首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Journal of biomechanics》2014,47(16):3820-3824
We recently reported a mechanistic model to link micro-architectural information to the delamination strength (Sd) of human ascending thoracic aorta (ATA). That analysis demonstrated that the number density (N) and failure energy (Uf) of the radially-oriented collagen fibers contribute to the Sd of both aneurysmal (ATAA) and non-aneurysmal (CTRL-ATA) aortic tissue. Among the set of ATAA samples, we studied specimens from patients displaying bicuspid (BAV) and tricuspid aortic valve (TAV) morphologic phenotypes. Results from our prior work were based on the assumption that the Uf was independent of dissection direction. In the current study, we excluded that assumption and hypothesized that Uf correlates with the Sd of ATAA. To test the hypothesis, we used previously-reported experimentally-determined Sd measurements and N of radially-oriented collagen fibers as input in our validated mechanistic model to calculate Uf for BAV-ATAA, TAV-ATAA and CTRL-ATA tissue specimens. The results of our analysis revealed that Uf is significantly lower for both BAV-ATAA and TAV-ATAA compared to CTRL-ATA cases, and does not differ between BAV-ATAA and TAV-ATAA. Furthermore, we found that Uf is consistent between circumferential-radial and longitudinal-radial planes in either of BAV-ATAA, TAV-ATAA or CTRL-ATA specimens. These findings employ a novel mechanistic model to increase our understanding of the putative interrelationship between biomechanical properties, extracellular matrix biology, and failure energy of aortic dissection.  相似文献   

2.
Thoracic aortic aneurysm/dissection (TAAD) is a life-threatening cardiovascular disorder. Endoplasmic reticulum stress (ERS) and vascular smooth muscle cell (VSMC) apoptosis are involved in TAAD progression. The Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) pathway is associated with VSMC apoptosis. Serum Angiopoietin-Like Protein 8 (ANGPTL8) levels are associated with aortic diameter and rupture rate of TAAD. However, a direct role of ANGPTL8 in TAAD has not been determined. β-Aminopropionitrile monofumarate (BAPN) was used to induce TAAD in C57BL/6 mice. ANGPTL8 knockout mice were used to detect the effects of ANGPTL8 on TAAD development. ANGPTL8knockdown in vitro was used to analyze the role of ANGPTL8 in VSMCs and ERS. In addition, over-expression of ANGPTL8 in VSMCs and a PERK inhibitor were used to assess the effect of ANGPTL8 on the PERK pathway. ANGPTL8 levels were increased in the aortic wall and VSMCs of BAPN-induced TAAD mice. Compared with BAPN-treated wild-type mice, ANGPTL8 knockout significantly reduced the rupture rate of TAAD to 0 %. In addition, the protein levels of proinflammatory cytokines and matrix metalloproteinase 9 (MMP9) and ERS proteins were decreased in the aorta wall. Angptl8 shRNA decreased MMP9 and ERS protein levels in VSMCs in vitro. Overexpression of ANGPTL8 significantly increased the levels of ERS proteins and MMPs, while a PERK inhibitor significantly decreased the effects of ANGPTL8 in VSMCs. ANGPTL8 contributed to TAAD development by inducing ERS activation and degradation of extracellular matrix in the aorta wall. Inhibition of ANGPTL8 may therefore represent a new strategy for TAAD therapy.  相似文献   

3.
Biomechanics and Modeling in Mechanobiology - Previous studies have shown that the rupture properties of an ascending thoracic aortic aneurysm (ATAA) are strongly correlated with the pre-rupture...  相似文献   

4.
Summary Larger deletions are a rare cause of -thalassemia. We report a further instance of a deletion comprising about 300 bp in a female heterozygote. Exon 1, part of IVS-1 and the 5 -globin gene promoter region are lost.  相似文献   

