首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two novel cyclopentafused polycyclic aromatic hydrocarbons, naphtho(1,2,3-mno)acephenanthrylene (cyclopenta benzo[e]pyrene) and naphtho(2,1,8-hij)acephenanthrylene (cyclopenta(ij)benzo[a]pyrene) were evaluated for mutagenic activity in the Ames Salmonella typhimurium plate incorporation assay. Both compounds required S9 metabolic activation, and showed optimal activity at low S9 concentrations (below 0.6 mg/plate). Both compounds induced frameshift and base-pair substitution mutations, being active in strains TA98, TA100, TA1537, TA1538 and TA104, but not in strain TA1535. Cyclopenta(ij)benzo[a]pyrene was more active than cyclopentabenzo[e]pyrene, and both were more potent than their parent ring systems, benzo[a]pyrene and benzo[e]pyrene, respectively. Cyclopenta(ij)benzo[a]pyrene was more active in strain TA104 than in TA100 or TA98 (250-470, 340 and 80-100 rev/nmole) as was benzo[a]pyrene (120, 70 and 40 rev/nmole respectively); cyclopentabenzo[e]pyrene was more active in TA100 than TA104 or TA98 (70 versus 50 and 40 rev/nmole), and benzo[e]pyrene showed a similar pattern (4, 3.5 and 0.6 rev/nmole). The relative potencies of the four compounds are in accord with predictions based on perturbational molecular orbital calculations. The peak of activity at low S9 concentrations is consistent with epoxidation at the cyclopentafused ring being the major route of metabolic activation for both these cyclopentafused compounds.  相似文献   

2.
The nitro- and amino-substituted phenazines were synthesized and assayed for their mutagenicity in Salmonella typhimurium strains TA98 and TA98NR. Of 7 tested nitrophenazines, 4 were mutagenic in the absence of a microsomal metabolic activation system (S9 mix) and were more mutagenic in TA98 than in TA98NR. The order of mutagenicity of nitrophenazines in TA98 is 1.7- less than 2- less than 2.8- less than 2.7-substituted phenazine. Of 7 tested amino derivatives, 4 exhibited mutagenic activity with S9 mix in TA98. 1-Nitro-, 1-amino, 1.6-dinitro-, 1.9-dinitro-, 1.6-diamino- and 1.9-diamino-phenazine were not mutagenic. As regards the relationship between mutagenic potency and chemical structure of the phenazines, the results suggested that structural requirements favoring mutagenic activity were the presence of substituents at the 2 and/or 7 position. Furthermore, 2.7-disubstituted phenazines were extremely mutagenic, 2.7-dinitrophenazine and 2.7-diaminophenazine induced 36,450 and 12,110 rev./nmole, respectively. In the preliminary study, 2.7-diaminophenazine was identified by gas chromatography/mass spectrometry from the reaction mixture of m-phenylenediamine and hydrogen peroxide.  相似文献   

3.
Aceanthrylene, a non-alternant cyclopenta-fused hydrocarbon, was shown to be weakly mutagenic without S9 and strongly mutagenic with S9 in the Ames Salmonella plate incorporation assay. The compound was most active in strain TA100 (35 revertants/nmole in the presence of 0.3 mg of S9 protein), and less active in strains TA98, TA1537 and TA1538 (20, 10 and 3.1 rev/nmole respectively, + S9). Strain TA1535 was unresponsive, suggesting that this compound induces frameshift mutations rather than base-pair substitutions. The mutagenic potency of aceanthrylene is consistent with predictions of its activity based on the relatively large delocalization energy (delta E deloc/beta = 0.931) of the carbonium ion which would result from oxirane ring opening of the 1,2-epoxide, a potential active metabolite.  相似文献   

