首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
神经干细胞作为一种具有自我更新能力和多向分化潜能的细胞,它的增殖和分化受到多种源于自身或外在、邻近或远程细胞信号通路的调控,各种细胞因子及胞间通讯在神经干细胞的增殖和分化中发挥着重要的作用。近年来的多种研究表明,Notch信号通路正是这样一种可以通过相邻细胞的配体与受体相互作用,从而传递信号,进一步发挥其生物学功能的重要信号通路。该通路参与了神经干细胞维持自我形态及向多种具有不同功能的神经细胞分化的过程.对于研究神经干细胞的增殖和分化具有巨大的意义。该文将就当前Notch信号通路对神经干细胞增殖分化影响的相关研究进行简要综述。  相似文献   

2.
The intracellular signaling controlling neural stem/progenitor cell (NSC) self-renewal and neuronal/glial differentiation is not fully understood. We show here that Shp2, an introcellular tyrosine phosphatase with two SH2 domains, plays a critical role in NSC activities. Conditional deletion of Shp2 in neural progenitor cells mediated by Nestin-Cre resulted in early postnatal lethality, impaired corticogenesis, and reduced proliferation of progenitor cells in the ventricular zone. In vitro analyses suggest that Shp2 mediates basic fibroblast growth factor signals in stimulating self-renewing proliferation of NSCs, partly through control of Bmi-1 expression. Furthermore, Shp2 regulates cell fate decisions, by promoting neurogenesis while suppressing astrogliogenesis, through reciprocal regulation of the Erk and Stat3 signaling pathways. Together, these results identify Shp2 as a critical signaling molecule in coordinated regulation of progenitor cell proliferation and neuronal/astroglial cell differentiation.  相似文献   

3.
The WNT pathway plays multiple roles in neural development and is crucial for establishment of the embryonic cerebellum. In addition, WNT pathway mutations are associated with medulloblastoma, the most common malignant brain tumor in children. However, the cell types within the cerebellum that are responsive to WNT signaling remain unknown. Here we investigate the effects of canonical WNT signaling on two important classes of progenitors in the developing cerebellum: multipotent neural stem cells (NSCs) and granule neuron precursors (GNPs). We show that WNT pathway activation in vitro promotes proliferation of NSCs but not GNPs. Moreover, mice that express activated β-catenin in the cerebellar ventricular zone exhibit increased proliferation of NSCs in that region, whereas expression of the same protein in GNPs impairs proliferation. Although β-catenin-expressing NSCs proliferate they do not undergo prolonged expansion or neoplastic growth; rather, WNT signaling markedly interferes with their capacity for self-renewal and differentiation. At a molecular level, mutant NSCs exhibit increased expression of c-Myc, which might account for their transient proliferation, but also express high levels of bone morphogenetic proteins and the cyclin-dependent kinase inhibitor p21, which might contribute to their altered self-renewal and differentiation. These studies suggest that the WNT pathway is a potent regulator of cerebellar stem cell growth and differentiation.  相似文献   

4.
Neural stem cells (NSCs) possess high proliferative potential and the capacity for self-renewal with retention of multipotency to differentiate into brain-forming cells. Several signaling pathways have been shown to be involved in the fate determination process of NSCs, but the molecular mechanisms underlying the maintenance of neural cell stemness remain largely unknown. Our previous study showed that human natural killer carbohydrate epitopes expressed specifically by mouse NSCs modulate the Ras-MAPK pathway, raising the possibility of regulatory roles of glycoprotein glycans in the specific signaling pathways involved in NSC fate determination. To address this issue, we performed comparative N-glycosylation profiling of NSCs before and after differentiation in a comprehensive and quantitative manner. We found that Lewis X-carrying N-glycans were specifically displayed on undifferentiated cells, whereas pauci-mannose-type N-glycans were predominantly expressed on differentiated cells. Furthermore, by knocking down a fucosyltransferase 9 with short interfering RNA, we demonstrated that the Lewis X-carrying N-glycans were actively involved in the proliferation of NSCs via modulation of the expression level of Musashi-1, which is an activator of the Notch signaling pathway. Our findings suggest that Lewis X carbohydrates, which have so far been characterized as undifferentiation markers, actually operate as activators of the Notch signaling pathway for the maintenance of NSC stemness during brain development.  相似文献   

5.
Neural stem cells (NSCs) in the postnatal mammalian brain self-renew and are a source of neurons and glia. To date, little is known about the molecular and cellular mechanisms regulating the maintenance and differentiation of these multipotent progenitors. We show that Jagged1 is required by mitotic cells in the subventricular zone (SVZ) and stimulates self-renewal of multipotent epidermal growth factor-dependent NSCs. Jagged1-expressing cells line the adult SVZ and are juxtaposed to Notch1-expressing cells, some of which are putative NSCs. In vitro, endogenous Jagged1 acts through Notch1 to promote NSC maintenance and multipotency. In vivo, reducing Jagged1/Notch1 signaling decreases the number of proliferating cells in the SVZ. In addition, soluble Jagged1 promotes self-renewal and neurogenic potential of multipotent neural progenitors in vitro. Our findings suggest a central role for Jagged1 in the NSC niche in the SVZ for maintaining a population of NSCs in the postnatal brain.  相似文献   