5.
Abdominal aortic aneurysm (AAA) is a complex remodeling process that involves both synthesis and degradation of extracellular matrix proteins in the aortic wall, leading to decreased tensile strength, progressive dilation and eventual rupture. Chronic inflammation, increased local production of elastin-degrading proteases by inflammatory cells and destruction of medial elastic lamellae play important roles in aneurysm progression. Neovascularization in all layers of the arterial wall is prominent and angiogenesis can facilitate chronic inflammation. It is still unclear what initiates aneurysmal dilation and what determines its progression. The complex nature of the process has defied elucidation. Apart from macrophages, the predominant immune cell infiltrates reported so far are CD3(+)T cells that express CD4 and CD8. Infiltrates of type 2 Th cells and their production of IL-4 and IL-5 have been implicated in AAA development. However, NKT and NK cells have a Th0 cytokine profile and can also produce type 2 as well as type 1 (IL-2 and IFNgamma) cytokines. We have demonstrated the presence of NK and NKT cells in AAA tissue. With their growing importance in autoimmunity and transplantation, they may play a role in AAA development. Therefore, there is a need to use a combination of T and NK markers to fully characterize both innate and adaptive lymphoid cell subsets in local inflammatory infiltrates in order to elucidate their roles in AAA progression.  相似文献   

6.
A proteomic approach was used to investigate the dynamic cellular host cell response induced by influenza virus infection in two different vaccine production cell lines, MDCK and Vero. For identification of proteins possibly involved in global host cell response mechanisms and virus–host cell interactions in these producer cell lines, quantitative 2-D DIGE and nanoHPLC-nanoESI-MS/MS analysis were performed. In particular, host cell proteome alterations caused by infection with influenza virus variants showing differences in replication characteristics in MDCK cells were compared. Moreover, the host cell response to virus infection in Vero cells with respect to their deficiency in interferon (IFN) production and the need for virus adaptation to optimize productivity of this cell line were analyzed. Several proteins with differential abundance profiles were identified and Western blot analysis was performed for further confirmation of selected proteins. IFN-induced signal transduction, cytoskeleton remodeling, vesicle transport and proteolysis were the principal pathways that changed in infected MDCK cells. In Vero cells alterations of cell interactions, heat shock and oxidative stress response were detected. The findings will improve understanding of host cell response mechanisms during influenza vaccine production and viral strategies to evade these responses and to replicate efficiently in different cell lines.  相似文献   

7.
8.
Human tissue from uninvolved liver of cancer patients was fractionated using differential centrifugation and characterized for 11βHSD enzyme activity against corticosterone, dehydrocorticosterone, 7α- and 7β-hydroxy-dehydroepiandrosterone, and 7-oxo-dehydroepiandrosterone. An enzyme activity was observed in nuclear protein fractions that utilized either NADP+ or NAD+, but not NADPH and NADH, as pyridine nucleotide cofactor with Km values of 12 ± 2 and 390 ± 2 μM, compared to the Km for microsomal 11βHSD1 of 43 ± 8 and 264 ± 24 μM, respectively. The Km for corticosterone in the NADP+-dependent nuclear oxidation reaction was 102 ± 16 nM, compared to 4.3 ± 0.8 μM for 11βHSD1. The Kcat values for nuclear activity with NADP+ was 1687 nmol/min/mg/μmol, compared to 755 nmol/min/mg/μmol for microsomal 11βHSD1 activity. Inhibitors of 11βHSD1 decreased both nuclear and microsomal enzyme activities, suggesting that the nuclear activity may be due to an enzyme similar to 11βHSD Type 1 and 2.  相似文献   