4.
8 Kinds of o- and m-phenylenediamine (PD) derivatives, which are used as oxidative-type hair dyes, were treated with hydrogen peroxide (H2O2). Both before and after H2O2 treatment, their mutagenicity was tested by using Salmonella typhimurium TA98 in the presence or absence of a mammalian metabolic activation system (S9 mix). After H2O2 treatment, the mutagenic potencies of p-nitro-o-phenylenediamine, 3,4-diaminotoluene, p-nitro-m-phenylenediamine and 2,4-diaminophenol did not vary or slightly increased in comparison with those of the starting materials. The mutagenicity of o-PD, p-chloro-o-phenylenediamine (p-Cl-o-PD), m-PD and 2,4-diaminoanisole (p-OMe-m-PD) was enhanced remarkably by treatment with H2O2 and all the oxidation products required metabolic activation by S9 mix for their mutagenesis. In a gas chromatography/mass spectrometric study, 2,3-diaminophenazine and 2,7-diaminophenazine were identified with authentic samples in o-PD and m-PD oxidation mixture, respectively. The oxidation mixture obtained from p-Cl-o-PD and p-OMe-m-PD was separated into several fractions by repeated column chromatography. Brownish yellow crystals were isolated from oxidized p-Cl-o-PD and the structure of the compound was determined to be 2,3-diamino-7-chlorophenazine from physicochemical and chemical evidence. Two reddish yellow crystals, obtained from oxidized p-OMe-m-PD, were 2,7-diamino-3,8-dimethoxyphenazine and 2,7-diamino-3-methoxyphenazine. The number of revertants induced by 1 nmole of phenazines detected from oxidized PD derivatives was as follows; 2,3-diaminophenazine: 349 rev.; 2,3-diamino-7-chlorophenazine; 406 rev.: 2,7-diaminophenazine: 12 110 rev.; 2,7-diamino-3,8-dimethoxyphenazine: 4229 rev.; 2,7-diamino-3-methoxyphenazine: 24 640 rev. in S. typhimurium TA98 strain with 25 microliters S9 per plate.  相似文献   

5.
The mutagenic activities toward S. typhimurium strains TA98 and TA100 of K-region derivatives of 1-nitropyrene and pyrene were determined. The compounds tested were trans-4,5-dihydro-4,5-dihydroxy-1-nitropyrene (Compound 3), trans-4,5-dihydro-4,5-dihydroxypyrene (Compound 4), 1-nitropyrene-4,5-quinone (Compound 5), 1-nitropyrene-9,10-quinone (Compound 6), pyrene-4,5-quinone (Compound 7), and the lactones, 1-nitro-5H-phenanthro[4,5-bcd]pyran-5-one (Compound 8), 3-nitro-5H-phenanthro[4,5-bcd]pyran-5-one (Compound 9), and 5H-phenanthro[4,5-bcd]pyran-5-one (Compound 10). Neither pyrene nor any of its K-region derivatives was mutagenic, either in the absence or presence of S9 mix at the doses tested. Of the K-region derivatives of 1-nitropyrene, the lactones (Compounds 8 and 9) were generally the most active; 0.25 microgram/plate induced 900-2200 revertants in TA98 or TA100 without activation. The 4,5-dihydrodiol (Compound 3), an established mammalian metabolite of 1-nitropyrene, was less mutagenic than was 1-nitropyrene in TA98, but was more mutagenic than was 1-nitropyrene in TA100, regardless of the presence of S9 mix. The quinones (Compounds 5 and 6) were less mutagenic than was 1-nitropyrene in the absence of S9 mix in both strains, but their activities were increased in the presence of S9 mix. The mutagenic activities of the lactones (Compounds 8 and 9) were lower in strains TA98NR and TA98/1,8-DNP6 than in TA98, indicating that nitro-reduction and esterification are involved in their activation. The results of this study indicate that K-region derivatives of 1-nitropyrene may be important in its metabolic activation.  相似文献   

6.
Cyclopenta-fused isomers of pyrene and benz[a]anthracene, nitrated on the etheno bridge, were synthesized and tested in the Ames plate-incorporation assay. Since enzymatic reduction, if it occurs in these compounds, would form arylhydroxylamines which in turn would form highly stabilized arylnitrenium ions, we hoped to test the hypothesis that the direct-acting mutagenic activity of nitroPAH is correlated with the degree of stabilization of the electrophilic intermediate. We found that these compounds are mutagenic (1-9 rev/nmole in Salmonella typhimurium TA98) and do not require S9 activation. However, this activity is substantially lower than that of other nitroPAH of comparable size such as 1-nitropyrene (250-300 rev/nmole). The reasons for this comparative lack of activity are discussed with reference to current theories regarding structure-activity relationships of nitroPAH.  相似文献   

