首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PAP-1 has been identified by us as a Pim-1-binding protein and has recently been implicated as the defective gene in RP9, one type of autosomal dominant retinitis pigmentosa (adRP). We have then shown that PAP-1 plays a role in pre-mRNA splicing. Because four causative genes for adRP, including PAP-1, Prp31, Prp8, and Prp3, encode proteins that function as splicing factors or splicing-modulating factors, we investigated the interaction of PAP-1 with Prp3p and Prp31p in this study. The results showed that PAP-1 interacted with Prp3p but not Prp31p in human cells and yeast, and that the basic region of PAP-1 and the C-terminal region of Prp3p, regions beside spots found in adRP mutations, were needed for binding. Furthermore, both Prp3p and a part of PAP-1 were found to be components of the U4/U6.U5-tri-snRNP complex, one form of the spliceosome, in Ba/F3 and K562 cells by analysis of sucrose density gradients, suggesting that PAP-1 is weakly associated with the spliceosome. These results also suggest that splicing factors implicated in adRP contribute alone or mutually to proper splicing in the retina and that loss of their functions leads to onset of adRP.  相似文献   

2.
Retinitis pigmentosa (RP) is a genetically heterogeneous disease and an important cause of blindness in the state of Andhra Pradesh in India. In an attempt to identify the disease locus in families with the recessive form of the disease, we used the approach of screening for homozygosity by descent in offspring of consanguineous and nonconsanguineous families with RP. Microsatellite markers closely flanking 21 known candidate genes for RP were genotyped in parents and affected offspring to determine whether there was homozygosity at these loci that was shared by affected individuals of a family. This screening approach may be a rapid preliminary method to test known loci for possible cosegregation with disease.  相似文献   

3.
More than 100 mutations have been reported till date in the rhodopsin gene in patients with retinitis pigmentosa. The present study was undertaken to detect the reported rhodopsin gene point mutations in Indian retinitis pigmentosa patients. We looked for presence or absence of codon 345 and 347 mutations in exon 5 of the gene using the technique of allele-specific polymerase chain reaction by designing primers for each mutation. We have examined 100 patients from 76 families irrespective of genetic categories. Surprisingly, in our sample the very widely reported highly frequent mutations of codon 347 (P → S/A/R/Q/L/T) were absent while the codon 345 mutation V → M was seen in three cases in one family (autosomal dominant form) and in one sporadic case (total two families). This is the first report on codon 345 and 347 mutation in Indian retinitis pigmentosa subjects.  相似文献   

4.
Autophagy helps to maintain cellular homeostasis by removing misfolded proteins and damaged organelles, and generally acts as a cytoprotective mechanism for neuronal survival. Here we showed that mice deficient in the Vici syndrome gene Epg5, which is required for autophagosome maturation, show accumulation of ubiquitin-positive inclusions and SQSTM1 aggregates in various retinal cell types. In epg5?/? retinas, photoreceptor function is greatly impaired, and degenerative features including progressively reduced numbers of photoreceptor cells and increased numbers of apoptotic cells in the outer nuclear layer are observed, while the morphology of other parts of the retina is not severely affected. Downstream targets of the unfolded protein response (UPR), including the death inducer DDIT3/CHOP, and also levels of cleaved CASP3 (caspase 3), are elevated in epg5?/? retinas. Thus, apoptotic photoreceptor cell death in epg5?/? retinas may result from the elevated UPR. Our results reveal that Epg5-deficient mice recapitulate key characteristics of retinitis pigmentosa and thus may provide a valuable model for investigating the molecular mechanism of photoreceptor degeneration.  相似文献   

