首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mouse prostate gland develops by branching morphogenesis from the urogenital epithelium and mesenchyme. Androgens and developmental factors, including FGF10 and SHH, promote prostate growth (Berman, D.M., Desai, N., Wang, X., Karhadkar, S.S., Reynon, M., Abate-Shen, C., Beachy, P.A., Shen, M.M., 2004. Roles for Hedgehog signaling in androgen production and prostate ductal morphogenesis. Dev. Biol. 267, 387-398; Donjacour, A.A., Thomson, A.A., Cunha, G.R., 2003. FGF-10 plays an essential role in the growth of the fetal prostate. Dev. Biol. 261, 39-54), while BMP4 signaling from the mesenchyme has been shown to suppresses prostate branching (Lamm, M.L., Podlasek, C.A., Barnett, D.H., Lee, J., Clemens, J.Q., Hebner, C.M., Bushman, W., 2001. Mesenchymal factor bone morphogenetic protein 4 restricts ductal budding and branching morphogenesis in the developing prostate. Dev. Biol. 232, 301-314). Here, we show that Bone Morphogenetic Protein 7 (BMP7) restricts branching of the prostate epithelium. BMP7 is expressed in the periurethral urogenital mesenchyme prior to formation of the prostate buds and, subsequently, in the prostate epithelium. We show that BMP7(lacZ/lacZ) null prostates show a two-fold increase in prostate branching, while recombinant BMP7 inhibits prostate morphogenesis in organ culture in a concentration-dependent manner. We further explore the mechanisms by which the developmental signals may be interpreted in the urogenital epithelium to regulate branching morphogenesis. We show that Notch1 activity is associated with the formation of the prostate buds, and that Notch1 signaling is derepressed in BMP7 null urogenital epithelium. Based on our studies, we propose a model that BMP7 inhibits branching morphogenesis in the prostate and limits the number of domains with high Notch1/Hes1 activity.  相似文献   

2.
Uremia largely results from the accumulation of organic waste products normally cleared by the kidneys, which commonly accompanies kidney failure and chronic kidney disease. However, genetic investigations in a uremia remain largely unclear. This study aimed to determine the expression patterns of distal-less homeobox 5 (DLX5) in uremia rat model and further to study its effects on glomerulosclerosis and interstitial fibrosis. Uremic expression chip was applied to screen differentially expressed genes in uremia. Next, we used small interfering RNA-mediated RNA interference to specifically silence DLX5 in experimental uremic rats to understand the regulatory mechanism of DLX5. To understand effect of Notch1 signaling pathway in uremia, we also treated experimental uremic rats with γ-secretase inhibitor (GSI), an inhibitor of Notch1 signaling pathway. The expression of fibronectin (FN), laminin (LN), transforming growth factor-β1 (TGF-β1), Hes1, Hes5, and Jagged2 was determined. The semiquantitative assessment was applied to verify the effects of DLX5 on glomerulosclerosis. In the uremic expression chip, we found that DLX5 was upregulated in uremia samples, and considered to regulate the Notch signaling pathway. We found that small interfering RNA-mediated DLX5 inhibition or Notch1 signaling pathway inhibitory treatment relieved and delayed the kidney injury and glomerulosclerosis in uremia. Meanwhile, inhibition of DLX5 or Nothch1 signaling pathway reduced expression of FN, LN, Nothch1, TGF-β1, Hes1, Hes5, and Jagged2. Intriguingly, we discovered that Notch1 signaling pathway was inhibited after silencing DLX5. In conclusion, these findings highlight that DLX5 regulates Notch signaling, which may, in turn, promote complications of uremia such as kidney fibrosis, providing a novel therapeutic target for treating uremia.  相似文献   