9.
10.
A previously developed method for quantitative determination of 8-hydroxyguanine by gas chromatography-mass spectrometry was modified to allow measurement of 8-hydroxy-2′-deoxyguanosine in human urine. [4,5,6,8-13C4]8-Hydroxy-2′-deoxyguanosine was prepared by enzymatic coupling of [4,5,6,8-13C4]8-hydroxyguanine to deoxyribose-1-phosphate. Samples of human urine (2 ml) were spiked with the labeled nucleoside (13 nmol) and subjected to solid phase extraction and reversed phase high performance liquid chromatography. The 8-hydroxy-2′-deoxyguanosine thus isolated was hydrolyzed by treatment with aqueous formic acid, and the resulting 8-hydroxyguanine was converted into its tetrakis-trimethylsilyl derivative and subjected to gas-liquid chromatographic-mass spectrometric analysis. Repeated determinations of 8-hydroxy-2′-deoxyguanosine in pools of urine showed coefficients of variation of 5 and 8% at concentrations of 8-hydroxy-2′-deoxyguanosine equal to 18 and 2 nM, respectively. Determination of 8-hydroxy-2′-deoxyguanosine in samples of urine spiked with different amounts of the unlabeled nucleoside showed a mean recovery of 102%. Application of the analytical method to a group of 11 apparently healthy subjects (mean age, 47 years) showed a mean level of endogenously produced 8-hydroxy-2′-deoxyguanosine equal to 1.33 ± 0.29 μmol/mol creatinine. The level recorded for another group of 15 younger subjects (mean age, 28 years) was somewhat higher, that is, 1.58 ± 0.84 μmol/mol creatinine, corresponding to a 24-h production rate of 8-hydroxy-2′-deoxyguanosine equal to 20.6 ± 11.6 nmol (288 ± 140 pmol/24 h · kg body weight). Hemochromatosis is a hereditary disease characterized by increased absorption of iron from the gastrointestinal tract and deposition of iron in organs. Application of the analytical method to a group of 12 patients with hereditary hemochromatosis who were under treatment with venesections showed a mean level of urinary 8-hydroxy-2′-deoxyguanosine equal to 1.39 ± 0.40 μmol/mol creatinine. This value was not significantly different from those of healthy subjects. The fact that these patients had only slight or moderate iron overload at the time of urinary sample collection may have influenced the urinary levels of 8-hydroxy-2′-deoxyguanosine in the present study.  相似文献   

11.
The 3' regulatory regions (3' RRs) of human genes play an important role in regulating mRNA 3' end formation, stability/degradation, nuclear export, subcellular localization and translation and are consequently rich in regulatory elements. Although 3' RRs contain only approximately 0.2% of known disease-associated mutations, this is likely to represent a rather conservative estimate of their actual prevalence. In an attempt to catalogue 3' RR-mediated disease and also to gain a greater understanding of the functional role of regulatory elements within 3' RRs, we have performed a systematic analysis of disease-associated 3' RR variants; 121 3' RR variants in 94 human genes were collated. These included 17 mutations in the upstream core polyadenylation signal sequence (UCPAS), 81 in the upstream sequence (USS) between the translational termination codon and the UCPAS, 6 in the left arm of the 'spacer' sequence (LAS) between the UCPAS and the pre-mRNA cleavage site (CS), 3 in the right arm of the 'spacer' sequence (RAS) or downstream core polyadenylation signal sequence (DCPAS) and 7 in the downstream sequence (DSS) of the 3'-flanking region, with 7 further mutations being treated as isolated examples. All the UCPAS mutations and the rather unusual cases of the DMPK, SCA8, FCMD and GLA mutations exert a significant effect on the mRNA phenotype and are usually associated with monogenic disease. By contrast, most of the remaining variants are polymorphisms that exert a comparatively minor influence on mRNA expression, but which may nevertheless predispose to or otherwise modify complex clinical phenotypes. Considerable efforts have been made to validate/elucidate the mechanisms through which the 3' untranslated region (3' UTR) variants affect gene expression. It is hoped that the integrative approach employed here in the study of naturally occurring variants of actual or potential pathological significance will serve to complement ongoing efforts to identify all functional regulatory elements in the human genome.  相似文献   