7.
In order to elucidate the mechanisms of mutagenic activation of nitroarenes, we tested the mutagenic potency of 18 kinds of nitroarenes including nitrated biphenyl, fluorene, phenanthrene and pyrene on Salmonella typhimurium TA98 in the absence and presence of S9 mix. The mutagenicities of 2,4-dinitrobiphenyl derivatives and 4-nitrobiphenyl were enhanced by the addition of S9. 2,4,6-Trinitrobiphenyl (3 net rev./10 micrograms without S9) was activated 60-fold by the mammalian metabolic system (181 net rev./10 micrograms with 10% S9). The mutagenic potency of 2,4,2',4'-tetranitrobiphenyl in TA98, TA98NR and TA98/1,8-DNP6 was also enhanced by the addition of 10% S9. But 1-nitropyrene and 1,3-dinitropyrene, which are well-known mutagens and carcinogens, were deactivated to 3% and 0.4%, respectively, by the addition of 10% S9. Separate addition of microsomal and cytosolic fractions slightly activated the mutagenicity of 2,4,6-trinitrobiphenyl, and 2,4,2',4'-tetranitrobiphenyl was activated not only by S9 but also by the cytosolic fraction.  相似文献   

8.
Three novel cyclopenta-fused polycyclic aromatic hydrocarbons were synthesized, benz[d]aceanthrylene, benz[k]aceanthrylene, and benz[j]acephenanthrylene, and evaluated for mutagenic activity in the Ames Salmonella typhimurium plate incorporation assay. The two benzaceanthrylene derivatives were active at low S9 concentrations in strain TA98 (4 and 27 rev/nmole respectively), as had been predicted from the calculated delta Edeloc/beta values of the carbocations derived from opening of the cyclopenta-fused epoxide rings, but the majority of this mutagenicity appeared to be due to free-radical decomposition products of spontaneous endo-peroxide formation. These compounds were therefore not further investigated. Benz[j]acephenanthrylene was also an indirect-acting frameshift mutagen (8-12 rev/nmole in strain TA98), but unlike most of the previously assayed cyclopenta-fused polycyclic aromatic hydrocarbons exhibited no peak of activity at low S9 protein concentration. The principal metabolites formed from this compound by microsomes from Aroclor-treated rat liver were benz[j]acephenanthrylene-4,5-dihydro-4,5-diol (necessarily derived from hydration of benz[j]acephenanthrylene 4,5-oxide) and benz[j]acephenanthrylene-9,10-dihydro-9,10-diol (precursor to benz[j]acephenanthrylene-9,10-dihydrodiol 7,8-oxide, the bay-region diol-epoxide). Consideration of the reduced activity of this compound compared to the related structure chrysene, the S9 dependence curves, and the predicted delta Edeloc/beta values of the postulate active species, suggests that in contrast to most other cyclopenta-fused polycyclic aromatic hydrocarbons, bay-region diol-epoxide formation plays a greater role than epoxidation of the cyclopenta-fused ring in the metabolic activation of benz[j]acephenanthrylene.  相似文献   

9.
Mutagenic nitro derivatives were readily induced when 6 kinds of chemicals were exposed to 10 ppm of nitrogen dioxide (NO2). Single nitro derivatives were formed from pyrene, phenanthrene, fluorene or chrysene. Carbazole and fluoranthene each produced 2 derivatives substituted with nitro groups at different positions. The formation of nitro derivatives was enhanced by exposure of pyrene to NO2 containing nitric acid (HNO3, less than 100-fold enhancement) or sulphur dioxide (SO2, less than 15-fold enhancement). After 24 h of exposure the yields of the nitro derivative were 0.02% with 1 ppm of NO2 in air and 2.85% with NO2 (1 ppm) containing traces of HNO3. The nitro derivatives from all but phenanthrene and carbazole were chemically identified by means of gas chromatography (GC) and mass spectrometry (MS), and the mutagenicity of the 4 kinds of authentic nitro derivatives was tested by using Salmonella strains TA98 and TA1538 with or without the S9 fraction from rat liver treated with Aroclor 1254. The nitro derivative induced from pyrene was determined to be 1-nitropyrene; that of chrysene was 6-nitrochrysene; that of fluorene was 2-nitrofluorene; and those of fluoranthene were 3-nitrofluoranthene, and 8-nitrofluoranthene. Tested with strain TA98 in the absence of the S9 fraction, the first 4 of these derivatives yielded, respectively, 3050, 269, 433 and 13 400 revertants per nmole. Thus, each nitro derivative formed was potentially a direct-acting frameshift-type mutagen. Each compound exposed to NO2 showed a decreased mutagenic activity when tested in the presence of S9 mix. A possible explanation comes from experiments in which 1-nitropyrene was incubated with the S9 mix at 37 degree C for 10 min, and 1-aminopyrene was formed. The mutagenic activity of 1-aminopyrene was appreciable, but only about one-tenth of that of 1-nitropyrene in the Ames test.  相似文献   

