首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The black swallowtail butterfly larvae, Papilio polyxenes, are specialist feeders that have adapted to feeding on plants containing high levels of prooxidant allelochemicals. Third, fourth, and fifth instar larvae were tested for their antioxidant enzyme activities, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPOX), using 850-g supernatants from whole-body homogenates. The overall antioxidant enzyme profile for P. polyxenes was high compared to other insects, with activities ranging as follows: SOD, 1.1–7.5; CAT, 124–343; GR, 1.0–7.5; and GPOX, 0 units. To determine whether these antioxidant enzymes were inducible, P. poly xenes larvae were given a prooxidant challenge by dipping parsley leaves (their diet in the initial studies) in solutions of quercetin, such that the leaves became coated with this prooxidant flavonoid. Mid-fifth instar larvae fed on quercetin-coated leaves were assayed for antioxidant enzyme activities as was previously done with the larvae fed the standard diet. Food consumption and quercetin intake were monitored. SOD activity was increased almost twofold at the highest quercetin concentration tested. CAT and GR activity, on the other hand, were inhibited by increased quercetin consumption, with GR activity completely inhibited at the highest quercetin concentration after 12 h of feeding. GPOX activity, not present in control insects, was also not inducible by a quercetin challenge. These studies point out the key role that the antioxidant enzymes play in insect defenses against plant prooxidants.  相似文献   

2.
The black swallowtail butterfly, Papilio polyxenes, larvae are specialized feeders of pro-oxidant rich plants of Apiaceae and Rutaceae. An important defense against toxic forms of oxygen species generated by ingestion of the pro-oxidants, are the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), GSH-dependent glutathione peroxidases (selenium-dependent glutathione peroxidase [GPOX] and peroxidase activity of selenium-independent glutathione-S-transferase [GTpx]), and glutathione reductase (GR). The subcellular distribution of these enzymes in black swallowtail larvae was investigated and was found to resemble the patterns described for larvae of two other lepidopteran species: the southern armyworm, Spodoptera eridania, and the cabbage looper, Trichoplusia ni. The confinement of SOD in the cytosol and mitochondria was typically eukaryotic, but the relative proportion (1:1) was markedly different from the mammalian pattern (4:1; cytosol:mitochondria). The most obvious difference between the black swallowtail and other lepidoptera as a group, and mammalian species, is in very wide intracellular distributions of CAT, GTpx, and GR in insect species. Insects possess very low levels of a GPOX-like activity which reduces both H2O2 and organic peroxides. Consequently, insects have elaborate activities with a wide subcellular distribution of both CAT which decomposes H2O2, and GTpx which decomposes organic peroxides. The reduction of peroxides is dependent on GSH, which in this process is oxidized to GSSG. GR which reduces GSSG to GSH is also of wide subcellular distribution, analogous to the distribution pattern of GTpx.  相似文献   

3.
In mid-fifth-instar larvae of the southern armyworm, Spodoptera eridania, the subcellular distribution of four antioxidant enzymes—superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPOX), and glutathione reductase (GR)—were examined. Two-thirds (4.26 units ·mg protein?1) of the SOD activity was found in the cytosol, and one-thirds (2.13 units ·mg protein?1) in the mitochondria. CAT activity was unusually high and not restricted to the microsomal fraction where peroxisomes are usually isolated. The activity was distributed as follows: cytosol (163 units) mitochondria (125 units) and microsomes (119 units). Similar to CAT, the subcellular compartmentalization of both GPOX and GR was unusual. No activity was detected in the cytosol, but in mitochondria and microsomes, GR levels were 5.49 and 3.09 units. Although GPOX activity exhibited 14–16-fold enrichment in mitochondria and microsomes, respectively, over the 850g crude homogenate, the level was negligible (mitochondria = 1.4 × 10?3 units; microsomes = 1.6 × 10?3 units), indicating that this enzyme is absent. The unusual distribution of CAT has apparently evolved as an evolutionary answer to the absence of GR from the cytosol, and the lack of GPOX activity.  相似文献   