3.
Epilepsy was characterized by the occurrence of spontaneous recurrent epileptiform discharges (SREDs) in neurons. Previous studies suggested that microRNA (miR)−139-5p and the Notch pathway were implicated in epilepsy; however, their interaction remained vague. Rat primary hippocampal neurons were isolated and identified by immunofluorescence staining. The cells were then used for SREDs model construction and further subjected to flow cytometry for apoptosis detection. Contents of lactate dehydrogenase (LDH), malondialdehyde (MDA), super oxidase dismutase (SOD) contents, and reactive oxygen species (ROS), and the level of mitochondrial membrane potential (MMP) were determined using commercial kits. Target gene and potential binding sites of miR-139-5p were predicted with TargetScan and confirmed by dual-luciferase reporter assay. Expressions of miR-139-5p, Notch pathway-related proteins and apoptosis-related proteins were measured by quantitative real-time polymerase chain reaction and western blot as needed. The results showed that the hippocampal neurons were microtubule-associated protein 2 (MAP2)-positive. miR-139-5p was downregulated in SREDs model cells. SREDs promoted apoptosis and increased the contents of LDH, MDA, and ROS and the level of MMP while reducing miR-139-5p expression and SOD content in cells, which was reversed by miR-139-5p overexpression. Notch-1 was recognized as the target gene of miR-139-5p, and its expression was negatively regulated by miR-139-5p. Besides, Notch-1 overexpression reversed the effects of miR-139-5p upregulation on the expressions of Notch pathway-related proteins and apoptosis-related proteins, cell apoptosis, oxidative stress and MMP in SREDs-treated cells. Our results indicated that miR-139-5p upregulation alleviated SREDs-induced oxidative stress and cell apoptosis via regulating the Notch pathway, which provides new insights into the role of miRNA in the occurrence and development of epilepsy.  相似文献   

4.
5.
6.
Ossification of the ligamentum flavum (OLF) is a pathology almost only reported in East Asian countries. The leading cause of OLF is thoracic spinal canal stenosis and myelopathy. In this study, the role of miR‐199b‐5p and jagged 1 (JAG1) in primary ligamentum flavum cell osteogenesis was examined. MiR‐199b‐5p was found to be down‐regulated during osteogenic differentiation in ligamentum flavum cells, while miR‐199b‐5p overexpression inhibited osteogenic differentiation. In addition, JAG1 was found to be up‐regulated during osteogenic differentiation in ligamentum flavum cells, while JAG1 knockdown via RNA interference caused an inhibition of Notch signalling and osteogenic differentiation. Moreover, target prediction analysis and dual luciferase reporter assays supported the notion that JAG1 was a direct target of miR‐199b‐5p, with miR‐199b‐5p found to down‐regulate both JAG1 and Notch. Further, JAG1 knockdown was demonstrated to block the effect of miR‐199b‐5p inhibition. These findings imply that miR‐199b‐5p performs an inhibitory role in osteogenic differentiation in ligamentum flavum cells by potentially targeting JAG1 and influencing the Notch signalling pathway.  相似文献   

7.
The Notch signaling pathway plays an important role in many cell-fate decisions during development. Here we investigate the regulation and function of the conserved gene XNAP, which is a member of the Delta-Notch synexpression group in Xenopus. XNAP encodes a small protein with two C-terminal tandem ankyrin repeats which is expressed in the neurectoderm and in the presomitic mesoderm in a pattern that resembles that of other component of the Notch pathway. When a myc-tag form of XNAP is overexpressed in Xenopus or Hela cells, XNAP protein is detected both in the nucleus and the cytoplasm. In embryos and in animal cap assays, XNAP expression is activated, perhaps directly, by the Notch pathway and this activation appears to be Su(H) dependent. Overexpression of XNAP in embryos decreases Notch signaling, which leads to an increase in the number of primary neurons that form within the domains of the neural plate where neurogenesis normally occurs. In culture Hela cells, XNAP overexpression interferes with ICD activation of a Notch regulated reporter gene. Together, these data indicate that XNAP is a novel target of the Notch pathway that may, in a feedback loop, modulate its activity.  相似文献   

