首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased ammonia accumulation in the brain due to liver dysfunction is a major contributor to the pathogenesis of hepatic encephalopathy (HE). Fatal outcome of rapidly progressing (acute) HE is mainly related to cytotoxic brain edema associated with astrocytic swelling. An increase of brain ammonia in experimental animals or treatment of cultured astrocytes with ammonia generates reactive oxygen and nitrogen species in the target tissues, leading to oxidative/nitrosative stress (ONS). In cultured astrocytes, ammonia-induced ONS is invariably associated with the increase of the astrocytic cell volume. Interrelated mechanisms underlying this response include increased nitric oxide (NO) synthesis which is partly coupled to the activation of NMDA receptors and increased generation of reactive oxygen species by NADPH oxidase. ONS and astrocytic swelling are further augmented by excessive synthesis of glutamine (Gln) which impairs mitochondrial function following its accumulation in there and degradation back to ammonia (“the Trojan horse” hypothesis). Ammonia also induces ONS in other cell types of the CNS: neurons, microglia and the brain capillary endothelial cells (BCEC). ONS in microglia contributes to the central inflammatory response, while its metabolic and pathophysiological consequences in the BCEC evolve to the vasogenic brain edema associated with HE. Ammonia-induced ONS results in the oxidation of mRNA and nitration/nitrosylation of proteins which impact intracellular metabolism and potentiate the neurotoxic effects. Simultaneously, ammonia facilitates the antioxidant response of the brain, by activating astrocytic transport and export of glutathione, in this way increasing the availability of precursors of neuronal glutathione synthesis.  相似文献   

2.
Ammonia-induced astrocyte swelling in primary culture   总被引:4,自引:0,他引:4  
The effect of ammonia on water space of astrocytes in culture was determined as a means of studying the neurotoxicity of ammonia in fulminant hepatic failure (FHF). Treatment of primary astrocyte cultures obtained from neonatal rat cortices with 10 mM NH4Cl for 4 days resulted in a 29% increase in astrocytic water space, as measured by an isotopic method utilizing 3-O-methyl-[3H]-glucose. this effect was time- and dose-dependent. The ammonia-induced swelling was reversible as the water space in cultures treated with 10 mH NH4Cl for 3 days, and then returned to normal culture media for 1 day, was similar to control cultures. These findings suggest that elevated levels of ammonia lead to astrocyte swelling and may contribute to the brain edema in FHF.Special issue dedicated to Dr. Santiago Grisolia  相似文献   

3.
Brain edema and the subsequent increase in intracranial pressure are the major neurological complications in fulminant hepatic failure (FHF). Brain edema in FHF is predominantly "cytotoxic" due principally to astrocyte swelling. It is generally believed that ammonia plays a key role in this process, although the mechanism by which ammonia brings about such swelling is yet to be defined. It has been postulated that glutamine accumulation in astrocytes subsequent to ammonia detoxification results in increased osmotic forces leading to cell swelling. While the hypothesis is plausible and has gained support, it has never been critically tested. In this study, we examined whether a correlation exists between cellular glutamine levels and the degree of cell swelling in cultured astrocytes exposed to ammonia. Cultured astrocytes derived from rat brain cortices were exposed to ammonia (5 mM) for different time periods and cell swelling was measured. Cultures treated with ammonia for 1-3 days showed a progressive increase in astrocyte cell volume (59-127%). Parallel treatment of astrocyte cultures with ammonia showed a significant increase in cellular glutamine content (60-80%) only at 1-4 h, a time when swelling was absent, while glutamine levels were normal at 1-3 days, a time when peak cell swelling was observed. Thus no direct correlation between cell swelling and glutamine levels was detected. Additionally, acute increase in intracellular levels of glutamine by treatment with the glutaminase inhibitor 6-diazo-5-oxo-L-norleucine (DON) after ammonia exposure also did not result in swelling. On the contrary, DON treatment significantly blocked (66%) ammonia-induced astrocyte swelling at a later time point (24 h), suggesting that some process resulting from glutamine metabolism is responsible for astrocyte swelling. Additionally, ammonia-induced free radical production and induction of the mitochondrial permeability transition (MPT) were significantly blocked by treatment with DON, suggesting a key role of glutamine in the ammonia-induced free radical generation and the MPT. In summary, our findings indicate a lack of direct correlation between the extent of cell swelling and cellular levels of glutamine. While glutamine may not be acting as an osmolyte, we propose that glutamine-mediated oxidative stress and/or the MPT may be responsible for the astrocyte swelling by ammonia.  相似文献   