5.
Inherited retinal dystrophies, such as retinitis pigmentosa (RP), include a group of relatively rare hereditary diseases caused by mutations in genes that code for proteins involved in the maintenance and function of the photoreceptor cells (cones and rods). The different forms of RP consist of progressive neurodegenerative disorders which are generally related to various and severe limitations of visual performances. In the course of typical RP (rod-cone dystrophy), the affected individuals first experience night-blindness and/or visual field constriction (secondary to rod dysfunctions), followed by variable alterations of the central vision (due to cone damages). On the other hand, during the atypical form of RP (cone-rod dystrophy), the cone's functionalities are prevalently disrupted in comparison with the rod's ones. The basic diagnosis of RP relies upon the documentation of unremitting loss in photoreceptor activity by electroretinogram and/or visual field testing. The prevalence of all RP typologies is variably reported in about one case for each 3000-5000 individuals, with a total of about two millions of affected persons worldwide. The inherited retinal dystrophies are sometimes the epiphenomenon of a complex framework (syndromic RP), but more often they represent an isolated disorder (about 85-90 % of cases). Although 200 causative RP mutations have been hitherto detected in more than 100 different genes, the molecular defect is identifiable in just about the 50% of the analyzed patients with RP. Not only the RP genotypes are very heterogeneous, but also the patients with the same mutation can be affected by different phenotypic manifestations. RP can be inherited as autosomal dominant, autosomal recessive or X-linked trait, and many sporadic forms are diagnosed in patients with no affected relatives. Dissecting the clinico-genetic complexity of RP has become an attainable objective by means of large-scale research projects, in which the collaboration between ophthalmologists, geneticists, and epidemiologists becomes a crucial aspect. In the present review, the main issues regarding clinical phenotyping and epidemiologic criticisms of RP are focused, especially highlighting the importance of both standardization of the diagnostic protocols and appropriateness of the disease's registration systems.  相似文献   

6.
Genome engineering technology is of great interest for biomedical research that enables scientists to make specific manipulation in the DNA sequence. Early methods for introducing double-stranded DNA breaks relies on protein-based systems. These platforms have enabled fascinating advances, but all are costly and time-consuming to engineer, preventing these from gaining high-throughput applications. The CRISPR-Cas9 system, co-opted from bacteria, has generated considerable excitement in gene targeting. In this review, we describe gene targeting techniques with an emphasis on recent strategies to improve the specificities of CRISPR-Cas systems for nuclease and non-nuclease applications.  相似文献   

7.
Rhodopsin, the visual pigment mediating vision under dim light, is composed of the apoprotein opsin and the chromophore ligand 11-cis-retinal. A P23H mutation in the opsin gene is one of the most prevalent causes of the human blinding disease, autosomal dominant retinitis pigmentosa. Although P23H cultured cell and transgenic animal models have been developed, there remains controversy over whether they fully mimic the human phenotype; and the exact mechanism by which this mutation leads to photoreceptor cell degeneration remains unknown. By generating P23H opsin knock-in mice, we found that the P23H protein was inadequately glycosylated with levels 1-10% that of wild type opsin. Moreover, the P23H protein failed to accumulate in rod photoreceptor cell endoplasmic reticulum but instead disrupted rod photoreceptor disks. Genetically engineered P23H mice lacking the chromophore showed accelerated photoreceptor cell degeneration. These results indicate that most synthesized P23H protein is degraded, and its retinal cytotoxicity is enhanced by lack of the 11-cis-retinal chromophore during rod outer segment development.  相似文献   

8.
9.
ABSTRACT

Genetically engineered animal models that reproduce human diseases are very important for the pathological study of various conditions. The development of the clustered regularly interspaced short palindromic repeats (CRISPR) system has enabled a faster and cheaper production of animal models compared with traditional gene-targeting methods using embryonic stem cells. Genome editing tools based on the CRISPR-Cas9 system are a breakthrough technology that allows the precise introduction of mutations at the target DNA sequences. In particular, this accelerated the creation of animal models, and greatly contributed to the research that utilized them. In this review, we introduce various strategies based on the CRISPR-Cas9 system for building animal models of human diseases and describe various in vivo delivery methods of CRISPR-Cas9 that are applied to disease models for therapeutic purposes. In addition, we summarize the currently available animal models of human diseases that were generated using the CRISPR-Cas9 system and discuss future directions.  相似文献   

10.
《遗传学报》2019,46(11):513-521
CRISPR-mediated genome editing is a revolutionary technology for genome manipulation that uses the CRISPR-Cas systems and base editors.Currently,poor efficiency and off-target problems have impeded the application of CRISPR systems.The on-target efficiency has been improved in several advanced versions of CRISPR systems,whereas the off-target detection still remains a key challenge.Here,we outline the different versions of CRISPR systems and off-target detection strategies,discuss the merits and limitations of off-target detection methods,and provide potential implications for further gene editing research.  相似文献   