10.
8 representative 2-substituted 5-nitrofurans were assayed for mutagenicity in Salmonella typhimurium strains TA98, TA98NR and TA98/1,8-DNP6. The tested compounds were: 5-nitro-2-furanacrylic N-(5-nitro-2-furfurylidene)hydrazide (1); furazolidone (2); 5-nitro-2-furanacrolein (3); 5-nitro-2-furaldehyde semicarbazone (4); 5-nitro-2-furaldehyde (5); nitrofurantoin (6); 5-nitro-2-furaldehyde diacetate (7); and 5-nitro-2-furoic acid (8). These compounds exhibited markedly different mutagenic activities in TA98, and these mutagenicities were similar both in the presence and the absence of rat-liver hepatic S9 activation enzymes. The mutagenic responses ranged from potent (90-300 revertants/nmole, compounds 1-3), to medium (about 10 revertants/nmole, compounds 4 and 6), to weak (0-4 revertants/nmole, compounds 5, 7 and 8). The mutagenicity of 3 was similar in all 3 tester strains, while compound 8 was essentially inactive. The mutagenicities of 1, 4, 5 and 7 were decreased 30-75% in TA98NR, while 2 and 6 showed an even greater depression of activity in this strain. Compound 6 with S9 was about equally mutagenic in TA98 and TA98/1,8-DNP6, while the activities of 6 without S9 and 2 and 7 both with and without S9 were 50-75% lower in TA98/1,8-DNP6. Compounds 1, 4 and 5 were only about 5-10% as mutagenic in TA98/1,8-DNP6 as in TA98. These results suggest that: (i) nitrofurans and their S9-mediated metabolites have similar mutagenic potencies; (ii) with the possible exception of No. 3, nitroreduction is the major route of mutagenic activation for these nitrofurans; and (iii) for compounds 2, 6 and 7, both the presumed N-hydroxy and N,O-ester derivatives of the corresponding aminofuran metabolites appear to lead to mutations.  相似文献   

11.
The mutagenicity of o- and m-phenylenediamine (PD) was remarkedly enhanced by oxidation; their major mutagenic oxidation products were 2,3- and 2,7-diaminophenazine, respectively. In order to evaluate the modulation effect of p-PD on the oxidation of m- or o-PD, p-PD and mixtures of m- and p-PD (m-PD/p-PD) and o- and p-PD (o-PD/p-PD) were oxidized with hydrogen peroxide and their mutagenicity was tested in Salmonella typhimurium TA98 in the presence or absence of a mammalian metabolic activation system (S9 mix). The H2O2-oxidized m-PD/p-PD and o-PD/p-PD were potent mutagens with S9 mix, whereas H2O2-oxidized p-PD was slightly mutagenic. The major mutagenic oxidation products of m-PD/p-PD and o-PD/p-PD were identified as 2,7- and 2,3-diaminophenazine, respectively, by TLC and HPLC. 2,8-Diaminophenazine was also found as a reaction product in oxidized m-PD/p-PD, and it was weakly mutagenic. The mutagenic potency of oxidized m-PD/p-PD or o-PD/p-PD was lower than that of singly oxidized m-PD or o-PD. The yield of 2,7- and 2,3-diaminophenazine was obviously decreased with increases in p-PD, and it was concluded that the declined mutagenic potency of oxidized m-PD/p-PD or o-PD/p-PD was due to the decrease in diaminophenazines. But the formation of diaminophenazines was not completely inhibited by the addition of a 9-fold molar ratio of p-PD to m-PD or o-PD, 8.6 nmole of 2,7-diaminophenazine and 1882.4 nmole of 2,3-diaminophenazine were formed from 1 mmole of m-PD and o-PD, respectively.  相似文献   