12.
Summary With rare exceptions, the more than 600 human hemoglobin variants described are caused by a single point mutation. Other abnormal features, such as unequal crossing-over, frameshift mutagenesis or double mutations in the same polypeptide chain, have seldom been encountered. We report two new variants caused by such rare mutational events. Hb Zaïre [116(GH4)-His-Leu-Pro-Ala-Glu-117 (GH5)] is the second example in which a short amino acid sequence is inserted within the -chain. This abnormal hemoglobin results from a tandem repetition of 5 amino-acid residues, from sequence 112 through 116, at the end of the GH corner. Hb Duino is an unstable hemoglobin. It presents within the same -chain, the association of two rare point mutations; these substitutions are those found in Hb Newcastle [92(F8)HisPro] and in Hb Camperdown [104(G6)ArgSer]. Family studies demonstrated that the Hb Newcastle abnormality was a de novo mutation of a gene already carrying the Hb Camperdown substitution.  相似文献   

13.
This study explored the potential of β-cyclodextrin to improve the aqueous solubility and dissolution of danazol, investigated a simple and less expensive method for preparation of a danazol-β-cyclodextrin binary system, and explored the potential application of a danazol-β-cyclodextrin binary system as a single-dose emergency contraceptive. Phase solubility analysis indicated formation of a first-order soluble complex with stability constant 972.03 M−1, while Job's plot affirmed 1∶1 stoichiometry. The hyperchromic shift in the UV-Vis spectrum of danazol in the presence of β-cyclodextrin indicated solubilization capability of β-cyclodextrin for danazol. The extrinsic Cotton effect with a negative peak at 280.7 nm confirmed the inclusion of danazol in the asymmetric locus of β-cyclodextrin.1H-nuclear magnetic resonance analysis suggested that the protons of the steroidal skeleton of danazol display favorable interactions with the β-cyclodextrin cavity. The danazol-β-cyclodextrin binary system was prepared by kneading, solution, freeze-drying, and milling methods. The extent of the enhancement of dissolution rate was found to be dependent on the preparation method. Dissolution studies showed a similar relative dissolution rate (2.85) of the danazol-β-cyclodextrin binary system prepared by the freeze-drying and milling (in the presence of 13% moisture) methods. In a mouse model, the danazol-β-cyclodextrin binary system at 51.2 mg/kg (equivalent to a 400-mg human dose) showed 100% inhibition of implantation when given postcoitally. Moreover, the danazol-β-cyclodextrin binary system is safe up to 2000 mg/kg in the mouse (15.52 g/70 kg human) as a single oral dose. Thus, the danazol-β-cyclodextrin binary system could serve as a new therapeutic application: an oral emergency contraceptive at a physiologically acceptable single dose. Published: May 11, 2007  相似文献   

14.
TheDR subregion of the human major histocompatibility complex from aDR4 haplotype includes the well-characterizedDR ga ,DR4 DR(MT3) andDR genes. In addition, the region between theDR and the proximalDR(MT3) genes contains several copies of conserved DR -related sequences. These repeated elements, numbered II, III, and IV, include the DR signal sequence and a region located further upstream. Further examination of these conserved sequences showed that DR first intron sequences are present at the 3 ends of these repeats. Progressively longer portions of the DR first intron are conserved from repeat II to repeat IV, producing a gradient of conservation. The most complete repeat element of repeats II, III, and IV is associated with a lone1 exon (DR 1). Upon sequencing, (DR 1). was found to contain several deleterious mutations, indicating that it is nonfunctional. (DR 1). has accumulated a large number of replacement substitutions and mutations at positions which are invariant in1 domains from expressedDR genes: 77.8% of the nucleotide substitutions were replacement substitutions, and 41.5 % of the amino acids at invariant positions have been altered. Calculations based on these figures suggest thatDR 1 may have become inactive approximately 25 million years ago. There are, however, two histidine residues within a variable region which are unique toDR 1 and theDR4 gene, suggesting that they represent a gene pair which probably evolved by duplication of a singleDR chain gene.  相似文献   