4.
Nitric oxide (NO) acts in a concentration and redox-dependent manner to counteract oxidative stress either by directly acting as an antioxidant through scavenging reactive oxygen species (ROS), such as superoxide anions (O2?*), to form peroxynitrite (ONOO?) or by acting as a signaling molecule, thereby altering gene expression. NO can interact with different metal centres in proteins, such as heme-iron, zinc–sulfur clusters, iron–sulfur clusters, and copper, resulting in the formation of a stable metal–nitrosyl complex or production of varied biochemical signals, which ultimately leads to modification of protein structure/function. The thiols (ferrous iron–thiol complex and nitrosothiols) are also involved in the metabolism and mobilization of NO. Thiols bind to NO and transport it to the site of action whereas nitrosothiols release NO after intercellular diffusion and uptake into the target cells. S-nitrosoglutathione (GSNO) also has the ability to transnitrosylate proteins. It is an NO˙ reservoir and a long-distance signaling molecule. Tyrosine nitration of proteins has been suggested as a biomarker of nitrosative stress as it can lead to either activation or inhibition of target proteins. The exact molecular mechanism(s) by which exogenous and endogenously generated NO (or reactive nitrogen species) modulate the induction of various genes affecting redox homeostasis, are being extensively investigated currently by various research groups. Present review provides an in-depth analysis of the mechanisms by which NO interacts with and modulates the activity of various ROS scavenging enzymes, particularly accompanying ROS generation in plants in response to varied abiotic stress.  相似文献   

5.
Many secondary plant compounds are capable of photoactivation resulting in the production of toxic species of oxygen. One mechanism of defense for insects feeding on phototoxic plants may be the presence of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPOX), and glutathione reductase (GR). The activities of these enzymes were examined in larvae of three lepidoptera: Ostrinia nubilalis, Manduca sexta, and Anaitis plagiata. Highest levels of antioxidant enzyme activity were found in A. plagiata, a specialist feeder on Hypericum perforatum, which contains high levels of the phototoxin hypericin. Larvae of A. plagiata fed leaf discs treated with hypericin exhibited a short-term, concentration-dependent decline in enzyme activity. Longer term studies with A. palgiata fed either the photoxic H. perforatum, or the closely related but non-phototoxic H. calycinum, resulted in increased CAT and GR activity in larvae fed the phototoxic plant whereas SOD activity was not significantly different. These results suggest that CAT and GR may be inducible defenses against phototoxins.  相似文献   

6.
Effects of Cadmium on Antioxidant Enzyme Activities in Sugar Cane   总被引:11,自引:0,他引:11  
Sugar cane (Saccharum officinarum L. cv. Copersucar SP80-3280) seedlings were grown in nutrient solution with varying concentrations (0, 2 and 5 mM) of cadmium chloride for 96 h. Leaves were analysed for catalase (CAT), glutathione reductase (GR) and superoxide dismutase (SOD) activities. Although a clear effect of CdCl2 on plant growth was observed, the activity of SOD was not altered significantly. However, the CAT activity decreased as the concentration of CdCl2 increased. GR exhibits a significant increase in activity at 2 and 5 mM CdCl2. CAT and SOD isoenzymes were further characterised by analysis in non-denaturing PAGE. Activity staining for SOD revealed up to seven isoenzymes in untreated control and 2 mM CdCl2 treated plants, corresponding to Cu/Zn-SOD isoenzymes. At 5 mM CdCl2, only six Cu/Zn-SOD isoenzymes were observed. No Fe-SOD and Mn-SOD isoenzymes were detected. For CAT, one band of activity was observed.  相似文献   

7.
The aim of the study was to establish a 96-well microtiter plate-based reporter gene assay to test the influence of natural compounds on the promoter activities of rat catalase, human glutathione peroxidase and human superoxide dismutase expressed in V79 cells. Luciferase expression vectors with the promoter regions of the genes coding for the three above-mentioned enzymes were constructed and transfected into V79 cells. Thereafter the ability of sodium ascorbate, L-carnitine, catechin, epigallocatechin gallate, genistein, paraquat, quercetin, 12-O-tetradecanoylphorbol-13-acetate and Trolox to enhance the promoter activities was evaluated. Genistein, paraquat and quercetin led to a statistically significant increase in the glutathione peroxidase and superoxide dismutase gene promoter activities. None of the compounds tested enhanced the catalase gene promoter activity. The reporter gene assay described in this report is easy to perform, fast and allows one to test a high number of compounds and different concentrations of a single compound at the same time.  相似文献   