12.
Detection of 3,6-dinitrobenzo[a]pyrene in airborne particulates   总被引:1,自引:0,他引:1  
3,6-Dinitrobenzo[a]pyrene, a new mutagen, was detected in airborne particulates collected in Santiago (Chile). The quantity of the compound in the airborne particulates was very small, accounting for 0.01 micrograms/g of total particulates (0.002 ng/m3 of air) at the lowest concentration. It was found that 3,6-dinitrobenzo[a]pyrene is readily decomposed by UV irradiation at 312 nm. The decomposed product was identified as 3-nitrobenzo[a]pyrene-6-quinone by means of mass spectrometry and proton nuclear magnetic resonance analysis. The mutagenicity of 3,6-dinitrobenzo[a]pyrene was 137,000 revertants/nmole for Salmonella typhimurium strain TA98, less than that for strain TA98/1,8-DNP6, an acetyltransferase-deficient mutant, and more than that for strain YG1024, an acetyltransferase-rich mutant.  相似文献   

13.
The environmental pollutant 3-nitrofluoranthene is metabolized in vitro and in vivo to several products including the phenolic metabolites 3-nitrofluoranthen-6-ol (3NF-6-ol), 3-nitrofluoranthen-8-ol (3NF-8-ol), and 3-nitrofluoranthen-9-ol (3NF-9-ol). Similarly, 1-nitropyrene is metabolized to the phenolic metabolites 1-nitropyren-3-ol (1NP-3-ol), 1-nitropyren-6-ol (1NP-6-ol), and 1-nitropyren-8-ol (1NP-8-ol). The mutagenicity of these compounds was investigated using strains of Salmonella typhimurium deficient in either certain nitroreductase or the aryl hydroxylamine O-esterificase. In TA98, 3-nitrofluoranthene and 3NF-8-ol were equally mutagenic at approximately 103 revertants/nmole while 3NF-6-ol and 3NF-9-ol were 10-fold less mutagenic. 1-Nitropyrene and 1NP-3-ol likewise were equally mutagenic at approximately 700 revertants/nmole and 1NP-6-ol and 1NP-8-ol were 100-fold less mutagenic. The mutagenicity of 1-nitropyrene was dependent on the ‘classical nitroreductase’ which is absent in TA98NR, and that of 3-nitrofluoranthene, 3NF-8-ol, and 1NP-3-ol was less dependent on this nitroreductase. Using TA98/1,8DNP6, it was determined that the mutagenicity of 3-nitrofluoranthene, 3NF-8-ol, and 1NP-3-ol but not 1-nitropyrene was dependent on the presence of the O-esterificase. 3-Nitrofluoranthene and 3NF-8-ol were mutagenic in TA100, while 3NF-6-ol and 3NF-9-ol were considerably less mutagenic. 3-Nitrofluoranthene was not mutagenic in TA100NR nor in TA100-Tn5-1,8-DNP1012. None of the phenolic metabolites of 3-nitrofluoranthene were mutagenic in TA100-Tn5-1,8DNP1012 indicating a strong dependence for mutagenicity of the O-esterificase of the 1,8-dinitropyrene nitroreductase which is absent in this strain. These results are discussed in view of possible mechanisms for the differences in the mutagenicity of the phenolic metabolites of these two nitrated arenes.  相似文献   

14.
A series of chlorinations of some polynuclear aromatic hydrocarbons (PAH) were carried out and the products were tested for mutagenicity on Salmonella typhimurium TA98 and TA100. We conclude that the chlorination of certain PAHs with low mutagenicity, such as pyrene and benzo[e]pyrene, resulted in the formation of two types of product. The chlorination of pyrene was studied in some detail. The major products of this chlorination were chloro-substituted pyrenes. These compounds showed an S9-dependent mutagenicity and were identified as 1-chloro-, 1,6-dichloro-, 1,8-dichloro- and 1,3-dichloropyrene. On tester strain TA100 the mutagenic effect ranged from 1.4 to 14 revertants/nmol, 1,3-dichloropyrene being the most potent of the isomers. Minor products eluting from a chromatograph in a more polar fraction than the major products were also formed. These compounds were less stable than the major products and were identified as pyrene with chloro additions in the 4- and 5-positions, with various chloro substituents at other positions. These minor products showed a high mutagenic effect on Salmonella in the absence of S9. The mutagenic effect on strain TA100 ranged from 10 to 15 revertants per ng which is at least 40 and 4000 times higher than for 1-nitropyrene and pyrenequinones, respectively. These unstable chloro derivatives of pyrene are difficult to analyse chemically because they are easily degraded and give rise to the more stable 4-chloropyrene.  相似文献   