15.
SNCA/α-synuclein and its rare mutations are considered as the culprit proteins in Parkinson disease (PD). Wild-type (WT) SNCA has been shown to impair macroautophagy in mammalian cells and in transgenic mice. In this study, we monitored the dynamic changes in autophagy process and confirmed that overexpression of both WT and SNCAA53T inhibits autophagy in PC12 cells in a time-dependent manner. Furthermore, we showed that SNCA binds to both cytosolic and nuclear high mobility group box 1 (HMGB1), impairs the cytosolic translocation of HMGB1, blocks HMGB1-BECN1 binding, and strengthens BECN1-BCL2 binding. Deregulation of these molecular events by SNCA overexpression leads to autophagy inhibition. Overexpression of BECN1 restores autophagy and promotes the clearance of SNCA. siRNA knockdown of Hmgb1 inhibits basal autophagy and abolishes the inhibitory effect of SNCA on autophagy while overexpression of HMGB1 restores autophagy. Corynoxine B, a natural autophagy inducer, restores the deficient cytosolic translocation of HMGB1 and autophagy in cells overexpressing SNCA, which may be attributed to its ability to block SNCA-HMGB1 interaction. Based on these findings, we propose that SNCA-induced impairment of autophagy occurs, in part, through HMGB1, which may provide a potential therapeutic target for PD.  相似文献   

16.
While fresh human hepatocyte cultures are widely used to model hepatic cytochrome P450 (CYP) regulation and activity, their CYP1A subfamily composition induced by, e.g., polycyclic aromatic hydrocarbons is ambiguous. CYP1A1, CYP1A2, or both have been reported to be expressed, and their varied roles in chemical carcinogenesis makes resolution of which CYPs are expressed essential. We have used an immunoblot system with Bis-Tris-HCl-buffered polyacrylamide gel, which clearly resolves human CYP1A1 and CYP1A2, and polyclonal goat anti-human CYP1A1/CYP1A2 and rabbit anti-human CYP1A2 antibodies to probe the expressed CYP1A1 and CYP1A2 composition of seven individual human hepatocyte cultures induced with 5 microM benzo[k]fluoranthene (BKF) for 24 h. In six of the cultures only CYP1A1 was detected, and in the seventh both CYPs were detected. In most vehicle-treated hepatocyte cultures, neither CYP1A1 nor CYP1A2 was detected. In three additional hepatocyte cultures treated individually with BKF and 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD), the resultant induced CYP1A1/1A2 profiles were essentially not influenced by the nature of the inducing agents. To develop an activity-based assay to differentiate between CYP1A1 and CYP1A2 expression in human hepatocytes, our previously published R warfarin assay (Drug Metab. Disp. (1995) 23, 1339-1345) was applied to TCDD (10 nM)-treated hepatocyte culture. The low concentration of TCDD did not produce inhibition of the warfarin metabolism-such inhibition could confound the results. Based on the ratios of 6- to 8-hydroxywarfarin formed in two cultures, the ratios of CYP1A1/CYP1A2 expressed in these cultures were determined and they agreed with the ratios determined by immunoblot analysis. Thus each individual human hepatocyte culture must be characterized for induced CYP1A1 and CYP1A2 expression in studies of CYP1A activity. The warfarin assay provides a means of characterizing the cultures.  相似文献   

17.

Background

Non-alcoholic fatty liver disease (NAFLD) is associated with obesity, insulin resistance and hepatic steatosis. Non-alcoholic steatohepatitis (NASH) is a serious consequence of NAFLD where chronic tissue damage and inflammation result in fibrosis which may progress to cirrhosis. Transforming growth factor β1 (TGFβ1), proinflammatory cytokines and oxidative stress are thought to play crucial roles in the pathogenesis of these conditions. The contributions of individual liver cell types to fibrogenesis remain controversial and the influence of selenium status has not been investigated.

Methods

In this study we have used a cell culture model of fat-loading using oleate-treated human hepatoblastoma (C3A) cells to investigate how fat-loading and selenium status might influence the production of collagen in response to TGFβ1. The secretion of inflammatory cytokines was also investigated, together with the epithelial character of the treated cells.

Results

We found that in response to treatment with TGFβ1, C3A cells produced mRNA encoding the pro-αI chain of procollagen I, secreted procollagen I peptide, up-regulated production of the proinflammatory cytokine interleukin-8 (IL-8) and the mesenchymal marker vimentin, and down-regulated albumin production. Most of these responses were considerably enhanced when cells were fat-loaded with oleate and were attenuated by selenium addition at a dose that optimised the expression of thioredoxin reductase and glutathione peroxidase.

