首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene expression in micro‐organisms is regulated according to extracellular conditions and nutrient concentrations. In Saccharomyces cerevisiae, non‐transporting sensors with high sequence similarity to transporters, that is, transporter‐like sensors, have been identified for sugars as well as for amino acids. An alternating‐access model of the function of transporter‐like sensors has been previously suggested based on amino acid sensing, where intracellular ligand inhibits binding of extracellular ligand. Here we studied the effect of intracellular glucose on sensing of extracellular glucose through the transporter‐like sensor Snf3 in yeast. Sensing through Snf3 was determined by measuring degradation of Mth1 protein. High intracellular glucose concentrations were achieved by using yeast strains lacking monohexose transporters which were grown on maltose. The apparent affinity of extracellular glucose to Snf3 was measured for cells grown in non‐fermentative medium or on maltose. The apparent affinity for glucose was lowest when the intracellular glucose concentration was high. The results conform to an alternating‐access model for transporter‐like sensors. J. Cell. Biochem. 110: 920–925, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
3.
4.
Mutations in SSY1 and PTR3 were identified in a genetic selection for components required for the proper uptake and compartmentalization of histidine in Saccharomyces cerevisiae. Ssy1p is a unique member of the amino acid permease gene family, and Ptr3p is predicted to be a hydrophilic protein that lacks known functional homologs. Both Ssy1p and Ptr3p have previously been implicated in relaying signals regarding the presence of extracellular amino acids. We have found that ssy1 and ptr3 mutants belong to the same epistasis group; single and ssy1 ptr3 double-mutant strains exhibit indistinguishable phenotypes. Mutations in these genes cause the nitrogen-regulated general amino acid permease gene (GAP1) to be abnormally expressed and block the nonspecific induction of arginase (CAR1) and the peptide transporter (PTR2). ssy1 and ptr3 mutations manifest identical differential effects on the functional expression of multiple specific amino acid transporters. ssy1 and ptr3 mutants have increased vacuolar pools of histidine and arginine and exhibit altered cell growth morphologies accompanied by exaggerated invasive growth. Subcellular fractionation experiments reveal that both Ssy1p and Ptr3p are localized to the plasma membrane (PM). Ssy1p requires the endoplasmic reticulum protein Shr3p, the amino acid permease-specific packaging chaperonin, to reach the PM, whereas Ptr3p does not. These findings suggest that Ssy1p and Ptr3p function in the PM as components of a sensor of extracellular amino acids.  相似文献   

5.
Structural information about monoamine transporters and their interactions with psychotropic drugs is important for understanding their molecular mechanisms of action and for drug development. The crystal structure of a Major Facilitator Superfamily (MFS) transporter, the lactose permease symporter (lac permease), has provided insight into the three-dimensional structure and mechanisms of secondary transporters. Based on the hypothesis that the 12 transmembrane alpha-helix (TMH) secondary transporters belong to a common folding class, the lac permease structure was used for molecular modeling of the serotonin transporter (SERT), the dopamine transporter (DAT), and the noradrenaline transporter (NET). The molecular modeling methods used included amino acid sequence alignment, homology modeling, and molecular mechanical energy calculations. The lac permease crystal structure has an inward-facing conformation, and construction of outward-facing SERT, DAT, and NET conformations allowing ligand binding was the most challenging step of the modeling procedure. The psychomotor stimulants cocaine and S-amphetamine, and the selective serotonin reuptake inhibitor (SSRI) S-citalopram, were docked into putative binding sites on the transporters to examine their molecular binding mechanisms. In the inward-facing conformation of SERT the translocation pore was closed towards the extracellular side by hydrophobic interactions between the conserved amino acids Phe105, Pro106, Phe117, and Ala372. An unconserved amino acid, Asp499 in TMH10 in NET, may contribute to the low affinity of S-citalopram to NET.  相似文献   