6.
7.
The effects of mesenchymal stem cells (MSCs) on proliferation and cell fate determination of neural stem cells (NSCs) have been investigated. NSCs were co-cultured with MSCs or NIH3T3 cells using an in vitro transwell system. After 4 days, immunofluorescence staining showed that the number of cells positive for the cell proliferation antigen, ki-67, in neurospheres in MSCs was greater than in NIH3T3 cells. In some experiments, the top-layers of MSCs and NIH3T3 cells were removed to induce NSCs differentiation. Seven days after initiating differentiation, the levels of the neuronal marker, NSE, were higher in NSCs in MSCs co-culture group, and those of glial fibrillary acidic protein (GFAP) were lower, compared with NIH3T3 cells co-culture group. These were confirmed by immunofluorescence. The role of the Notch signaling pathway analyzed with the specific inhibitor, DAPT, and by examining the expression of Notch-related genes using RT-PCR showed that after co-culturing with MSCs for 24 h, NSCs expressed much higher levels of ki-67, Notch1, and Hes1 than did NSCs co-cultured with NIH3T3 cells. Treatment with DAPT decreased ki-67, Notch1 and Hes1 expression in NCSs, and increased Mash1 expression. The data indicate that the interactions between MSCs and NSCs promote NSCs proliferation and are involved in specifying neuronal fate, mediated in part by Notch signaling.  相似文献   

8.
Yanagisawa M  Yu RK 《Glycobiology》2007,17(7):57R-74R
The mammalian central nervous system is organized by a variety of cells such as neurons and glial cells. These cells are generated from a common progenitor, the neural stem cell (NSC). NSCs are defined as undifferentiated neural cells that are characterized by their high proliferative potential while retaining the capacity for self-renewal and multipotency. Glycoconjugates carrying carbohydrate antigens, including glycoproteins, glycolipids, and proteoglycans, are primarily localized on the plasma-membrane surface of cells and serve as excellent biomarkers at various stages of cellular differentiation. Moreover, they also play important functional roles in determining cell fate such as self-renewal, proliferation, and differentiation. In the present review, we discuss the expression pattern and possible functions of glycoconjugates and carbohydrate antigens in NSCs, with an emphasis on stage-specific embryonic antigen-1, human natural killer antigen-1, polysialic acid-neural cell-adhesion molecule, prominin-1, gp130, chondroitin sulfate proteoglycans, heparan sulfate proteoglycans, cystatin C, galectin-1, glycolipids, and Notch.  相似文献   

9.
Both embryonic and adult neurogenesis involves the self-renewal/proliferation,survival,migration and lineage differentiation of neural stem/progenitor cells.Such dynamic process is tightly regulated by...  相似文献   

10.
The diverse roles that Notch signals play during the development and maintenance of normal tissues are recapitulated in different forms of cancer. Depending on the tumor type, Notch can variously promote or limit tumor growth through either cell autonomous or cell non-autonomous effects on differentiation, cellular metabolism, cell cycle progression, angiogenesis, and possibly self-renewal and immune function. Of particular interest, recent findings indicate that a high fraction of T-cell acute lymphoblastic leukemias and lymphomas have activating mutations in the Notch 1 receptor, and that Notch signaling might have a role in the maintenance of normal and malignant stem cells.  相似文献   

11.
12.
Notch signaling pathway enhances neural stem cell characters and regulates cell fate decisions during neural development. Interestingly, besides Notch, other γ-secretase substrates such as APP, LRP2, and ErbB4 have also proven to have biological functions in neural development. We designed a unique experimental setting, combining gain-of- (expression of Notch intracellular domain, NICD) and loss-of-function (γ-secretase inhibition) methods, and were able to examine the function of Notch alone by excluding the activity of other γ-secretase substrates. Here, we show that the frequency and size of neurospheres generated from embryonic neural stem cells (NSCs) significantly decreased by 62.7% and 37.2%, respectively, in the presence of γ-secretase inhibitor even when NICD was expressed. Under the condition of differentiation, however, the γ-secretase inhibitor treatment did not influence the promotion of astrogenesis at the expense of neurogenesis by NICD. These results indicate that other γ-secretase substrate(s) along with Notch are important in the maintenance of the stemness of NSCs, but that Notch alone can sufficiently inhibit neurogenesis without the action of the other γ-secretase substrates during differentiation.  相似文献   