11.
Retinitis pigmentosa is a highly heterogeneous form of inherited blindness which affects more than 1.3 million individuals worldwide. The RP17 form of the disease is caused by an arginine to tryptophan (R14W) mutation in the signal sequence of carbonic anhydrase IV (CAIV). While CAIV is expressed in the choriocapillaries of the eye and renal epithelium, the R14W mutation results in an exclusively ocular phenotype in affected individuals. In order to investigate the mechanism of disease in RP17 and the lack of kidney phenotype, we compared the subcellular localization and post‐translational processing of wild‐type (WT)‐ and mutant‐CAIV in three cell types. We show using immunocytochemistry that unlike WT CAIV which is transported to the plasma membrane of transfected COS‐7 and HT‐1080 cells, the R14W mutant CAIV is retained in the endoplasmic reticulum. Western blot analyses further reveal that whereas the WT CAIV is processed to its mature form in both these cell lines, significant levels of the R14W mutant protein remain in its immature form. Importantly, flow cytometry experiments demonstrate that compared to WT CAIV protein, expression of specifically the R14W CAIV results in an S and G2/M cell‐cycle block, followed by apoptosis. Interestingly, when the above experiments were repeated in the human embryonic kidney cell line, HEK‐293, strikingly different results were obtained. These cells were unaffected by the expression of the R14W mutant CAIV and were able to process the mutant and WT protein equally effectively. This study has important implications for our understanding of the RP17 phenotype. J. Cell. Biochem. 111: 735–741, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Research on CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated protein) systems has led to the revolutionary CRISPR/Cas9 genome editing technique. However, for most archaea and half of bacteria, exploitation of their native CRISPR-Cas machineries may be more straightforward and convenient. In this study, we harnessed the native type I-B CRISPR-Cas system for precise genome editing in the polyploid haloarchaeon Haloarcula hispanica. After testing different designs, the editing tool was optimized to be a single plasmid that carries both the self-targeting mini-CRISPR and a 600–800 bp donor. Significantly, chromosomal modifications, such as gene deletion, gene tagging or single nucleotide substitution, were precisely introduced into the vast majority of the transformants. Moreover, we showed that simultaneous editing of two genomic loci could also be readily achieved by one step. In summary, our data demonstrate that the haloarchaeal CRISPR-Cas system can be harnessed for genome editing in this polyploid archaeon, and highlight the convenience and efficiency of the native CRISPR-based genome editing strategy.  相似文献   

13.
14.
Spermatogonial stem cells (SSCs) can produce numerous male gametes after transplantation into recipient testes, presenting a valuable approach for gene therapy and continuous production of gene-modified animals. However, successful genetic manipulation of SSCs has been limited, partially due to complexity and low efficiency of currently available genetic editing techniques. Here, we show that efficient genetic modifications can be introduced into SSCs using the CRISPR-Cas9 system. We used the CRISPR-Cas9 system to mutate an EGFP transgene or the endogenous Crygc gene in SCCs. The mutated SSCs underwent spermatogenesis after transplantation into the seminiferous tubules of infertile mouse testes. Round spermatids were generated and, after injection into mature oocytes, supported the production of heterozygous offspring displaying the corresponding mutant phenotypes. Furthermore, a disease-causing mutation in Crygc (Crygc−/−) that pre-existed in SSCs could be readily repaired by CRISPR-Cas9-induced nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in SSC lines carrying the corrected gene with no evidence of off-target modifications as shown by whole-genome sequencing. Fertilization using round spermatids generated from these lines gave rise to offspring with the corrected phenotype at an efficiency of 100%. Our results demonstrate efficient gene editing in mouse SSCs by the CRISPR-Cas9 system, and provide the proof of principle of curing a genetic disease via gene correction in SSCs.  相似文献   