8.
Murakumo Y 《Mutation research》2002,510(1-2):37-44
Translesion DNA synthesis (TLS) is an important damage tolerance system which rescues cells from severe injuries caused by DNA damage. Specialized low fidelity DNA polymerases in this system synthesize DNA past lesions on the template DNA strand, that replicative DNA polymerases are usually unable to pass through. However, in compensation for cell survival, most polymerases in this system are potentially mutagenic and sometimes introduce mutations in the next generation. In yeast Saccharomyces cerevisiae (S. cerevisiae), DNA polymerase ζ, which consists of Rev3 and Rev7 proteins, and Rev1 are known to be involved in most damage-induced and spontaneous mutations. The human homologs of S. cerevisiae REV1, REV3, and REV7 were identified, and it is revealed that the human REV proteins have similar functions to their yeast counterparts, however, a large part of the mechanisms of mutagenesis employing REV proteins are still unclear. Recently, the new findings about REV proteins were reported, which showed that REV7 interacts not only with REV3 but also with REV1 in human and that REV7 is involved in cell cycle control in Xenopus. These findings give us a new point of view for further investigation about REV proteins. Recent studies of REV proteins are summarized and several points are discussed.  相似文献   

9.
10.
Gao HW  Zhao JF  Yang QZ  Liu XH  Chen L  Pan LT 《Proteomics》2006,6(19):5140-5151
The interactions of 2', 4', 5', 7'-tetrabromo-4, 5, 6, 7-tetrachlorofluorescein (TBTCF) with BSA, ovalbumin (OVA) and poly-L-lysine (PLYS) at pH 3.70 have been investigated by combination of the spectral correction technique and the Langmuir isothermal adsorption. The active connection actions such as ion pairs, van der Waals' force, hydrogen bond, hydrophobic bond were proposed to explain the non-covalent interaction between TBTCF and BSA, OVA and PLYS. Effects of the electrolyte and high temperature indicated that union of the active connections between TBTCF and BSA and OVA was too firm to be destroyed. The relationship between the binding number of TBTCF and variety fraction of the amino acid residues was analyzed. The binding number of TBTCF depended on the number of positively charged amino acid residues. The other amino acid residues surrounded and seized TBTCF by hydrogen bonds and hydrophobic bonds when the electrostatic attraction pulled TBTCF to link protein. In addition, a novel method named the absorbance ratio difference was established for determination of protein in trace level and was applied with much higher sensitivity than the ordinary method.  相似文献   

11.
The formation of somites in the course of vertebrate segmentation is governed by an oscillator known as the segmentation clock, which is characterized by a period ranging from 30 min to a few hours depending on the organism. This oscillator permits the synchronized activation of segmentation genes in successive cohorts of cells in the presomitic mesoderm in response to a periodic signal emitted by the segmentation clock, thereby defining the future segments. Recent microarray experiments [Dequeant, M.L., Glynn, E., Gaudenz, K., Wahl, M., Chen, J., Mushegian, A., Pourquie, O., 2006. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314, 1595-1598] indicate that the Notch, Wnt and Fibroblast Growth Factor (FGF) signaling pathways are involved in the mechanism of the segmentation clock. By means of computational modeling, we investigate the conditions in which sustained oscillations occur in these three signaling pathways. First we show that negative feedback mediated by the Lunatic Fringe protein on intracellular Notch activation can give rise to periodic behavior in the Notch pathway. We then show that negative feedback exerted by Axin2 on the degradation of β-catenin through formation of the Axin2 destruction complex can produce oscillations in the Wnt pathway. Likewise, negative feedback on FGF signaling mediated by the phosphatase product of the gene MKP3/Dusp6 can produce oscillatory gene expression in the FGF pathway. Coupling the Wnt, Notch and FGF oscillators through common intermediates can lead to synchronized oscillations in the three signaling pathways or to complex periodic behavior, depending on the relative periods of oscillations in the three pathways. The phase relationships between cycling genes in the three pathways depend on the nature of the coupling between the pathways and on their relative autonomous periods. The model provides a framework for analyzing the dynamics of the segmentation clock in terms of a network of oscillating modules involving the Wnt, Notch and FGF signaling pathways.  相似文献   