8.
Effects of two biosynthetically distinct plant phototoxins—xanthototoxin, a furanocoumarin, and harmine, a β-carboline alkaloid, which are known to produce toxic oxygen species—on the food utilization efficiencies and enzymatic detoxification systems of the polyphagous cabbage looper. Trichoplusia ni (Lepidoptera: Noctuidae), were studied. Newly molted fifth-instar larvae were allowed 36 h to ingest diets containing these two phototoxins at 0.15% wet weight in the presence of near ultraviolet (UVA). The growth and development of the larvae, as well as the corresponding activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPOX), and glutathione reductase (GR) and the detoxification enzyme cytochrome P-450, were measured. Xanthotoxin reduced rates of relative growth and consumption and efficiencies of conversion of ingested and digested food to biomass. Harmine reduced rates of growth and consumption without affecting efficiencies of conversion. Specific activities of SOD, CAT, GPOX, and GR of whole-body homogenates in the absence of compounds were 0.88 units, 153μmol H2O2 decomposed·mg protein?1·min—1, 38.3 nmol NADPH oxidized·mg protein?1·min?1, and 0.56 nmol NADPH oxidized·mg protein?1·min?1, respectively. SOD activity was induced 2.9-fold and 3.8-fold by dietary xanthotoxin and harmine, respectively. CAT and GPOX activities were induced 1.2-fold by harmine only, and GR activity was not changed by either chemical. The P-450 activity toward xanthotoxin in the microsomal fraction of midguts was low (0.15 nmol xanthotoxin metabolized·mg protein?1·min?1) and was not induced by xanthotoxin ingestion. These studies indicate that P-450 and antioxidant enzyme systems may be independent but consequential, the induction of antioxidant enzymes by phototoxins occurring when low P-450 activity toward the phototoxin permits the accumulation of oxidative stress from unmetabolized phototoxin, which in turn induces antioxidant enzymes.  相似文献   

9.
A catalase-deficient mutant (RPr 79/4) and the wild-type (cv. Maris Mink) barley (Hordeum vulgare L.) counterpart, were grown for 3 weeks in high CO2 (0.7%) and then transferred to air and ozone (120 nl 1?1) in the light and shade for a period of 4 days. Leaves and roots were analysed for catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1) and glutathione reductase (GR, EC 1.6.4.2) activities. CAT activity in the leaves of the RPr 79/4 catalase-deficient mutant was around 5-10% of that determined in Maris Mink, but in the roots, both genotypes contained approximately the same levels of activity. CAT activity in Maris Mink increased in the leaves after transferring plants from 0.7% CO2 to air or ozone, reaching a maximum of 5-fold, after 4 days in shade and ozone. For the catalase-deficient mutant, only small increases in CAT activity were observed in light/air and light/ozone treatments. In the roots, CAT activity decreased consistently in both genotypes, after plants were transferred from 0.7% CO2. The total soluble SOD activity in the leaves and roots of both genotypes increased after plants were transferred from 0.7% CO2. The analysis of SOD isolated from leaves following non-denaturing PAGE, revealed the presence of up to eight SOD isoenzymes classified as Mn-SOD or Cu/Zn-SODs; Fe-SOD was not detected. Significant changes in Mn- and Cu/Zn-SOD isoenzymes were observed; however, they could not account for the increase in total SOD activity. In leaves, GR activity also increased in Maris Mink and RPr 79/4, following transfer from 0.7% CO2; however, no constant pattern could be established, while in roots, GR activity was reduced after 4 days of the treatments. The data suggest that elevated CO2 decreases oxidative stress in barley leaves and that soluble CAT and SOD activities increased rapidly after plants were transferred from elevated CO2, irrespective of the treatment (light, shade, air or ozone).  相似文献   