6.
We mutated residues Met345 and Thr349 in the rat gamma-aminobutyric acid transporter-1 (GAT-1) to histidines (M345H and T349H). These two residues are located four amino acids apart at the extracellular end of transmembrane segment 7 in a region of GAT-1 that we have previously suggested undergoes conformational changes critical for the transport process. The two single mutants and the double mutant (M345H/T349H) were expressed in Xenopus laevis oocytes, and their steady-state and presteady-state kinetics were examined and compared with wild type GAT-1 by using the two-electrode voltage clamp method. Oocytes expressing M345H showed a decrease in apparent GABA affinity, an increase in apparent affinity for Na+, a shift in the charge/voltage (Q/Vm) relationship to more positive membrane potentials, and an increased Li+-induced leak current. Oocytes expressing T349H showed an increase in apparent GABA affinity, a decrease in apparent Na+ affinity, a profound shift in the Q/Vm relationship to more negative potentials, and a decreased Li+-induced leak current. The data are consistent with a shift in the conformational equilibrium of the mutant transporters, with M345H stabilized in an outward-facing conformation and T349H in an inward-facing conformation. These data suggest that the extracellular end of transmembrane domain 7 not only undergoes conformational changes critical for the translocation process but also plays a role in regulating the conformational equilibrium between inward- and outward-facing conformations.  相似文献   

7.
Organic cation transporters (OCTs) of the SLC22 family play a pivotal role in distribution and excretion of cationic drugs. They mediate electrogenic translocation of cations in both directions. OCTs are polyspecific transporters. During substrate translocation they perform a series of conformational changes involving an outward-facing conformation, an occluded state and an inward-facing conformation. Mutagenesis of OCT1 in combination with homology modeling showed that identical amino acids form the innermost parts of the outward-open and inward-open binding clefts. In addition to low affinity substrate binding sites, OCT1 contains high affinity substrate binding sites that can mediate inhibition via non-transported compounds.  相似文献   

8.
Amino acids exert modulatory effects on proteins involved in control of mRNA translation in animal cells through the target of rapamycin (TOR) signaling pathway. Here we use oocytes of Xenopus laevis to investigate mechanisms by which amino acids are "sensed" in animal cells. Small ( approximately 48%) but physiologically relevant increases in intracellular but not extracellular total amino acid concentration (or Leu or Trp but not Ala, Glu, or Gln alone) resulted in increased phosphorylation of p70(S6K) and its substrate ribosomal protein S6. This response was inhibited by rapamycin, demonstrating that the effects require the TOR pathway. Alcohols of active amino acids substituted for amino acids with lower efficiency. Oocytes were refractory to changes in external amino acid concentration unless surface permeability of the cell to amino acids was increased by overexpression of the System L amino acid transporter. Amino acid-induced, rapamycin-sensitive activation of p70(S6K) was conferred when System L-expressing oocytes were incubated in extracellular amino acids, supporting intracellular localization of the putative amino acid sensor. In contrast to lower eukaryotes such as yeast, which possess an extracellular amino acid sensor, our findings provide the first direct evidence for an intracellular location for the putative amino acid sensor in animal cells that signals increased amino acid availability to TOR/p70(S6K).  相似文献   

9.
The general amino acid permease, Gap1p, of Saccharomyces cerevisiae transports all naturally occurring amino acids into yeast cells for use as a nitrogen source. Previous studies have shown that a nonubiquitinateable form of the permease, Gap1p(K9R,K16R), is constitutively localized to the plasma membrane. Here, we report that amino acid transport activity of Gap1p(K9R,K16R) can be rapidly and reversibly inactivated at the plasma membrane by the presence of amino acid mixtures. Surprisingly, we also find that addition of most single amino acids is lethal to Gap1p(K9R,K16R)-expressing cells, whereas mixtures of amino acids are less toxic. This toxicity appears to be the consequence of uptake of unusually large quantities of a single amino acid. Exploiting this toxicity, we isolated gap1 alleles deficient in transport of a subset of amino acids. Using these mutations, we show that Gap1p inactivation at the plasma membrane does not depend on the presence of either extracellular or intracellular amino acids, but does require active amino acid transport by Gap1p. Together, our findings uncover a new mechanism for inhibition of permease activity in response to elevated amino acid levels and provide a physiological explanation for the stringent regulation of Gap1p activity in response to amino acids.  相似文献   