4.
5.
Brain edema and the consequent increase in intracranial pressure and brain herniation are major complications of acute liver failure (fulminant hepatic failure) and a major cause of death in this condition. Ammonia has been strongly implicated as an important factor, and astrocyte swelling appears to be primarily responsible for the edema. Ammonia is known to cause cell swelling in cultured astrocytes, although the means by which this occurs has not been fully elucidated. A disturbance in one or more of these systems may result in loss of ion homeostasis and cell swelling. In particular, activation of the Na-K-Cl cotransporter (NKCC1) has been shown to be involved in cell swelling in several neurological disorders. We therefore examined the effect of ammonia on NKCC activity and its potential role in the swelling of astrocytes. Cultured astrocytes were exposed to ammonia (NH(4)Cl; 5 mm), and NKCC activity was measured. Ammonia increased NKCC activity at 24 h. Inhibition of this activity by bumetanide diminished ammonia-induced astrocyte swelling. Ammonia also increased total as well as phosphorylated NKCC1. Treatment with cyclohexamide, a potent inhibitor of protein synthesis, diminished NKCC1 protein expression and NKCC activity. Since ammonia is known to induce oxidative/nitrosative stress, and antioxidants and nitric-oxide synthase inhibition diminish astrocyte swelling, we also examined whether ammonia caused oxidation and/or nitration of NKCC1. Cultures exposed to ammonia increased the state of oxidation and nitration of NKCC1, whereas the antioxidants N-nitro-l-arginine methyl ester and uric acid all significantly diminished NKCC activity. These agents also reduced phosphorylated NKCC1 expression. These results suggest that activation of NKCC1 is an important factor in the mediation of astrocyte swelling by ammonia and that such activation appears to be mediated by NKCC1 abundance as well as by its oxidation/nitration and phosphorylation.  相似文献   

6.
Ammonia toxicity is clinically important and biologically poorly understood. We reported previously that 3 mM ammonia chloride (ammonia), a relevant concentration for hepatic encephalopathy studies, increases production of endogenous ouabain and activity of Na,K-ATPase in astrocytes. In addition, ammonia-induced upregulation of gene expression of α2 isoform of Na,K-ATPase in astrocytes could be inhibited by AG1478, an inhibitor of the EGF receptor (EGFR), and by PP1, an inhibitor of Src, but not by GM6001, an inhibitor of metalloproteinase and shedding of growth factor, suggesting the involvement of endogenous ouabain-induced EGF receptor transactivation. In the present cell culture study, we investigated ammonia effects on phosphorylation of EGF receptor and its intracellular signal pathway towards MAPK/ERK1/2 and PI3K/AKT; interaction between EGF receptor, α1, and α2 isoforms of Na,K-ATPase, Src, ERK1/2, AKT and caveolin-1; and relevance of these signal pathways for ammonia-induced cell swelling, leading to brain edema, an often fatal complication of ammonia toxicity. We found that (i) ammonia increases EGF receptor phosphorylation at EGFR845 and EGFR1068; (ii) ammonia-induced ERK1/2 and AKT phosphorylation depends on the activity of EGF receptor and Src, but not on metalloproteinase; (iii) AKT phosphorylation occurs upstream of ERK1/2 phosphorylation; (iv) ammonia stimulates association between the α1 Na,K-ATPase isoform, Src, EGF receptor, ERK1/2, AKT and caveolin-1; (v) ammonia-induced ROS production might occur later than EGFR transactivation; (vi) both ammonia induced ERK phosphorylation and ROS production can be abolished by canrenone, an inhibitor of ouabain, and (vii) ammonia-induced cell swelling depends on signaling via the Na,K-ATPase/ouabain/Src/EGF receptor/PI3K-AKT/ERK1/2, but in response to 3 mM ammonia it does not appear until after 12 h. Based on literature data it is suggested that the delayed appearance of the ammonia-induced swelling at this concentration reflects required ouabain-induced oxidative damage of the ion and water cotransporter NKCC1. This information may provide new therapeutic targets for treatment of hyperammonic brain disorders.  相似文献   