13.
Secreted proteoglycan molecule Tsukushi (TSK) regulates various developmental processes, such as early body patterning and neural plate formation by interacting with major signaling pathways like Wnt, BMP, Notch etc. In central nervous system, TSK inhibits Wnt signaling to control chick retinal development. It also plays important roles for axon guidance and anterior commissure formation in mouse brain. In the present study, we investigated the role of TSK for the development and proper functioning of mouse hippocampus. We found that TSK expression is prominent at hippocampal regions of early postnatal mouse until postnatal day 15 and gradually declines at later stages. Hippocampal dimensions are affected in TSK knockout mice (TSK-KO) as shown by reduced size of hippocampus and dentate gyrus (DG). Interestingly, neural stem cell (NSC) density at the neural niche of DG was higher in TSK-KO compared with wild-type. The ratio of proliferating NSCs as well as the rate of overall cell proliferation was also higher in TSK-KO hippocampus. Our in vitro study also suggests an increased number of neural stem/progenitor cells residing in TSK-KO hippocampus. Finally, we found that the terminal differentiation of NSCs in TSK-KO was disturbed as the differentiation to neuronal cell lineage was increased while the percentages of astrocytes and oligodendrocytes were decreased. Overall, our study establishes the involvement of TSK in hippocampal development, NSC maintenance and terminal differentiation at perinatal stages.  相似文献   

14.
15.
16.
17.
The modes of proliferation and differentiation of neural stem cells (NSCs) are coordinately controlled during development, but the underlying mechanisms remain largely unknown. In this study, we show that the protooncoprotein Myc and the tumor suppressor p19ARF regulate both NSC self-renewal and their neuronal and glial fate in a developmental stage–dependent manner. Early-stage NSCs have low p19ARF expression and retain a high self-renewal and neurogenic capacity, whereas late-stage NSCs with higher p19ARF expression possess a lower self-renewal capacity and predominantly generate glia. Overexpression of Myc or inactivation of p19ARF reverts the properties of late-stage NSCs to those of early-stage cells. Conversely, inactivation of Myc or forced p19ARF expression attenuates self-renewal and induces precocious gliogenesis through modulation of the responsiveness to gliogenic signals. These actions of p19ARF in NSCs are mainly mediated by p53. We propose that opposing actions of Myc and the p19ARF–p53 pathway have important functions in coordinated developmental control of self-renewal and cell fate choices in NSCs.  相似文献   

18.
《Developmental neurobiology》2017,77(10):1206-1220
Adult neurogenesis occurs more commonly in teleosts, represented by zebrafish, than in mammals. Zebrafish is therefore considered a suitable model to study adult neurogenesis, for which the regulatory molecular mechanisms remain little known. Our previous study revealed that neuroepithelial‐like neural stem cells (NSCs) are located at the edge of the dorsomedial region. We also showed that Notch signaling inhibits NSC proliferation in this region. In the present study, we reported the expression of Wnt and Shh signaling components in this region of the optic tectum. Moreover, inhibitors of Wnt and Shh signaling suppressed NSC proliferation, suggesting that these pathways promote NSC proliferation. Shh is particularly required for maintaining Sox2‐positive NSCs. Our experimental data also indicate the involvement of these signaling pathways in neural differentiation from NSCs. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1206–1220, 2017  相似文献   

19.
Notch receptor signaling controls cell-fate specification, self-renewal, differentiation, proliferation and apoptosis throughout development and regeneration in all animal species studied to date. Its dysfunction causes several developmental defects and diseases in the adult. A key feature of Notch signaling is its remarkable cell-context dependency. In this review, we summarize the influences of the cellular context that regulate Notch activity and propose a model how the interplay between the cell-intrinsically established chromatin state and the cell-extrinsic signals that modify chromatin may select for Notch target accessibility and activation in different cellular contexts.  相似文献   

20.
The impact of inflammation is crucial for the regulation of the biology of neural stem cells (NSCs). Interleukin-15 (IL-15) appears as a likely candidate for regulating neurogenesis, based on its well-known mitogenic properties. We show here that NSCs of the subventricular zone (SVZ) express IL-15, which regulates NSC proliferation, as evidenced by the study of IL-15-/- mice and the effects of acute IL-15 administration, coupled to 5-bromo-2'-deoxyuridine/5-ethynyl-2'-deoxyuridine dual-pulse labeling. Moreover, IL-15 regulates NSC differentiation, its deficiency leading to an impaired generation of neuroblasts in the SVZ-rostral migratory stream axis, recoverable through the action of exogenous IL-15. IL-15 expressed in cultured NSCs is linked to self-renewal, proliferation, and differentiation. IL-15-/- NSCs presented deficient proliferation and self-renewal, as evidenced in proliferation and colony-forming assays and the analysis of cell cycle-regulatory proteins. Moreover, IL-15-deficient NSCs were more prone to differentiate than wild-type NSCs, not affecting the cell population balance. Lack of IL-15 led to a defective activation of the JAK/STAT and ERK pathways, key for the regulation of proliferation and differentiation of NSCs. The results show that IL-15 is a key regulator of neurogenesis in the adult and is essential to understanding diseases with an inflammatory component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号