10.
Multidrug resistance is a serious problem in successful cancer chemotherapy. Studies using model cell lines have demonstrated that overexpression of some members of the ATP-binding cassette (ABC) transporter superfamily, such as ABCC1, causes enhanced efflux and, thus, decreased accumulation of multiple anticancer drugs, which leads to increased cell survival. Unlike most other ABC transporters, ABCC1 has an additional membrane-spanning domain (MSD0) with a putative extracellular amino terminus of 32 amino acids. However, the function of MSD0 and the role of the extracellular amino terminus are largely unknown. In this study, we examined the structural folding and the function of the amino terminus. We found that it has a U-shaped folding with the bottom of the U-structure facing cytoplasm and both ends in extracellular space. We also found that this U-shaped amino terminus probably functions as a gate to regulate the drug transport activity of human ABCC1.  相似文献   

11.
Brain capillary endothelial cells form the blood-brain barrier. They are connected by extensive tight junctions, and are polarized into luminal (blood-facing) and abluminal (brain-facing) plasma membrane domains. The polar distribution of transport proteins allows for active regulation of brain extracellular fluid. Experiments on isolated membrane vesicles from capillary endothelial cells of bovine brain demonstrated the polar arrangement of amino acid and glucose transporters, and the utility of such arrangements have been proposed. For instance, passive carriers for glutamine and glutamate have been found only in the luminal membrane of blood-brain barrier cells, while Na-dependent secondary active transporters are at the abluminal membrane. This organization could promote the net removal of nitrogen-rich amino acids from brain, and account for the low level of glutamate penetration into the central nervous system. Furthermore, the presence of a gamma-glutamyl cycle at the luminal membrane and Na-dependent amino acid transporters at the abluminal membrane may serve to modulate movement of amino acids from blood-to-brain. Passive carriers facilitate amino acid transport into brain. However, activation of the gamma-glutamyl cycle by increased plasma amino acids is expected to generate oxoproline within the blood-brain barrier. Oxoproline stimulates secondary active amino acid transporters (Systems A and B(o)+) at the abluminal membrane, thereby reducing net influx of amino acids to brain. Finally, passive glucose transporters are present in both the luminal and abluminal membranes of the blood-brain barrier. Interestingly, a high affinity Na-dependent glucose carrier has been described only in the abluminal membrane. This raises the question whether glucose entry may be regulated to some extent. Immunoblotting studies suggest more than one type of passive glucose transporter exist in the blood-brain barrier, each with an asymmetrical distribution. In conclusion, it is now clear that the blood-brain barrier participates in the active regulation of brain extracellular fluid, and that the diverse functions of each plasma membrane domain contributes to these regulatory functions.  相似文献   

12.
Investigating prototypical interactions between NT(8-13) and the human neurotensin receptor 1 (hNTR1), we created a receptor-ligand model that was validated by site-directed mutagenesis and structure-activity relationship studies. Stabilization of the extracellular loop 1 (EL1) by pi-stacking clusters proved to be important for agonist binding when substitution of six conserved amino acids by alanine resulted in an agonist specific loss of maximal binding capacity. In agreement with our modeling studies, EL1 seems to adopt a clamp-type border area controlling the shape of the binding site crevice. Employing chemically manipulated peptide analogs as molecular probes, the impact of backbone modifications on receptor-ligand interaction, especially the influence on ligand conformation, was examined in binding studies and explained by in silico analysis.  相似文献   

13.
Candidate amino acids involved in H+ gating of acid-sensing ion channel 1a   总被引:1,自引:0,他引:1  
Acid-sensing ion channels are ligand-gated cation channels, gated by extracellular H(+). H(+) is the simplest ligand possible, and whereas for larger ligands that gate ion channels complex binding sites in the three-dimensional structure of the proteins have to be assumed, H(+) could in principle gate a channel by titration of a single amino acid. Experimental evidence suggests a more complex situation, however. For example, it has been shown that extracellular Ca(2+) ions compete with H(+); probably Ca(2+) ions bound to the extracellular loop of ASICs stabilize the closed state of the channel and have to be displaced before the channel can open. In such a scheme, amino acids contributing to Ca(2+) binding would also be candidates contributing to H(+) gating. In this study we systematically screened more than 40 conserved, charged amino acids in the extracellular region of ASIC1a for a possible contribution to H(+) gating. We identified four amino acids where substitution strongly affects H(+) gating: Glu(63), His(72)/His(73), and Asp(78). These amino acids are highly conserved among H(+)-sensitive ASICs and are candidates for the "H(+) sensor" of ASICs.  相似文献   