12.
13.
目的: 探讨迷走神经刺激(VNS)对难治性癫痫(IE)模型大鼠海马神经炎性反应及α7nAChR表达的影响。方法: 80只成年雄性SD大鼠,SPF级,随机分为对照组、模型组、VNS组、甲基牛扁亭(MLA)+VNS组,其中对照组与MLA+VNS组分别20只,模型组与VNS组因模型制作失败与动物死亡,分别剩下15只和14只。除对照组之外,其余各组皆通过腹腔注射皮罗卡品建立氯化锂-皮罗卡品IE大鼠模型。对照组仅分离迷走神经,不采取电刺激;模型组不采取任何干预措施;VNS组在模型制作成功后7 d采取VNS,连续4周;MLA+VNS组先侧脑室给药MLA(3.4 μg/μl,5 μl),然后给予VNS,连续4周。观察并记录各组大鼠癫痫发作的次数与持续时间的变化;然后断头处死大鼠,快速分离海马并制备10%组织匀浆,离心并提取上清液,通过分光光度法测定上清液中AChE、ChAT活性;ELISA法检测TNF-ɑ、IL-6和IL-1β表达;Western blot检测海马组织α7nAChR蛋白表达;免疫荧光染色法检测海马组织α7nAChR与小胶质细胞共表达。结果: ①通过VNS治疗4周后,大鼠癫痫发作的频率以及持续的时间都明显低于模型组(P<0.01);MLA阻断后在给予VNS,大鼠癫痫发作的频率以及持续的时间也明显低于模型组,但高于VNS组(P<0.01)。②与对照组比较,模型组大鼠海马组织ChAT表达明显下降,AChE表达明显升高(P<0.01);与模型组比较,VNS组与MLA+VNS组大鼠海马组织ChAT表达明显升高,AChE表达明显降低(P< 0.01);与VNS组比较,MLA+VNS组大鼠海马组织ChAT、AChE表达无明显变化(P>0.05)。③与对照组比较,模型组大鼠海马组织TNF-ɑ、IL-6和IL-1β表达明显升高(P<0.01);与模型组比较,VNS组大鼠海马组织TNF-ɑ、IL-6和IL-1β表达明显降低(P<0.01);与VNS组比较,MLA+VNS组大鼠海马组织TNF-ɑ、IL-6和IL-1β表达明显升高(P<0.01)。④与对照组比较,模型组大鼠海马组织以及小胶质细胞上α7nAChR表达明显降低(P<0.01);与模型组比较,VNS组大鼠海马组织以及小胶质细胞上α7nAChR表达明显上调(P<0.01);与VNS组比较,MLA+VNS组海马小胶质细胞上共表达α7nAChR数量明显减少(P<0.01)。结论: VNS对IE大鼠有明显的治疗作用,其机制可能是通过直接激活海马小胶质细胞CAP,抑制海马神经炎性反应来实现的。  相似文献   

14.
The Notch signaling pathway is critical in cell fate specification throughout development. In the developing wing disc, single sensory organ precursors (SOPs) are selected from proneural clusters via a process of lateral inhibition mediated by the Notch signaling pathway. The epidermal growth factor receptor (EGFR) pathway has also been implicated in SOP formation. Here, we describe the Drosophila melanogaster gene friend of echinoid (fred), a paralogue of echinoid (ed), a gene recently identified as a negative regulator of the EGFR pathway. fred function was examined in transgenic flies by using inducible RNA interference (RNAi). Suppression of fred in developing wing discs results in specification of ectopic SOPs, additional microchaeta, and cell death. In eye-antennal discs, fred suppression causes a rough eye phenotype. These phenotypes are suppressed by overexpression of Notch, Suppressor of Hairless [Su(H)], and Enhancer of split m7. In contrast, overexpression of Hairless, a negative regulator of the Notch pathway, and decreased Su(H) activity enhance these phenotypes. Thus, fred acts in close concert with the Notch signaling pathway. Dosage-sensitive genetic interaction also suggests a close relationship between fred and ed.  相似文献   

