共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary Specific binding sites for 3H dihydrotestosterone are demonstrated by autoradiography in brain nuclei of sex reversed mice heterozygous for testicular feminization (Tfm) which are phenotypically intersexes with testes and accessory sex glands that consist of a mosaic of androgen insensitive Tfm cells which lack specific dihydrotestosterone binding and androgen sensitive normal cells. The nuclear group evaluated include: nucleus (n.) septi lateralis, n. interstitialis striae terminalis, n. medialis amygdalae, the hypothalamic n. arcuatus, n. ventromedialis lateralis, n. premammillaris ventrialis, n. preopticus medialis, and nuclei of the cranial nerves VII, X, and XII. In the sex reversed males and the female, used as controls, the frequency of neurons with specific DHT binding show a distinct male-female difference in the caudal part of the arcuate nucleus. In the sex reversed Tfm heterozygotes, in all brain nuclei studied, the frequency of labeled neurons is reduced. The extent of reduction of androgen binding in the different brain nuclei varies among as well as within individual sex reversed Tfm heterozygotes, suggesting variations of the ratio of normal to Tfm neurons in sex reversed Tfm heterozygotes. The differentially reduced androgen binding of different brain systems corresponds to a differentially reduced androgen dependent behaviour reported in the literature.Supported by US PHS grant NSO9914 to W.E.S. and Deutsche Forschungsgemeinschaft Dr94/4 to U.D.. The work of Dr. Schleicher and his stay in Chapel Hill were sponsored by Studienstiftung des Deutschen Volkes and Boehringer-Ingelheim Fonds 相似文献
3.
4.
5.
6.
7.
8.
Testicular tissues obtained from 12 cases of testicular feminization syndrome were subjected to lipid analyses. The total lipids formed 2.75% of the total wet weight of the testicular tissue. Total cholesterol represented 30%, glycerides 33% and phospholipids 37% of the total lipids, respectively. Fractionation studies revealed that free cholesterol formed 66.7% and esterified cholesterol 33.3% of the total cholesterol. Triglycerides represented 89.89% and monoglycerides 10.11% of the total glycerides. Separation of phospholipids showed that phosphatidly choline (46.54%) and phosphatidly ethanolamine (24.89%) to be the major phosphoipid classes. 相似文献
9.
Functional expression of the polymeric immunoglobulin receptor from cloned cDNA in fibroblasts 总被引:2,自引:4,他引:2
下载免费PDF全文

The polymeric immunoglobulin receptor, a transmembrane protein, is made by a variety of polarized epithelial cells. After synthesis, the receptor is sent to the basolateral surface where it binds polymeric IgA and IgM. The receptor-ligand complex is endocytosed, transported across the cell in vesicles, and re-exocytosed at the apical surface. At some point the receptor is proteolytically cleaved so that its extracellular ligand binding portion (known as secretory component) is severed from the membrane and released together with the polymeric immunoglobulin at the apical surface. We have used a cDNA clone coding for the rabbit receptor and a retroviral expression system to express the receptor in a nonpolarized mouse fibroblast cell line, psi 2, that normally does not synthesize the receptor. The receptor is glycosylated and sent to the cell surface. The cell cleaves the receptor to a group of polypeptides that are released into the medium and co-migrate with authentic rabbit secretory component. Cleavage and release of secretory component do not depend on the presence of ligand. The cells express on their surface 9,600 binding sites for the ligand, dimeric IgA. The ligand can be rapidly endocytosed and then re-exocytosed, all within approximately 10 min. Very little ligand is degraded. At least some of the ligand that is released from the cells is bound to secretory component. The results presented indicate that we have established a powerful new system for analyzing the complex steps in the transport of poly-Ig and the general problem of membrane protein sorting. 相似文献
10.
Testosterone influences the hypothalamic–pituitary–adrenal axis, anxiety-related behavior, and sensorimotor gating in rodents, but little is known about the role of the androgen receptor (AR) in mediating these influences. We compared levels of the stress hormone corticosterone at baseline and following exposure to a novel object in an open field in wild type (wt) male and female rats, and male rats with the testicular feminization mutation (Tfm) of the AR, which disables its function. Basal corticosterone was equivalent in all groups, but exposure to a novel object in an open field elicited a greater increase in corticosterone in Tfm males and wt females than in wt males. Tfm males also showed increased behavioral indices of anxiety compared to wt males and females in the test. Analysis of the immediate early gene c-Fos expression after exposure to a novel object revealed greater activation in Tfm males than wt males in some regions (medial preoptic area) and lesser activation in others (dentate gyrus, posterodorsal medial amygdala). No differences were found in a measure of sensorimotor gating (prepulse inhibition of the acoustic startle response), although Tfm males had an increased acoustic startle response compared to wt males and females. These findings demonstrate that ARs play a role in regulating anxiety-related behaviors, as well as corticosterone responses and neural activation following exposure to a mild stressor in rats. 相似文献
11.