14.
Structure-function relationships of heterodimeric amino acid transporters   总被引:7,自引:0,他引:7  
Heterodimeric amino acid transporters mediate the transfer of amino acids between organs and between different cell types. Members of this particular family of amino acid transporters are constituted by a heavy chain and an associated light chain. The heavy chain is a type II membrane protein with an intracellular amino terminus, a single transmembrane helix, and a large extracellular domain. The light chain, in contrast, is a typical helix-bundle protein with 12 putative transmembrane helices. Two different heavy chains, designated 4F2hc and rbAT, and seven different light chains have been identified to date. Deletion studies indicate that the extracellular domain of the heavy chain has two subdomains. The carboxy-terminal tip of 4F2hc is critical for recognition of certain light chains, whereas the carboxy-terminal tip of rbAT is involved in substrate transport. Sequence alignments suggest that the major part of the extracellular domain forms an α/β domain similar to bacterial α-amylases. A structural model of the rbAT extracellular domain is presented that is in agreement with experimental observations from several mutations and that aligns well with the α-amylase domain.  相似文献   

15.
The chemotactic potential of SXWS peptides and the components of the extracellular domain of cytokine receptors were investigated in Tetrahymena as a functional index of substitution with different amino acids in the position 'X' of the tetrapeptide. Data obtained demonstrate that position X plays a special determining role in the ligand, SEWS and STWS possess extremely strong chemoattractant ability, and aromatic amino acids result in chemorepellent ligands. Diverse effects of structurally related molecules, for example, SNWS-SDWS, demonstrate a highly sensitive discrimination potential in the applied model system. Physicochemical characteristics (hydropathy, residue size, and solvent-exposed area) of the amino acids were correlated with the chemotactic activity. Data obtained by computer-assisted conformation analysis of SXWS peptides and the highly overlapping chemotactic effects of the investigated SXWS peptides as well as the presence of the amino acids in the 'X' position indicate that member 'X' of the SXWS sequence performs a special role in interactions with the chemotaxis receptors in the membrane.  相似文献   

16.
Wall-associated kinase 1--WAK1 is a transmembrane protein containing a cytoplasmic Ser/Thr kinase domain and an extracellular domain in contact with the pectin fraction of the plant cell wall in Arabidopsis thaliana (L.) HEYNH. In a previous paper [Decreux, A., Messiaen, J., 2005. Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol. 46, 268-278], we showed that a recombinant peptide expressed in yeast corresponding to amino acids 67-254 of the extracellular domain of WAK1 specifically interacts with commercial non-methylesterified homogalacturonic acid, purified homogalacturonans from Arabidopsis and oligogalacturonides in a calcium-induced conformation. In this report, we used a receptor binding domain sequence-based prediction method to identify four putative binding sites in the extracellular domain of WAK1, in which cationic amino acids were selected for substitution by site-directed mutagenesis. Interaction studies between mutated forms of WAK1 and homogalacturonans allowed us to identify and confirm at least five specific amino acids involved in the interaction with homogalacturonan dimers and multimers. The presence of this homogalacturonan-binding domain within the extracellular domain of WAK1 is discussed in terms of cell wall architecture and signal transduction.  相似文献   

17.
Mammalian cationic amino acid transporters (CAT) differ in their substrate affinity and sensitivity to trans-stimulation. The apparent Km values for cationic amino acids and the sensitivity to trans-stimulation of CAT-1, -2B, and -3 are characteristic of system y+. In contrast, CAT-2A exhibits a 10-fold lower substrate affinity and is largely independent of substrate at the trans-side of the membrane. CAT-2A and -2B demonstrate such divergent transport properties, even though their amino acid sequences differ only in a stretch of 42 amino acids. Here, we identify two amino acid residues within this 42-amino acid domain of the human CAT-2A protein that are responsible for the apparent low affinity of both the extracellular and intracellular substrate-binding sites. These residues are located in the fourth intracellular loop, suggesting that they are not part of the translocation pathway. Rather, they may be responsible for the low affinity conformation of the substrate-binding sites. The sensitivity to trans-stimulation is not determined by the same amino acid residues as the substrate affinity and must involve a more complex interaction between individual amino acid residues. In addition to the 42-amino acid domain, the adjacent transmembrane domain X seems to be involved in this function.  相似文献   