15.
Dibenzo-p-dioxin (DD) was made to react with various concentrations of nitrogen oxides in the dark. The mutagenicities of the reaction products were tested using Salmonella typhimurium strains TA98, TA100, TA98NR and TA98/1,8-DNP6 in the presence or absence of a mammalian metabolic activation system (S9 mix). DD-NOx (molar ratios 1:3, 1:6 and 1:18) reaction products exhibited mutagenic potency in strains TA98 and TA98/1,8-DNP6 without S9 mix. In a gas chromatography/mass spectrometry study, 2-nitrodibenzo-p-dioxin (NDD) was identified with authentic sample in the mutagenic reaction products. DD-NOx (1:18) reaction products were reduced by sodium hydrogen sulfide and the reduction mixture was analyzed by HPLC. 2,7-Dinitrodibenzo-p-dioxin (DNDD) and 2,8-DNDD were identified as corresponding diamino-DDs in the reduction mixture. 2-NDD, 2,7-DNDD and 2,8-DNDD were also mutagenic in strains TA98 and TA98/1,8-DNP6 without S9 mix and the mutagenicity of DD-NOx reaction products was largely accounted for by the nitro-DDs.  相似文献   

16.
The mutagenic activities associated with inhalable airborne particulate matter (PM10) collected over a year in four towns (Czech Republic) have been determined. The dichloromethane extracts were tested for mutagenicity using the Ames plate incorporation test and the Kado microsuspension test both with Salmonella typhimurium TA98 and its derivative YG1041 tester strains in the presence and absence of S9 mixture. The aim of this study was to assess the suitability of both bacterial mutagenicity tests and to choose the appropriate indicator strain for monitoring purposes. To elucidate the correlation between mutagenicity and polycyclic aromatic hydrocarbons (PAHs), the concentration of PAHs in the air samples were determined by GC/MS. In general, the significant mutagenicity was obtained in organic extracts of all samples, but differences according to the method and tester strain used were observed. In both mutagenicity tests, the extractable organic mass (EOM) exhibited higher mutagenicity in the YG1041 strain (up to 97 rev/microg in the plate incorporation and 568 rev/microg in the microsuspension tests) than those in TA98 (up to 2.2 rev/microg in the plate incorporation and 14.5 rev/microg in the microsuspension tests). In the plate incorporation test, the direct mutagenic activity in YG1041 was on average 60-fold higher and in microsuspension assay 45-fold higher with respect to strain TA98. In the presence of S9 mix, the mutagenic potency in YG1041 declined (P<0.001) in summer, but increased in TA98 (P<0.05) in samples collected during the winter season. The microsuspension assay provided higher mutagenic responses in both tester strains, but in both strains a significant decrease of mutagenic potency was observed in the presence of S9 mix (P<0.001 for YG1041, P<0.05 for TA98 in winter). The mutagenic potencies detected with both indicator strains correlated well (r=0.54 to 0.87) within each mutagenicity test used but not (for TA98) or moderately (r=0.44 to 0. 66 for YG1041) between both of the tests. The mutagenic activity (in rev/m(3)) likewise the concentration of benzo[a]pyrene and sum of carcinogenic PAHs showed seasonal variation with distinctly higher values during winter season. A correlation between the PAH concentrations and the mutagenicity results for the plate incorporation, but not for the microsuspension tests was found. In samples from higher industrial areas, the higher mutagenicity values were obtained in plate incorporation test with TA98 and in both tests with YG1041 in summer season (P<0.05). According to our results, plate incorporation test seems to be more informative than microsuspension assay. For routine ambient air mutagenicity monitoring, the use of YG1041 tester strain without metabolic activation and the plate incorporation test are to be recommended.  相似文献   

17.
2,4-Diaminotoluene (DAT) was reacted with hydrogen peroxide at room temperature for 2 days, and the resulting red precipitates were separated into 5 fractions on silica gel column chromatography. On the gas chromatographic (GC) study, the first fraction (Fr. 1), which is mutagenic (1425 and 1391 revertants/micrograms in the absence and presence of S9 respectively) in Salmonella typhimurium TA98, contained several peaks. Fr. 1 was further separated into 4 subfractions (Fr. 1-I-Fr. 1-IV) by silica gel column chromatography. The red crystals were separated from Fr. 1-III and the structure of the compound was determined to be 1,8-diamino-2,7-dimethylphenazine from physicochemical and chemical evidence. Further, o-nitro-p-toluidine, p-nitro-o-toluidine, 3,3'-diamino-4,4'-dimethylazobenzene and 3,3'-diamino-4,4'-dimethylazoxybenzene were identified with authentic and synthesized samples by gas chromatography/mass spectrometry. These compounds without nitrotoluidines were mutagenic, and phenazine, azo and azoxy compounds induced 49, 301 and 245 revertants/nmole in Salmonella typhimurium TA98 with 25 microliters S9 per plate, respectively.  相似文献   