10.
两个品种的大豆叶圆片经10-4mol/L和10-3mol/L的H2O2处理12h后,超氧物歧化酶(SOD)、过氧化氢酶(CAT)与谷胱甘肽还原酶(GR)活性明显增加,但10-2mol/L的H2O2处理却使这些酶活性降低。抗旱性较强的大豆品种小粒豆1号较抗旱性较弱的鲁豆4号能维持较高的叶绿素含量和较高的SOD、CAT及GR活性,对H2O2的抗性较强。50μmol/L的亚胺环已酮(CHM)能消除H2O2对SOD、CAT与GR活性的刺激作用,而同样浓度的放线菌素D(AMD)则不能。  相似文献   

11.
The response of aerobically grown Escherichia coli cells to the cold shock induced by the rapid lowering of growth temperature from 37 to 20°C was found to be basically the same as the oxidative stress response. The enhanced sensitivity of cells deficient in two superoxide dismutases, Mn-SOD and Fe-SOD, and the increased expression of the Mn-SOD gene, sodA, in response to cold stress were interpreted as both oxidative and cold stresses are due to a rise in the intracellular level of superoxide anion. The long-term cultivation of E. coli at 20°C was also accompanied by the typical oxidative stress response reactions—an enhanced expression of the Mn-SOD and catalase HPI genes and a decrease in the intracellular level of reduced glutathione (GSH) and in the GSH/GSSG ratio.  相似文献   

12.
The activity of enzymes participating in the systems of antioxidant protection was assayed in the second leaf and roots of 21-day-old wheat seedlings (Triticum aestivum L.) grown in a medium with nitrate (NO 3 treatment), ammonium (NH+ 4 treatment), or without nitrogen added (N-deficiency treatment). The activities of superoxide dismutase (SOD), peroxidase, ascorbate peroxidase, glutathione reductase, and catalase in the leaves and roots of the NH+ 4 plants was significantly higher than in the plants grown in the nitrate medium. The activity of SOD decreased and ascorbate peroxidase markedly increased in leaves, whereas the activity of ascorbate peroxidase increased in the roots of N-deficient plants, as compared to the plants grown in nitrate and ammonium. Low-temperature incubation (5°, 12 h) differentially affected the antioxidant activity of the studied plants. Whereas leaf enzyme activities did not change in the NH+ 4 plants, the activities of SOD, peroxidase, ascorbate peroxidase, and catalase markedly increased in the NO 3 plants. In leaves of the N-deficient plant, the activity of SOD decreased; however, the activity of other enzymes increased. In response to temperature decrease, catalase activity increased in the roots of NO 3 and NH+ 4-plants, whereas in the N-deficient plants, the activity of peroxidase increased. Thus, in wheat, both nitrogen form and nitrogen deficiency changed the time-course of antioxidant enzyme activities in response to low temperature.  相似文献   

13.
The responses of antioxidative system of rice to chilling were investigated in a tolerant cultivar, Xiangnuo-1, and a susceptible cultivar, IR-50. The electrolyte leakage and malondialdehyde content of Xiangnuo-1 were little affected by chilling treatment but those of IR-50 increased. Activities of suoperoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase, and ascorbic acid content of Xiangnuo-1 were remained high, while those of IR-50 decreased under chilling. The results indicated that higher activities of defense enzymes and higher content of antioxidant under stress were associated with tolerance to chilling.  相似文献   

14.
Larvae of the black swallowtail butterfly, Papilio polyxenes, the southern armyworm, Spodoptera eridania, and the cabbage looper, Trichoplusia ni, have different feeding habits and dietary breadth, which contributes to differences in their exposure and tolerance to dietary prooxidant allelochemicals. The antioxidant enzyme activities of larvae of these insects have been previously determined, with the levels being P. polyxenes > S. eridania > T. ni. The relative activities of these antioxidant enzymes are consistent with the relative exposure of these insects to prooxidants. This suggests that the antioxidant enzymes may play a role in the defense against allelochemical toxicity in these insects. Dietary diethlydithiocarbamate (DETC), a copper chelating agent and superoxide dismutase (SOD) inhibitor, was shown to inhibit SOD in all three insects. Toxicological studies were conducted using four diets for each insect. The standard diets for each insect were supplemented with either control (solvent), quercetin (a prooxidant), DETC, or DETC plus quercetin. Nontoxic doses of each compound for each insect were used. Inhibition of SOD in P. polyxenes and S. eridania dramatically increased quercetin-induced toxicity as measured by relative growth and consumption rates in these species. DETC had no effect on quercetin toxicity in T. ni. These results elucidate the important role of SOD in the prooxidant allelochemical defense of insects.  相似文献   

