436-2443
Immunization against insulin, insulin B chain, or B chain peptide B(9-23) (preproinsulin peptide II(33-47)) prevents diabetes in the nonobese diabetic (NOD) mouse. Whether or not peptide II(33-47) is the only proinsulin determinant recognized by CD4 T cells remains unclear. Using two peptide libraries spanning the entire sequence of preproinsulin I and preproinsulin II, respectively, we identified T cells specific for four proinsulin epitopes within the islet cell infiltrate of prediabetic female NOD mice. These epitopes were among immunogenic epitopes to which a T cell response was detected after immunization of NOD mice with individual peptides in CFA. Immunogenic epitopes were found on both isoforms of insulin, especially proinsulin II, which is the isoform expressed in the thymus. The autoimmune response to proinsulin represented only part of the immune response to islet cells within the islet cell infiltrate in 15-wk-old NOD mice. This is the first systematic study of preproinsulin T cell epitopes in the NOD mouse model. 相似文献
20.
B cell specificity contributes to the outcome of diabetes in nonobese diabetic mice. 总被引:3,自引:0,他引:3
C Hulbert B Riseili M Rojas J W Thomas 《Journal of immunology (Baltimore, Md. : 1950)》2001,167(10):5535-5538
Type I diabetes mellitus (TIDM) is an autoimmune disorder characterized by T cell-mediated destruction of insulin-producing beta cells in the pancreas. In the nonobese diabetic (NOD) model of TIDM, insulitis and diabetes are dependent on the presence of B lymphocytes; however, the requirement for specificity within the B cell repertoire is not known. To determine the role of Ag-specific B cells in TIDM, V(H) genes with different potential for insulin binding were introduced into NOD as H chain transgenes. VH125 H chain combines with endogenous L chains to produce a repertoire in which 1-3% of mature B cells are insulin specific, and these mice develop accelerated diabetes. In contrast, NOD mice harboring a similar transgene, VH281, with limited insulin binding develop insulitis but are protected from TIDM. The data indicate that Ag-specific components in the B cell repertoire may alter the course of TIDM. 相似文献