首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Cytosine methylation affects mechanical properties of DNA and potentially alters the hydration fingerprint for recognition by proteins. The atomistic origin for these effects is not well understood, and we address this via all-atom molecular dynamics simulations. We find that the stiffness of the methylated dinucleotide step changes marginally, whereas the neighboring steps become stiffer. Stiffening is further enhanced for consecutively methylated steps, providing a mechanistic origin for the effect of hypermethylation. Steric interactions between the added methyl groups and the nonpolar groups of the neighboring nucleotides are responsible for the stiffening in most cases. By constructing hydration maps, we found that methylation also alters the surface hydration structure in distinct ways. Its resistance to deformation may contribute to the stiffening of DNA for deformational modes lacking steric interactions. These results highlight the sequence- and deformational-mode-dependent effects of cytosine methylation.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Regulation of polarized cell growth is essential for many cellular processes, including spatial coordination of cell morphology changes during growth and division. We present a mathematical model of the core mechanism responsible for the regulation of polarized growth dynamics by the small GTPase Cdc42. The model is based on the competition of growth zones of Cdc42 localized at the cell tips for a common substrate (inactive Cdc42) that diffuses in the cytosol. We consider several potential ways of implementing negative feedback between Cd42 and its GEF in this model that would be consistent with the observed oscillations of Cdc42 in fission yeast. We analyze the bifurcations in this model as the cell length increases, and total amount of Cdc42 and GEF increase. Symmetric antiphase oscillations at two tips emerge via saddle-homoclinic bifurcations or Hopf bifurcations. We find that a stable oscillation and a stable steady state can coexist, which is consistent with the experimental finding that only 50% of bipolar cells oscillate. The mean amplitude and period can be tuned by parameters involved in the negative feedback. We link modifications in the parameters of the model to observed mutant phenotypes. Our model suggests that negative feedback is more likely to be acting through inhibition of GEF association rather than upregulation of GEF dissociation.  相似文献   

15.
16.
Visual sensory impairments are common in Mental Deficiency (MD) and Autism Spectrum Disorder (ASD). These defects are linked to cerebral dysfunction in the visual cortical area characterized by the deregulation of axon growth/guidance and dendrite spine immaturity of neurons. However, visual perception had not been addressed, although the retina is part of the central nervous system with a common embryonic origin. Therefore, we investigated retinal perception, the first event of vision, in a murine model of MD with autistic features. We document that retinal function is altered in Fmr1 KO mice, a model of human Fragile X Syndrome. Indeed, In Fmr1 KO mice had a lower retinal function characterized by a decreased photoreceptors neuron response, due to a 40% decrease in Rhodopsin content and to Rod Outer Segment destabilization. In addition, we observed an alteration of the visual signal transmission between photoreceptors and the inner retina which could be attributed to deregulations of pre- and post- synaptic proteins resulting in retinal neurons synaptic destabilization and to retinal neurons immaturity. Thus, for the first time, we demonstrated that retinal perception is altered in a murine model of MD with autistic features and that there are strong similarities between cerebral and retinal cellular and molecular defects. Our results suggest that both visual perception and integration must be taken into account in assessing visual sensory impairments in MD and ASD.  相似文献   

17.
Nucleosome-depleted regions around which nucleosomes order following the “statistical” positioning scenario were recently shown to be encoded in the DNA sequence in human. This intrinsic nucleosomal ordering strongly correlates with oscillations in the local GC content as well as with the interspecies and intraspecies mutation profiles, revealing the existence of both positive and negative selection. In this letter, we show that these predicted nucleosome inhibitory energy barriers (NIEBs) with compacted neighboring nucleosomes are indeed ubiquitous to all vertebrates tested. These 1 kb-sized chromatin patterns are widely distributed along vertebrate chromosomes, overall covering more than a third of the genome. We have previously observed in human deviations from neutral evolution at these genome-wide distributed regions, which we interpreted as a possible indication of the selection of an open, accessible, and dynamic nucleosomal array to constitutively facilitate the epigenetic regulation of nuclear functions in a cell-type-specific manner. As a first, very appealing observation supporting this hypothesis, we report evidence of a strong association between NIEB borders and the poly(A) tails of Alu sequences in human. These results suggest that NIEBs provide adequate chromatin patterns favorable to the integration of Alu retrotransposons and, more generally to various transposable elements in the genomes of primates and other vertebrates.  相似文献   

18.
19.
The repair of DNA damage requires the ordered recruitment of many different proteins that are responsible for signaling and subsequent repair. A powerful and widely used tool for studying the orchestrated accumulation of these proteins at damage sites is laser microirradiation in live cells, followed by monitoring the accumulation of the fluorescently labeled protein in question. Despite the widespread use of this approach, there exists no rigorous method for characterizing the recruitment process quantitatively. Here, we introduce a diffusion model that explicitly accounts for the unique sizes and shapes of individual nuclei and uses two variables: Deff, the effective coefficient of diffusion, and F, the fraction of mobile protein that accumulates at sites of DNA damage. Our model quantitatively describes the accumulation of three test proteins, poly-ADP-ribose polymerases 1 and 2 (PARP1/2) and histone PARylation factor 1. Deff for PARP1, as derived by our approach, is 6× greater than for PARP2 and in agreement with previous literature reports using fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. Our data indicate that histone PARylation factor 1 arrives at sites of DNA damage independently of either PARP. Importantly, our model, which can be applied to existing data, allows for the direct comparison of the coefficient of diffusion for any DNA repair protein between different cell types, obtained in different laboratories and by different methods, and also allows for the interrogation of cell-to-cell variability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号