18.
The Hedgehog (Hh) signaling pathway plays an instructional role during development, and is frequently activated in cancer. Ligand-induced pathway activation requires signaling by the transmembrane protein Smoothened (Smo), a member of the G-protein-coupled receptor (GPCR) superfamily. The extracellular (EC) loops of canonical GPCRs harbor cysteine residues that engage in disulfide bonds, affecting active and inactive signaling states through regulating receptor conformation, dimerization and/or ligand binding. Although a functional importance for cysteines localized to the N-terminal extracellular cysteine-rich domain has been described, a functional role for a set of conserved cysteines in the EC loops of Smo has not yet been established. In this study, we mutated each of the conserved EC cysteines, and tested for effects on Hh signal transduction. Cysteine mutagenesis reveals that previously uncharacterized functional roles exist for Smo EC1 and EC2. We provide in vitro and in vivo evidence that EC1 cysteine mutation induces significant Hh-independent Smo signaling, triggering a level of pathway activation similar to that of a maximal Hh response in Drosophila and mammalian systems. Furthermore, we show that a single amino acid change in EC2 attenuates Hh-induced Smo signaling, whereas deletion of the central region of EC2 renders Smo fully active, suggesting that the conformation of EC2 is crucial for regulated Smo activity. Taken together, these findings are consistent with loop cysteines engaging in disulfide bonds that facilitate a Smo conformation that is silent in the absence of Hh, but can transition to a fully active state in response to ligand.  相似文献   

19.
Activation of acid-sensing ion channels (ASICs) contributes to neuronal death during stroke, to axonal degeneration during neuroinflammation, and to pain during inflammation. Although understanding ASIC gating may help to modulate ASIC activity during these pathologic situations, at present it is poorly understood. The ligand, H(+), probably binds to several sites, among them amino acids within the large extracellular domain. The extracellular domain is linked to the two transmembrane domains by the wrist region that is connected to two anti-parallel β-strands, β1 and β12. Thus, the wrist region together with those β-strands may have a crucial role in transmitting ligand binding to pore opening and closing. Here we show that amino acids in the β1-β2 linker determine constitutive opening of ASIC1b from shark. The most crucial residue within the β1-β2 linker (Asp(110)), when mutated from aspartate to cysteine, can be altered by cysteine-modifying reagents much more readily when channels are closed than when they are desensitized. Finally, engineering of a cysteine at position 110 and at an adjacent position in the β11-β12 linker leads to spontaneous formation of a disulfide bond that traps the channel in the desensitized conformation. Collectively, our results suggest that the β1-β2 and β11-β12 linkers are dynamic during gating and tightly appose to each other during desensitization gating. Hindrance of this tight apposition leads to reopening of the channel. It follows that the β1-β2 and β11-β12 linkers modulate gating movements of ASIC1 and may thus be drug targets to modulate ASIC activity.  相似文献   

20.
Allosteric regulation of protein function is critical for metabolic control. Binding of allosteric effectors elicits a functional change in a remote ligand binding site on a protein by altering the equilibrium between different forms in the protein ensemble. 3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first step in the shikimate pathway, which is responsible for the biosynthesis of aromatic amino acids Trp, Phe, and Tyr. Feedback regulation by the aromatic amino acids is important for controlling the cellular levels of the aromatic amino acids, and many organisms have two or more DAH7PS isozymes that show differing sensitivities to aromatic compounds. Mycobacterium tuberculosis expresses a single DAH7PS that is insensitive to the presence of a single amino acid yet shows extraordinary synergistic inhibition by combinations of the pathway end products Trp and Phe. The Trp+Phe-bound structure for M. tuberculosis DAH7PS, showing two separate binding sites occupied by Trp and Phe for each monomer of the tetrameric protein, was obtained by cocrystallization. Comparison of this structure with the ligand-free M. tuberculosis DAH7PS demonstrates that there is no significant change in conformation upon ligand binding, suggesting that contributions from altered dynamic properties of the enzyme may account for the allosteric inhibition. Isothermal titration calorimetry experiments demonstrate that the inhibitor binding sites are in direct communication. Molecular dynamics simulations reveal different changes in dynamic fluctuations upon single ligand binding compared to dual ligand binding. These changes account for the cross-talk between inhibitor binding sites and the active site, simultaneously potentiating both dual ligand binding and diminution of catalytic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号