15.
基于细菌基因组规律成蔟的间隔短回文重复(Clustered regularly interspaced short palindromic repeats)发展而来的新型基因编辑方法(CRISPR-Cas9)对生物医学研究是一场划时代的革命。它几乎可用于大多数生物体的基因编辑。秀丽线虫是一种非常经典的遗传学模式生物,CRISPR-Cas9基因编辑技术进一步加速了对其基因功能及各种生物学问题的研究。文中主要总结CRISPR-Cas9基因编辑系统在遗传学模式生物秀丽线虫中的发展和应用。  相似文献   

16.
PAP-1 is an in vitro phosphorylation target of the Pim-1 oncogene. Although PAP-1 binds to Pim-1, it is not a substrate for phosphorylation by Pim-1 in vivo. PAP-1 has recently been implicated as the defective gene in RP9, one type of autosomal dominant retinitis pigmentosa (adRP). However, RP9 is a rare disease and only two missense mutations have been described, so the report of a link between PAP-1 and RP9 was tentative. The precise cellular role of PAP-1 was also unknown at that time. We now report that PAP-1 localizes in nuclear speckles containing the splicing factor SC35 and interacts directly with another splicing factor, U2AF35. Furthermore, we used in vitro and in vivo splicing assays to show that PAP-1 has an activity, which alters the pattern of pre-mRNA splicing and that this activity is dependent on the phosphorylation state of PAP-1. We used the same splicing assay to examine the activities of two mutant forms of PAP-1 found in RP9 patients. The results showed that while one of the mutations, H137L, had no effect on splicing activity compared with that of wild-type PAP-1, the other, D170G, resulted in both a defect in splicing activity and a decreased proportion of phosphorylated PAP-1. The D170G mutation may therefore cause RP by altering splicing of retinal genes through a decrease in PAP-1 phosphorylation. These results demonstrate that PAP-1 has a role in pre-mRNA splicing and, given that three other splicing factors have been implicated in adRP, this finding provides compelling further evidence that PAP-1 is indeed the RP9 gene.  相似文献   

17.
Iron-associated oxidative injury plays a role in retinal degeneration such as age-related macular degeneration and retinitis pigmentosa. The metallo-complex zinc-desferrioxamine (Zn/DFO) may ameliorate such injury by chelation of labile iron in combination with release of zinc. We explored whether Zn/DFO can affect the course of retinal degeneration in the rd10 mouse model of retinitis pigmentosa. Zn/DFO-treated animals showed significantly higher electroretinographic responses at 3 and 4.5 weeks of age compared with saline-injected controls. Corresponding retinal (photoreceptor) structural rescue was observed by quantitative histological and immunohistochemical techniques. When administered alone, the components of the complex, Zn and DFO, showed a lesser, partial effect. TBARS, a marker of lipid peroxidation, and levels of oxidative DNA damage as quantified by 8-OHdG immunostaining were significantly lower in Zn/DFO-treated retinas compared with saline-injected controls. Reduced levels of retinal ferritin as well as reduced iron content within ferritin molecules were measured in Zn/DFO-treated retinas. The data, taken together, suggest that the protective effects of the Zn/DFO complex are mediated through modulation of iron bioavailability, leading to attenuation of oxidative injury. Reducing iron-associated oxidative stress using complexes such as Zn/DFO may serve as a “common pathway” therapeutic approach to attenuate injury in retinal degeneration.  相似文献   

18.

Background  

The role played by microRNAs (miRs) as common regulators in physiologic processes such as development and various disease states was recently highlighted. Retinitis pigmentosa (RP) linked to RHO (which encodes rhodopsin) is the most frequent form of inherited retinal degeneration that leads to blindness, for which there are no current therapies. Little is known about the cellular mechanisms that connect mutations within RHO to eventual photoreceptor cell death by apoptosis.  相似文献   

19.
20.
There is substantial evidence that excitotoxicity and oxidative damage may contribute to Huntington's disease (HD) pathogenesis. We examined whether the novel anti-oxidant compound BN82451 exerts neuroprotective effects in the R6/2 transgenic mouse model of HD. Oral administration of BN82451 significantly improved motor performance and improved survival by 15%. Oral administration of BN82451 significantly reduced gross brain atrophy, neuronal atrophy and the number of neuronal intranuclear inclusions at 90 days of age. These findings provide evidence that novel anti-oxidants such as BN82451 may be useful for treating HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号