7.
In vitro 1H- and 13C-NMR spectroscopy was used to investigate the effect of ammonia on fatty acid synthesis and composition in cultured astrocytes. Cells were incubated 3 and 24 h with 5 mM ammonia in the presence or absence of the glutamine synthetase inhibitor methionine sulfoximine. An increase of de novo synthesized fatty acids and the glycerol subunit of lipids was observed after 3 h treatment with ammonia (35% and 40% over control, respectively), the initial time point examined. Both parameters further increased significantly to 85% and 60% over control after 24 h ammonia treatment. Three hours incubation with ammonia increased the synthesis of diacylglycerides, while formation of triacylglycerides was decreased (40% over and 15% under control, respectively). The degradation of fatty acids was not affected by ammonia treatment. Furthermore, ammonia caused alterations in the composition of fatty acids, e.g. increased mono- and decreased polyunsaturated fatty acids (85% over and 15% under control concentrations, respectively). The decrease of polyunsaturated fatty acids was even more pronounced in isolated astrocytic mitochondria (39% lower than controls). Our results suggest ammonia-induced abnormalities in astrocytic membranes, which may be related to astrocytic mitochondrial dysfunction in hyperammonemic states. Most of the observed effects of ammonia on fatty acid synthesis and composition were ameliorated when glutamine synthetase was inhibited by methionine sulfoximine, supporting a pathological role of glutamine in ammonia toxicity. This study further emphasizes the importance of investigating the relative contribution of exogenous ammonia, effects of glutamine and of glutamine-derived ammonia on astrocytes and astrocytic mitochondria.  相似文献   

8.
Reperfusion of cultured astrocytes with normal medium after exposure to H(2)O(2)-containing medium causes apoptosis. We have recently shown that ibudilast, which has been used for bronchial asthma and cerebrovascular disorders, attenuated the H(2)O(2)-induced apoptosis of astrocytes via the cGMP signaling pathway. This study examines the mechanism underlying the protective effect of cGMP. The membrane-permeable cGMP analog dibutyryl-cGMP attenuated the H(2)O(2)-induced decrease in cell viability, DNA ladder formation, nuclear condensation, reduction of the mitochondrial membrane potential, cytochrome c release from mitochondria, and caspase-3 activation in cultured astrocytes. These effects of dibutyryl-cGMP were almost completely inhibited by the cGMP-dependent protein kinase (PKG) inhibitor KT5823. In isolated rat brain mitochondria, cGMP in the presence of cytosolic extract from astrocytes inhibited the mitochondrial permeability transition pore (PTP) as determined by monitoring Ca(2+)-induced mitochondrial swelling. This ability of the cytosolic extract was inactivated by heat treatment and was mimicked by exogenous PKG. The effect of cGMP on the mitochondrial swelling was blocked by KT5823. The PTP inhibitors cyclosporin A and bongkrekic acid prevented the H(2)O(2)-induced decrease in cell viability and caspase-3 activation. These findings demonstrate that cGMP inhibits the mitochondrial PTP via the activation of PKG, and the prevention of mitochondrial dysfunction contributes to its anti-apoptotic effect.  相似文献   

9.
Glutathione (GSH) is a major antioxidant in the brain and ammonia neurotoxicity is associated with oxidative stress. In this study, we show that intracerebral administration of ammonium chloride (“ammonia”, final concentration 5 mM) via a microdialysis probe, increases by 80% the glutathione content in cerebral cortical microdialysates, and tends to increase its content in striatal microdialysates. Treatment with ammonia in vitro dose-dependently increased the glutathione content in cultured cerebral cortical astrocytes and a C6 glioma cell line. Significant effects have been observed after 1 h (astrocytes) or 3 h (C6 cells) of exposure and were sustained up to 72 h of incubation. A gradual decrease of the GSH/GSSG ratio noted during 3 h (astrocytes) or 24 h (C6 cells) of exposure, was followed by an partial recovery after 24 h of incubation, the latter phase possibly reflecting increased availability of de novo synthesized glutathione. In our hands, cystine, the precursor for astrocytic glutathione synthesis, was transported to astrocytes almost exclusively by system XAG, while in C6 cells the transport engaged both system xc (60% of uptake) and XAG (40% of uptake). Ammonia in either cell type stimulated cystine uptake without changing the relative contribution of the uptake systems. The results are consistent with the concept of increased astrocytic glutathione synthesis as an adaptive response of the brain to ammonia challenge, and emphasize upregulation of cystine uptake as a factor contributing to this response.  相似文献   