Conclusions

Our data establish that both fat-loading and suboptimal selenium status enhance collagen and IL-8 production by C3A hepatocytes in response to TGFβ1, possibly as part of an epithelial to mesenchymal transition.

General significance

These findings suggest that the hepatocyte may be an important contributor to the pathogenesis of fibrosis associated with NAFLD.  相似文献   

18.
Critical events in Alzheimer’s disease (AD) involve an imbalance between the production and clearance of amyloid beta (Aβ) peptides from the brain. Current methods for Aβ quantitation rely heavily on immuno-based techniques. However, these assays require highly specific antibodies and reagents that are time-consuming and expensive to develop. Immuno-based assays are also characterized by poor dynamic ranges, cross-reactivity, matrix interferences, and dilution linearity problems. In particular, noncommercial immunoassays are especially subject to high intra- and interassay variability because they are not subject to more stringent manufacturing controls. Combinations of these factors make immunoassays more labor-intensive and often challenging to validate in support of clinical studies. Here we describe a mixed-mode solid-phase extraction method and an ultra-performance liquid chromatography tandem mass spectrometry (SPE UPLC–MS/MS) assay for the simultaneous quantitation of Aβ1–38, Aβ1–40, and Aβ1–42 from human cerebrospinal fluid (CSF). Negative ion versus positive ion species were compared using their corresponding multiple reaction monitoring (MRM) transitions, and negative ions were approximately 1.6-fold greater in intensity but lacked selectivity in matrix. The positive ion MRM assay was more than sufficient to quantify endogenous Aβ peptides. Aβ standards were prepared in artificial CSF containing 5% rat plasma, and quality control samples were prepared in three pooled CSF sources. Extraction efficiency was greater than 80% for all three peptides, and the coefficient of variation during analysis was less than 15% for all species. Mean basal levels of Aβ species from three CSF pools were 1.64, 2.17, and 1.26 ng/ml for Aβ1–38; 3.24, 3.63, and 2.55 ng/ml for Aβ1–40; and 0.50, 0.63, and 0.46 ng/ml for Aβ1–42.  相似文献   

19.
20.
5′,8-Cyclo-2′-deoxyadenosine (cdA) and 5′,8-cyclo-2′-deoxyguanosine (cdG) in their two diastereomeric forms, 5′S and 5′R, are tandem lesions produced by the attack of hydroxyl radicals to the purine moieties of DNA. Their formation has been found to challenge the cells’ repair machinery, initiating the nucleotide excision repair (NER) for restoring the genome integrity. The involvement of oxidatively induced DNA damage in carcinogenesis and the reduced capacity of some cancer cell lines to repair oxidised DNA base lesions, intrigued us to investigate the implication of these lesions in breast cancer, the most frequently occurring cancer in women. Using liquid chromatography tandem mass spectrometry (LC-MS/MS), we measured the levels of diastereomeric cdA’s and cdG’s in estrogen receptor-alpha positive (ER-α) MCF-7 and triple negative MDA-MB-231 breast cancer cell lines before and after exposure to two different conditions: ionising radiations and hydrogen peroxide, followed by an interval period to allow DNA repair. An increase at the measured levels of all four lesions, i.e. 5′S-cdA, 5′R-cdA, 5′S-cdG and 5′R-cdG, was observed either after γ-irradiation (5?Gy dose) or hydrogen peroxide treatment (300?μM) compared to the untreated cells (control), independently from the length of the interval period for repair. For comparison reasons, we also measured the levels of 8-oxo-2′-deoxyadenosine (8-oxo-dA), a well-known oxidatively induced DNA damage lesion and base excision repair (BER) substrate. The collected data indicate that MCF-7 and MDA-MB-231 breast cancer cells are highly susceptible to radiation-induced DNA damage, being mainly defective in the repair of these lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号