15.
16.
Oxidized low-density lipoprotein contains many potentially proatherogenic molecules, including oxysterols, which have been shown to induce apoptosis in various cell lines. The aim of this study was to investigate the pathway of apoptosis induced by oxidized low-density lipoprotein and the oxysterols, 7beta-hydroxycholesterol and cholesterol-5beta,6beta-epoxide, in two human monocytic cell lines. The HL-60 cells appeared to be more sensitive to oxidized low-density lipoprotein than U937 cells, whereas the isolated oxysterols were more potent inducers of apoptosis in the U937 cells. Caspase-2 inhibition decreased the number of viable cells in oxidized low-density lipoprotein-treated samples; however, it protected against cholesterol-5beta,6beta-epoxide-induced cell death. Western blot analysis was utilized to examine the effect of caspase-2 inhibition on the expression of the antiapoptotic protein Bcl-2. Pretreatment with the inhibitor protected against the decrease in Bcl-2 expression in oxidized low-density lipoprotein- and 7beta-hydroxycholesterol-treated U937 cells. In HL-60 cells, Bcl-2 was overexpressed in oxidized low-density lipoprotein-treated cells, but in the presence of the inhibitor Bcl-2 expression was returned to control levels. Depleted ATP concentrations in the cells suggest that both apoptosis and necrosis may have occurred simultaneously. Our results highlight differences in the signaling pathways induced by oxidized low-density lipoprotein, 7beta-hydroxycholesterol, and cholesterol-5beta,6beta-epoxide in U937 and HL-60 cells.  相似文献   

17.
18.
19.
Human papillomavirus (HPV) is the most common sexually transmitted infectious agent worldwide, being also responsible for 5% of all human cancers. The integration and hypermethylation mechanisms of the HPV viral genome promote the unbalanced expression of the E6, E7 and E5 oncoproteins, which are crucial factors for the carcinogenic cascade in HPV-induced cancers. This review highlights the action of E6, E7 and E5 over key regulatory targets, promoting all known hallmarks of cancer. Both well-characterized and novel targets of these HPV oncoproteins are described, detailing their mechanisms of action. Finally, this review approaches the possibility of targeting E6, E7 and E5 for therapeutic applications in the context of cancer.  相似文献   

20.
Cervical cancer (CCa) is the second most frequent carcinoma in females and human papilloma virus (HPV) oncoproteins are regarded as one of the critical etiological agent. Despite recent advances in screening and management of CCa, still it remains the deadliest carcinoma as advanced and metastatic stages are mostly incurable. This urges for the development of newer therapeutic interventions. The current was aimed to investigate the antiproliferative and apoptotic potential of glycyrrhizin (Gly) against HPV16+ CaSki CCa cells. Our findings substantiated that Gly exerted antiproliferative effects on the CaSki cells by obstructing their proliferation rate. Gly substantially enhanced apoptosis in Caski cells in a dose-dependent manner via augmenting the generation of ROS, DNA fragmentation and disruption of the mitochondrial membrane potential. Gly mediated apoptosis in CaSki cells was found to be due to activation of caspase-8 and capsase-9 along with the modulation of pro-and anti-apoptotic gene expression. Moreover, Gly halts the progression of CaSki cells at G0/G1 phase which was found to be due to reduced expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4) along with the enhanced expression of CDK inhibitor p21Cip1. Further, Gly downregulates the expression of HPV oncoproteins (E6 & E7) along with the inhibition of Notch signaling pathway. Taken together, Gly represents as a potential therapeutic modality for CCa which could rapidly be translated for clinical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号