10.
Han BC  Koh SB  Lee EY  Seong YH 《Life sciences》2004,76(5):573-583
L-glutamate (glutamate) is an important neurotoxin as well as the major excitatory neurotransmitter. Extracellular glutamate levels are elevated following ischemia, hypoglycemia, and trauma. One consequence of elevated glutamate levels is cell swelling. Such swelling occurs primarily in astroglial cells. We characterized the regional difference in glutamate-induced swelling response of cultured astrocytes from rat cerebral cortex, hippocampus and cerebellum. Glutamate produced dose-dependent astrocytic swelling in both cerebral cortex and hippocampus, showing a maximal effect in 0.5 mM concentration, as measured by 3-O-methyl-D-[1-3H]glucose uptake. However, in cerebellum, glutamate did not produce astrocytic swelling. It has been suggested that Na+ -dependent glutamate uptake is a possible mechanism of glutamate-induced swelling. The Vmax for glutamate uptake into cerebellum astrocytes was significantly lower (6.7 nmol/mg protein/min) than those for cerebral cortex and hippocampus astrocytes (13.0 and 12.0 nmol/mg protein/min, respectively). In three regions, more than 90% of the cultured cells showed glial fibrillary acidic protein (GFAP) immunoreactivity. Immunoreactivity of GLT, one of the markers of glutamate transporters, which is expressed at low levels in cultured astrocytes, did not show any differences in three regions. However, immunoreactivities of GLAST, the other astroglial glutamate transporter, and aquaporin4 (APQ4), a water transporter, were significantly higher in cerebral cortex and hippocampus than in cerebellum. These results may explain the regional difference of glutamate-induced astrocytic swelling.  相似文献   

11.
Swelling of CNS cells due to endogenous ammonia is a major cause of cerebral oedema in hyperammonaemic encephalopathies. In the present study, incubation in the presence of 5mM ammonium acetate ("ammonia") decreased steady-state distribution of [14C]inulin within incubated rat cerebrocortical minislices, indicating cell swelling. NMDA receptor antagonists, MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d]cycloheptene-5,10-imine maleate,10 microM) and DL-AP-5 (DL-2-amino-5-phosphonovaleric acid, 250 microM), a nitric oxide synthase inhibitor, L-nitroarginine (L-NNA, 500 microM), and an antioxidant, taurine (Tau, 10 mM), markedly attenuated the cell volume-increasing effect of ammonia. The effect of Tau (10mM) was abolished by the GABA(A) receptor antagonist bicuculline (100 microM), but was unaffected by the Tau transport inhibitor guanidynoethyl-sulfonate (GES, 500 microM). Ammonia increased the slice content of Gln, an amino acid whose excess accumulation has been implicated in hyperammonemic oedema. However, treatments that reduced the cell volume did not affect Gln content. These results indicate that ammonia-induced cell swelling is in a large degree mediated by overactivation of NMDA receptors and the ensuing generation of NO and free radicals.  相似文献   