15.
This study investigated oxidative stress and the antioxidant response to boron (B) of chickpea cultivars differing in their tolerance to drought. Three‐week‐old chickpea seedlings were subjected to 0.05 (control), 1.6 or 6.4 mm B in the form of boric acid (H3BO3) for 7 days. At the end of the treatment period, shoot length, dry weight, chlorophyll fluorescence, B concentration, malondialdehyte content and the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) were measured. The 1.6 mm B treatment did not cause significant changes in shoot length of cultivars, although shoot length increased in the drought‐tolerant Gökce and decreased in the drought‐sensitive Küsmen after 6.4 mm B treatment. Dry weights of both cultivars decreased with 6.4 mm B treatment. Chlorophyll fluorescence (Fv/Fm) did not change in Gökce at either B level. Nor did it change in Küsmen with 1.6 mm B but Fv/Fm decreased with 6.4 mm B. Boron concentration in the shoots of both cultivars increased significantly with increasing levels of applied B. Significant increases in total SOD activity were observed in shoots of both cultivars given 1.6 and 6.4 mm B. Shoot extracts exhibited five activity bands, two of which were identified as MnSOD and Cu/ZnSOD. In comparison to the control group, all enzyme activities (except APX and SOD) decreased with 1.6 mm B stress. GR activity decreased, while activities of CAT, POX and APX did not change with 6.4 mm B in Küsmen. On the other hand, activities of CAT, APX and SOD increased in Gökce at both B levels. In addition, lipid peroxidation was higher in Küsmen than in Gökce, indicating more damage by B to membrane lipids in the former cultivar. These results suggest that (i) Gökce is tolerant and Küsmen is sensitive to B, and (ii) B tolerance of Gökce might be closely related to increased capacity of the antioxidative system (total SOD, CAT and APX) to scavenge reactive oxygen species and thus suppress lipid peroxidation under B stress. To the best of our knowledge, this is the first report on the antioxidant response of chickpea seedlings to B toxicity.  相似文献   

16.
Bradykinin is considered an important mediator of the inflammatory response in both the peripheral and the central nervous system and it has attracted recent interest as a potential mediator of brain injury following stroke. Bradykinin is recognized to play an important role in ischemic brain. We investigated the effect of bradykinin postconditioning on ischemic damage after 8 min of ischemia (four-vessel occlusion) and 3 days of reperfusion. Bradykinin was administered after 2 days of reperfusion at a dose of 150 μg/kg (i.p.). Catalase (CAT) activity was significantly increased in all examined regions (cortex, hippocampus and striatum) 3 days after 8 min of ischemia, but postconditioning decreased this activity below the control values. The total activity of superoxide dismutase (SOD) 3 days after ischemia was at control level with or without postconditioning. However, the analysis of individual SODs separately revealed interesting differences; while the activity of CuZnSOD was significantly decreased 3 days after ischemia, the activity of MnSOD was significantly increased compared to control levels. In both cases, postconditioning returned SOD activity to control levels. These findings are interesting because MnSOD is a mitochondrial enzyme and its activity in the cytosol suggests that a possible mechanism of protection provided by postconditioning could include prevention of release of mitochondrial proteins to the cytoplasm, resulting in protection against the mitochondrial pathway of apoptosis. 8 min of ischemia alone caused the degeneration of 52.37% neurons in the hippocampal CA1 region 3 days later. Bradykinin used as postconditioning 2 days after the same interval of ischemia enabled the survival of more than 97% of CA1 neurons. This study demonstrated that bradykinin postconditioning induces protection against ischemic brain injury and promotes neuronal survival.  相似文献   

17.
以鲁中山地区的淡水三角涡虫卵囊、幼虫、成虫为材料,研究了涡虫在不同发育过程中3种抗氧化酶SOD、CAT、GSH-Px的活性变化.结果 表明,SOD在发育初期活性增长迅速,在幼虫孵出后活性略减,最后趋于稳定;CAT活性在卵囊阶段活性较低,从幼虫孵出后活性增长很快,并在成体中保持较高的活性;GSH-Px活性在卵囊时期活性较高,从幼虫孵出后活性降低,在成体中活性较低.  相似文献   