Testosterone (T) appears to play a role in anxiety and sensorimotor gating in rodents, but whether T acts through the androgen receptor (AR) to influence these behaviors is less clear. We compared adult genetic male mice with the testicular feminization mutation (Tfm), which lack functional ARs, to wild type male littermates (wt males) on an assay of sensorimotor gating (prepulse inhibition of the acoustic startle response; PPI) and several tests thought to reflect anxiety: open field exposure, novel object exposure, elevated plus maze (EPM), and light/dark (LD) box. PPI was similar between groups, but indices of anxiety in the novel object and LD box tests were increased in Tfm males with no significant differences found in the open field or EPM. Since Tfm male mice have decreased circulating T, the same tests were conducted in mice that were gonadectomized (wt males) or sham-operated (Tfm males) as adults and supplemented with T or nothing (B). While T treatment reduced indices of anxiety in the novel object and LD box tests in wt males, it was ineffective in Tfm males. Increased indices of anxiety in Tfm males appear to be related to hyper-activation of the hypothalamic–pituitary–adrenal axis since levels of the stress hormone corticosterone were elevated in Tfm males compared to wt males at baseline and at several time points after exposure to a novel object. These findings demonstrate that ARs influence anxiety and stress responses in mice. 相似文献
12.
13.
14.
Many studies demonstrate that exposure to testicular steroids such as testosterone early in life masculinizes the developing brain, leading to permanent changes in behavior. Traditionally, masculinization of the rodent brain is believed to depend on estrogen receptors (ERs) and not androgen receptors (ARs). According to the aromatization hypothesis, circulating testosterone from the testes is converted locally in the brain by aromatase to estrogens, which then activate ERs to masculinize the brain. However, an emerging body of evidence indicates that the aromatization hypothesis cannot fully account for sex differences in brain morphology and behavior, and that androgens acting on ARs also play a role. The testicular feminization mutation (Tfm) in rodents, which produces a nonfunctional AR protein, provides an excellent model to probe the role of ARs in the development of brain and behavior. Tfm rodent models indicate that ARs are normally involved in the masculinization of many sexually dimorphic brain regions and a variety of behaviors, including sexual behaviors, stress response and cognitive processing. We review the role of ARs in the development of the brain and behavior, with an emphasis on what has been learned from Tfm rodents as well as from related mutations in humans causing complete androgen insensitivity. 相似文献
15.
Purushottamachar P Khandelwal A Vasaitis TS Bruno RD Gediya LK Njar VC 《Bioorganic & medicinal chemistry》2008,16(7):3519-3529
The search for novel androgen receptor (AR) down-regulating agents by catalyst HipHop pharmacophore modeling led to the discovery of some lead molecules. Unexpectedly, the effect of these leads on human prostate cancer LNCaP cell viability did not correlate with the ability of the compounds to cause down-regulation of AR protein expression. Through rational synthetic optimization of the lead compound (BTB01434), we have discovered a series of novel substituted diaryl molecules as potent anti-prostate cancer agents. Some compounds (1-6) were shown to be extremely potent inhibitors of LNCaP cell viability with GI(50) values in the nanomolar range (1.45-83 nM). The most potent compound (4-methylphenyl)[(4-methylphenyl)sulfonyl]amine (5) with a GI(50) value of 1.45 nM is 27,000 times more potent than our lead compound BTB01434 (GI(50)=39.8 microM). In addition, some of the compounds exhibited modest anti-androgenic activities and one was also a potent inhibitor (GI(50)=850 nM) of PC-3 (AR-null) cell growth. A clear structure-activity relationship (SAR) has been established for activity against LNCaP cells, where potent molecules possess two substituted/unsubstituted aromatic rings connected through a sulfonamide linker. These novel compounds are strong candidates for development for the treatment of hormone-sensitive and importantly hormone-refractory prostate cancers in humans. 相似文献
16.
17.
18.
19.
Androgen receptor concentration was measured by exchange with 3H-dimethylnortestosterone (DMNT) in cytosol and nuclear extracts from testes of rats 15-90 days of age. Dissociation kinetics verified the necessity of an extended incubation (86 h) for maximum exchange at 4 degrees C. Nuclear androgen receptor concentration per mg DNA decreased between 15 and 25 days of age, from 375 to 146 fmol per mg DNA, then increased to 584 fmol per mg DNA at 90 days. Testicular receptor content also increased between 25 and 90 days of age. Cytosol receptor concentration patterns were similar to nuclear androgen receptor patterns. The affinity of the receptor for the ligand did not change with age (mean Kd = 0.88 nM). No significant difference in androgen receptor concentration per cell was detected between cultured peritubular cells from animals 25 and 45 days of age. Androgen receptor concentrations in freshly isolated peritubular cells could not be determined. There also was no difference in receptor concentration per cell in a Leydig cell-enriched fraction from animals between 25 and 45 days of age. Although androgen receptor concentrations per Sertoli cell increased between 15 and 35 days of age, the increase in Leydig cell number over the same period probably accounted for approximately 75% of the increase in receptor per testis between 25 and 45 days of age. 相似文献