12.
Excessive glutamine (Gln) synthesis in ammonia-overloaded astrocytes contributes to astrocytic swelling and brain edema, the major complication of hepatic encephalopathy (HE). Much of the newly formed Gln is believed to enter mitochondria, where it is recycled to ammonia, which causes mitochondrial dysfunction (a “Trojan horse” mode of action). A portion of Gln may increase osmotic pressure in astrocytes and the interstitial space, directly and independently contributing to brain tissue swelling. Here we discuss the possibility that altered functioning of Gln transport proteins located in the cellular or mitochondrial membranes, modulates the effects of increased Gln synthesis. Accumulation of excess Gln in mitochondria involves a carrier-mediated transport which is activated by ammonia. Studies on the expression of the cell membrane N-system transporters SN1 (SNAT3) and SN2 (SNAT5), which mediate Gln efflux from astrocytes rendered HE model-dependent effects. HE lowered the expression of SN1 at the RNA and protein level in the cerebral cortex (cc) in the thioacetamide (TAA) model of HE and the effect paralleled induction of cerebral cortical edema. Neither SN1 nor SN2 expression was affected by simple hyperammonemia, which produces no cc edema. TAA-induced HE is also associated with decreased expression of mRNA coding for the system A carriers SAT1 and SAT2, which stimulate Gln influx to neurons. Taken together, changes in the expression of Gln transporters during HE appear to favor retention of Gln in astrocytes and/or the interstitial space of the brain. HE may also affect arginine (Arg)/Gln exchange across the astrocytic cell membrane due to changes in the expression of the hybrid Arg/Gln transporter y+LAT2. Gln export from brain across the blood–brain barrier may be stimulated by HE via its increased exchange with peripheral tryptophan.  相似文献   

13.
Glial cells are proposed to play a major role in the ionic and osmotic homeostasis in the CNS. Swelling of glial cells contributes to the development of edema in neural tissue under pathological conditions such as trauma and ischemia. In this study, we compared the osmotic swelling characteristics of murine hippocampal astrocytes, cerebellar Bergmann glial cells, and retinal Müller glial cells in acutely isolated tissue slices in response to hypoosmotic stress and pharmacological blockade of Kir channels. Hypoosmotic challenge induced an immediate swelling of somata in the majority of Bergmann glial cells and hippocampal astrocytes investigated, whereas Müller cell bodies displayed a substantial delay in the onset of swelling and hippocampal astroglial processes remained unaffected. Blockade of Kir channels under isoosmotic conditions had no swelling-inducing effect in Müller cell somata but caused a swelling in brain astrocytic somata and processes. Blockade of Kir channels under hypoosmotic conditions induced an immediate and strong swelling in Müller cell somata, but had no cumulative effect to brain astroglial somata. No regulatory volume decrease could be observed in all cell types. The data suggest that Kir channels are differently implicated in cell volume homeostasis of retinal Müller cells and brain astrocytes and that Müller cells and brain astrocytes differ in their osmotic swelling properties.  相似文献   

14.
Taurine is known to play a major role in volume regulation in astrocytic swelling associated with stroke and brain trauma. Apart from brain edema, the severity of brain injury is related to the levels of inflammatory cytokines such as tumor necrosis factor alpha (TNFalpha). TNFalpha had been shown to be closely associated with brain edema formation since the neutralization of TNFalpha reduced brain edema. Considering taurine has osmoregulatory functions in astrocytes, experiments were performed to study the effects of TNFalpha on taurine uptake in cultured astrocytes. Astrocytes exposed to 20 ng/ml of TNFalpha for 48 h showed a 91% increase in taurine uptake and significant increase was observed after 24 h exposure. This cytokine caused neither significant changes in cell volume nor taurine release. The increased in taurine uptake induced by TNFalpha was unlikely resulted from the modification of Na(+) movement because TNFalpha decreased tyrosine uptake, Na(+)-dependent transport system. In contrast to TNFalpha, interferon-gamma (IFNgamma) did not significantly affect taurine uptake. Taken together, our results did not support a suggestion that TNFalpha affects cell volume regulation via modulating taurine uptake in astrocytes. Increasing lines of evidence have demonstrated that taurine has anti-inflammatory and anti-oxidative effects, these findings therefore suggested that the increase in taurine uptake might be an adaptive response or a tool for astrocytes against oxidative stress.  相似文献   