18.
A variety of nitro-substituted phenyl alkyl/aryl thioethers and nitroso-substituted phenyl alkyl/aryl thioethers have been synthesized and tested for their mutagenicity towards Salmonella typhimurium strain TA100, TA98, TA98NR and TA98/1,8-DNP(6) in the absence of S9 mix. The relative order of mutagenicity in TA98 and TA100 among p-nitrophenyl thioethers having alkyl or aryl substituents is allyl>phenyl>benzyl>butyl>propyl>ethyl>methyl. Compounds having an alkyl chain C(6) to C(12) were found to be non-mutagenic. Among the various positional isomers (ortho, meta and para) of nitro-substituted diphenyl thioethers only the compounds having the -NO(2) function at the para position is mutagenic, whereas compounds having a -NO(2) function at ortho and meta are non-mutagenic. However, the reduced intermediate, ortho-nitroso derivative was found to be mutagenic in all the four strains but the meta-nitroso derivative was found to be non-mutagenic. All mutagens were found to be non-mutagenic when tested in nitroreductase deficient strain TA98NR, whereas their nitroso intermediates are found to be mutagenic. A substantial fall in the mutagenic activity is observed when some mutagens are tested in O-acetyltransferase deficient strain TA98/1,8-DNP(6).  相似文献   

19.
Past production and handling of munitions has resulted in soil contamination at various military facilities. Depending on the concentrations present, these soils pose both a reactivity and toxicity hazard and the potential for groundwater contamination. Many munitions-related chemicals have been examined for mutagenicity in the Ames test, but because the metabolites may be present in low environmental concentrations, a more sensitive method is needed to elucidate the associated mutagenicity. RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), TNT (2,4,6-trinitrotoluene), tetryl (N-methyl-N-2,4,6-tetranitroaniline), TNB (1,3,5-trinitrobenzene) and metabolites were examined for mutagenicity in a microsuspension modification of the Salmonella histidine reversion assay with and without metabolic activation. TNB and tetryl were positive in TA98 (32.5, 5.2revertants/nmole) and TA100 (7.4, 9.5revertants/nmole) without metabolic activation and were more potent than TNT (TA98, 0.3revertants/nmole; TA100, 2.4revertants/nmole). With the exception of the tetranitroazoxytoluene derivatives, TNT metabolites were less mutagenic than TNT. RDX and two metabolites were negative in both strains, however, hexahydro-1,3,5-trinitroso-1,3,5-triazine was positive in TA100 with and without S9. Microsuspension bioassay results tend to correlate well with published Ames test data, however, there are discrepancies among the published data sets and the microsuspension assay results.  相似文献   

20.
A mixture of alanine, threonine, creatinine and glucose was heated in diethylene glycol and water (5:1, v/v) for 15 min at 200 degrees C. The mutagens formed were purified by high-performance liquid chromatography using the Ames/Salmonella mutagenic activity to guide the purification. The structures of the purified mutagens were determined using UV absorption, mass and NMR spectrometry. A new mutagenic compound with a mass number of 217 was found and its mass spectrum did not correspond to any known mutagen derived from food. This new compound accounted for 4% of the total mutagenic activity. Other mutagenic compounds were identified as MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline), 4,8-DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline), and a new mutagen 4,7,8-TriMeIQx (2-amino-3,4,7,8-tetramethylimidazo[4,5-f]quinoxaline) with a mutagenic activity of 73,000 TA98 revertants per microgram. The percentage of the mutagenic activity attributable to MeIQx, 4,8-DiMeIQx and 4,7,8-TriMeIQx was 10%, 70% and 3%, respectively. The yield of MeIQx, 4,8-DiMeIQx and 4,7,8-TriMeIQx was 10, 36 and 6 nmole/mmole creatinine. The formation of TriMeIQx from natural meat components suggests that this new quinoxaline mutagen may be present in cooked foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号