18.
In the mid-fifth instar larvae of the cabbage looper moth, Trichoplusia ni, the subcellular distribution of total superoxide dismutase was as follows: 3.05 units (70.0%), 0.97 units (22.3%), and 0.33 units (7.6%) mg-1 protein in the mitochondrial, cytosolic and nuclear fractions, respectively. No superoxide dismutase activity was detected in the microsomal fraction. Catalase activity was unusually high and as follows: 283.4 units (47.3%), 150.1 units (25.1%). 142.3 units (23.8%), and 22.9 units (3.8%) mg-1 protein in the mitochondrial, cytosolic, microsomal (containing peroxisomes), and nuclear fractions. No glutathione peroxidase activity was found, but appreciable glutathione reductase activity was detected with broad subcellular distribution as follows: 3.86 units (36.1%), 3.68 units (34.0%). 2.46 units (23.0%). and 0.70 units (6.5%) mg-1 protein in the nuclear, mitochondrial, and cytosolic fractions, respectively. The unusually wide intracellular distribution of catalase in this phytophagous insect is apparently an evolutionary adaptation to the absence of glutathione peroxidase; hence, lack of a glutathione peroxidase-glutathione reductase role in alleviating stress from lipid peroxidation. Catalase working sequentially to superoxide dismutase, may nearly completely prevent the formation of the lipid peroxidizing OH radical from all intracellular compartments by the destruction of H2O2 which together with O-2 is a precursor of OH.  相似文献   

19.
In this study, we have analyzed superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) activities, biomass accumulation and chlorophyll‐a content in the Arthrospira platensis ‐M2 strain grown at different concentrations of zinc (Zn), tin (Sn) and mercury (Hg). We found that there is a close relationship between chlorophyll‐a content and biomass accumulation in A. platensis ‐M2 strain as a result of Zn, Sn and Hg exposures. Sn was found to be the most toxic heavy metal among others because of the continious inhibition of both biomass and chlorophyll‐a accumulation at 500 and 1000 μg mL?1 concentrations after the third day of the study, while they represented continuous increases at each Zn and Hg concentration over 7 days. Lower concentrations of Zn and Sn stimulate SOD and GR activities remarkably, probably due to oxidative stress caused by heavy metal toxicity. APX activity was significantly lowered by higher concentrations of the three metals used in this study. Our results suggest that higher heavy metal concentrations inhibited SOD, APX and GR activities but biomass and chlorophyll‐a accumulation endured in a time‐dependent manner, possibly due to some different defence mechanisms, which remain to be investigated.  相似文献   

20.
The antioxidant status of potato ( Solanum tuberosum L.) tubers of two genotypes, cv. Désirée and clone 10337de40 was investigated in relation to susceptibility to internal rust spot (IRS), a Ca2+-related physiological disorder. Concentrations of total calcium within the perimedulla tissue of tubers, grown with a restricted (1 m M CaCl2) Ca2+ supply, were similar in cv. Désirée (IRS resistant) and clone 10337de40 (IRS susceptible). A range of antioxidants was assayed in order to assess antioxidant status in both genotypes under the two Ca2+ treatments. Although no appreciable differences were detected between low Ca2+ and control treatments, certain antioxidants were present at significantly higher levels in the IRS resistant genotype, cv. Désirée. These included dehydroascorbate reductase (EC 1.8.5.1) activity (more than 100% higher), total glutathione content (ca 40% higher), glutathione reductase (EC 1.6.4.2) activity (almost 50% higher), peroxidase (EC 1.11.1.7) activity (ca 60% higher) and superoxide dismutase (EC 1.15.1.1) activity (almost 80% higher). There was no difference in ascorbate content, ascorbate free radical reductase activity (EC 1.6.5.4), α-tocopherol levels and catalase activity (EC 1.11.1.6) between the two genotypes. The possible relationship between resistance to IRS and a superior antioxidant status, found in cv. Désirée, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号