15.
Hyperammonemia is a key factor in the pathogenesis of hepatic encephalopathy (HE) as well as other metabolic encephalopathies, such as those associated with inherited disorders of urea cycle enzymes and in Reye's syndrome. Acute HE results in increased brain ammonia (up to 5 mM), astrocytic swelling, and altered glutamatergic function. In the present study, using fluorescence imaging techniques, acute exposure (10 min) of ammonia (NH4+/NH3) to cultured astrocytes resulted in a concentration-dependent, transient increase in [Ca2+]i. This calcium transient was due to release from intracellular calcium stores, since the response was thapsigargin-sensitive and was still observed in calcium-free buffer. Using an enzyme-linked fluorescence assay, glutamate release was measured indirectly via the production of NADH (a naturally fluorescent product when excited with UV light). NH4+/NH3 (5 mM) stimulated a calcium-dependent glutamate release from cultured astrocytes, which was inhibited after preincubation with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester but unaffected after preincubation with glutamate transport inhibitors dihydrokainate and DL-threo-beta-benzyloxyaspartate. NH4+/NH3 (5 mM) also induced a transient intracellular alkaline shift. To investigate whether the effects of NH4+/NH3 were mediated by an increase in pH(i), we applied trimethylamine (TMA+/TMA) as another weak base. TMA+/TMA (5 mM) induced a similar transient increase in both pH(i) and [Ca2+]i (mobilization from intracellular calcium stores) and resulted in calcium-dependent release of glutamate. These results indicate that an acute exposure to ammonia, resulting in cytosolic alkalinization, leads to calcium-dependent glutamate release from astrocytes. A deregulation of glutamate release from astrocytes by ammonia could contribute to glutamate dysfunction consistently observed in acute HE.  相似文献   

16.
Ammonia exerts a multitude of metabolic and non-metabolic effects on brain tissue. In the present communication we have investigated its effect on lactate production rates, pyruvate production rates and pyruvate/lactate ratios in mouse cerebrocortical astrocytes and neurons in primary cultures. No effects were found in neurons. All three parameters were affected by ammonia in astrocytes, but less potently and to a smaller degree in cells that had been treated with dibutyryl cyclic AMP (morphologically differentiated cells) than in untreated cells (morphologically undifferentiated cells). In the differentiated cells ammonia had virtually no effect up to a concentration of 1.0 mM, but at 3.0 mM it increased lactate production and decreased pyruvate/lactate ratio significantly. In the undifferentiated cells ammonia greatly increased lactate accumulation (by 80% at 3.0 mM) and it inhibited pyruvate accumulation (by 40% at 3.0 mM). It thereby reduced the pyruvate/lactate ratio progressively within the entire range 0.1-3.0 mM ammonia. In support of the hypothesis that the ammonia-induced reduction of pyruvate/lactate ratio is secondary to depletion of cellular glutamate by formation of glutamine (and glutathione) and a resulting interruption of the malate-aspartate shuttle (MAS), the addition of glutamate to the incubation medium significantly diminished the ammonia-induced reduction of pyruvate/lactate ratio, whereas it had no effect on the increased lactate production. It is discussed that MAS interruption may have additional consequences in astrocytes.  相似文献   

17.
Recently we reported a decrease of C-type natriuretic peptide (CNP)-dependent, natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP (cGMP) synthesis in a non-neuronal compartment of cerebral cortical slices of hyperammonemic rats [Zielińska, M., Fresko, I., Konopacka, A., Felipo, V., Albrecht, J., 2007. Hyperammonemia inhibits the natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP synthesis in the astrocytic compartment of rat cerebral cortex slices. Neurotoxicology 28, 1260-1263]. Here we accounted for the possible involvement of cerebral capillary endothelial cells in this response by measuring the effect of ammonia on the CNP-mediated cGMP formation and intracellular calcium ([Ca2+]i) accumulation in a rat cerebral endothelial cell line (RBE-4). We first established that stimulation of cGMP synthesis in RBE-4 cells was coupled to protein kinase G (PKG)-mediated Ca2+ influx from the medium which was inhibited by an L-type channel blocker nimodipine. Ammonia treatment (1h, 5mM NH4Cl) evoked a substantial decrease of CNP-stimulated cGMP synthesis which was related to a decreased binding of CNP to NPR2 receptors, and depressed the CNP-dependent [Ca2+]i accumulation in these cells. Ammonia also abolished the CNP-dependent Ca2+ accumulation in the absence of Na+. In cells incubated with ammonia in the absence of Ca2+ a slight CNP-dependent increase of [Ca2+]i was observed, most likely representing Ca2+ release from intracellular stores. Depression of CNP-dependent cGMP-mediated [Ca2+]i accumulation may contribute to cerebral vascular endothelial dysfunction associated with hyperammonemia or hepatic encephalopathy.  相似文献   

18.
The metabolism of [U-(13)C]lactate (1 mM) in the presence of unlabeled glucose (2.5 mM) was investigated in glutamatergic cerebellar granule cells, cerebellar astrocytes, and corresponding co-cultures. It was evident that lactate is primarily a neuronal substrate and that lactate produced glycolytically from glucose in astrocytes serves as a substrate in neurons. Alanine was highly enriched with (13)C in the neurons, whereas this was not the case in the astrocytes. Moreover, the cellular content and the amount of alanine released into the medium were higher in neurons than astrocytes. On incubation of the different cell types in medium containing alanine (1 mM), the astrocytes exhibited the highest level of accumulation. Altogether, these results indicate a preferential synthesis and release of alanine in glutamatergic neurons and uptake in cerebellar astrocytes. A new functional role of alanine may be suggested as a carrier of nitrogen from glutamatergic neurons to astrocytes, a transport that may operate to provide ammonia for glutamine synthesis in astrocytes and dispose of ammonia generated by the glutaminase reaction in glutamatergic neurons. Hence, a model of a glutamate-glutamine/lactate-alanine shuttle is presented. To elucidate if this hypothesis is compatible with the pattern of alanine metabolism observed in the astrocytes and neurons from cerebellum, the cells were incubated in a medium containing [(15)N]alanine (1 mM) and [5-(15)N]glutamine (0.5 mM), respectively. Additionally, neurons were incubated with [U-(13)C]glutamine to estimate the magnitude of glutamine conversion to glutamate. Alanine was labeled from [5-(15)N]glutamine to 3.3% and [U-(13)C]glutamate generated from [U-(13)C]glutamine was labeled to 16%. In spite of the modest labeling in alanine, it is clear that nitrogen from ammonia is transferred to alanine via transamination with glutamate formed by reductive amination of alpha-ketoglutarate. With regard to the astrocytic part of the shuttle, glutamine was labeled to 22% in one nitrogen atom whereas 3.2% was labeled in two when astrocytes were incubated in [(15)N]alanine. Moreover, in co-cultures, [U-(13)C]alanine labeled glutamate and glutamine equally, whereas [U-(13)C]lactate preferentially labeled glutamate. Altogether, these results support the role proposed above of alanine as a possible ammonia nitrogen carrier between glutamatergic neurons and surrounding astrocytes and they show that lactate is preferentially metabolized in neurons and alanine in astrocytes.  相似文献   

19.
Ammonia neurotoxicity is associated with overactivation of N-methyl-d-aspartate (NMDA) receptors leading to enhanced nitric oxide and cyclic GMP synthesis and to accumulation of reactive oxygen and nitrogen species. Ammonia is detoxified in the brain via synthesis of glutamine, which if accumulated in excess contributes to astrocytic swelling, mitochondrial dysfunction and cerebral edema. This study was aimed at testing the hypothesis that the activity of the NMDA/NO/cGMP pathway is controlled by the ammonia-induced production of Gln in the brain. Ammonium chloride (final concentration 5 mM), infused for 40 min to the rat striatum via a microdialysis probe, caused a significant increase in Gln (by 40%), NO oxidation products (nitrite+nitrate = NOx) (by 35%) and cGMP (by 50%) concentration in the microdialysate. A Gln synthetase inhibitor, methionine sulfoximine (MSO, 5 mM), added directly to the microdialysate, completely prevented ammonia-mediated production of Gln, and paradoxically, it increased ammonia-mediated production of NOx and cGMP by 230% and 250%, respectively. Of note, MSO given alone significantly reduced basal Gln concentration in the rat striatum, had no effect on the basal NOx concentration, and attenuated basal concentration of cGMP in the microdialysate by 50%. The results of the present study suggest that Gln, at physiological concentrations, may ameliorate excessive activation of the NO–cGMP pathway by neurotoxic concentrations of ammonia. However, in view of potential direct interference of MSO with the pathway, exogenously added Gln and less toxic modulators of Gln content and/or transport will have to be employed in further studies on the underlying mechanisms. Special issue article in honor of Dr. Frode Fonnum. Wojciech Hilgier and Michal Węgrzynowicz contributed equally to this work.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号