首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Lipid metabolism in various regions of squid giant nerve fiber   总被引:3,自引:0,他引:3  
The purpose of this investigation was to compare the incorporation of radioactivity from various precursors into lipids of different regions of squid giant nerve fiber systems including axoplasm, axon sheath, giant fiber lobes which contain stellate ganglion cell bodies, and the remaining ganglion including giant synapses. To identify the labeled lipids, stellate ganglia including giant fiber lobes and the remaining tissue were first incubated separately with [14C]glucose, [32P]phosphate, [14C]serine, [14C]acetate and [3H]myristate. The radioactivity from glucose, after conversion to glycerol and fatty acids, was incorporated into most lipids, including triacylglycerol, free fatty acids, cardiolipin, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylserine, sphingomyelin and ceramide 2-aminoethylphosphanate [corrected]. The radioactivity from serine was largely incorporated into phosphatidylserine and, to a lesser extent, into other phospholipids, mainly as the base component. The sphingoid bases of ceramide and sphingomyelin were also significantly labeled. Saturated and monounsaturated and, to a lesser extent, polyunsaturated fatty acids of these lipids were synthesized from acetate, glucose and myristate. Among the major lipids, cholesterol was not labeled by any of the radioactive compounds used. Ganglion residues incorporated the most radioactivity in total lipids from either [14C]glucose or [14C]serine, followed by giant fiber lobes and then sheath. Axoplasm incorporated the least. Among various lipids, phosphatidylethanolamine with shorter saturated fatty acids and phosphatidylglycerol contained the most radioactivity from glucose in all regions. Axoplasm was characterized by a higher proportion of glucose radioactivity in ceramide, sphingomyelin and phosphatidylglycerol. Axoplasm and sheath contained a higher proportion of serine radioactivity than did the other two regions in ceramide. Essentially no radioactivity from [14C]galactose was incorporated in any region.  相似文献   

2.
INCORPORATION OF LABELLED PHOSPHATE INTO PHOSPHOLIPIDS IN SQUID GIANT AXONS   总被引:2,自引:2,他引:0  
Inorganic phosphate labelled with 32P was applied to giant axons excised from squid (Loligo pealeii) by addition of 32Pi to the bathing solution, by injection into the axon, or by addition to axoplasm which had been separated from the sheath. The preparations were kept at 10 to 25° for various times up to 4 hr. When 32Pi was supplied by way of the bathing solution, axoplasm and sheath were usually separated at the end of incubation before extraction of the lipids. Lipids were extracted with chloroform-methanol and resolved by paper chromatography. The lipids which became labelled appeared to be the same in sheath and axoplasm. They were identified by cochromatography with known lipids and by chromatography of products formed from them by mild alkaline hydrolysis. They included phosphatidylinositol, phosphatidylethanolamine, phosphatidic acid, and probably somelysophosphatidylethanolamine. Some labelled components remained unidentified. Phosphatidylcholine was apparently present, but did not become significantly labelled either in sheath or in axoplasm, or in a squid's stellate ganglion. There was no evidence that separation from the sheath impaired the capacity of the axoplasm for lipid synthesis.  相似文献   

3.
The mechanisms and pathways of synthesis of phosphatidylcholine in the giant fibre system of the squid (Loligo vulgaris) have been examined by incubating the stellate ganglion-nerve preparation or its separated compartments in an artificial bathing solution with labelled choline. Other experiments were done by dissecting the whole stellate ganglion into axoplasm, axon sheath, giant fibre lobe, small fibres and ganglion residue, after incubation. The initial rate of choline incorporation into choline phosphoglycerides was severalfold higher in the lobe than in the axon. Higher lipid radioactivity was recovered in the axon sheath as compared to the axoplasm, and in the small fibres as compared to the ganglion residue which contains its cell bodies. The production of phosphorylcholine and CDP-choline in the intact ganglion-nerve preparation during incubation with choline points to the occurrence of the net synthesis pathway for phosphatidylcholine in this material. Base-exchange activity was also observed in the axon and giant fibre lobe preparations in vitro, but no indication can yet be given whether it also takes place in intact preparations. Electrical stimulation and‘depolarizing’conditions enhance choline phosphorylation in the squid axon and lobe, but decrease phosphatidylcholine labelling.  相似文献   

4.
We studied the effects of platelet-activating factor (PAF-acether) on phospholipase activity in renal epithelial cells. When platelet-activating factor was added to renal cells prelabeled with [3H]arachidonic acid, it induced the rapid hydrolysis of phospholipids. Up to 26% of incorporated [3H]arachidonic acid was released into the medium from renal cells. After the addition of PAF-acether, the degradation of phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine were observed. The amount of [3H]arachidonic acid released were comparable to the losses of phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine. In renal cells biosynthetically labeled by incorporation of [3H]choline into cellular phosphatidylcholine, lysophosphatidylcholine and sphingomyelin, the range of concentrations of PAF-acether-induced hydrolysis of labeled phosphatidylcholine were approximately equal to the amounts of lysophosphatidylcholine produced. We also observed a transient rise of diacylglycerol after the addition of platelet-activating factor to these cells. To test for action of phospholipase C, the accumulations of [3H]choline, [3H]inositol and [3H]ethanolamine were determined. The radioactivities in choline and ethanolamine showed little or no change. An increase in inositol was detectable within 1 min and it peaked at 3 min. These results indicate that platelet-activating factor stimulates phospholipase A2 and phosphatidylinositol-specific phospholipase C activity in renal epithelial cells. These phospholipase activities were Ca2+ dependent. Moreover, PAF-acether enhanced changes in cell-associated Ca2+. These results suggest that the increased Ca2+ permeability of cell membrane stimulates phospholipases A2 and C in renal epithelial cells. Prostaglandin biosynthesis was also enhanced in these cells by platelet-activating factor.  相似文献   

5.
Effect of Light on the Metabolism of Lipids in the Rat Retina   总被引:1,自引:1,他引:0  
The effect of light on the in vitro incorporation of a variety of radioactive precursors into glycerolipids was tested in isolated retinas of albino rats. There was an increase in the incorporation of [2-3H]myo-inositol, 32Pi, [2-3H]glycerol, and [methyl-3H]choline into retinal phospholipids in light compared to that in darkness. [2-3H]myo-Inositol was incorporated primarily into phosphatidylinositol. 32Pi was incorporated primarily into the phosphoinositides, although there were significant increases in the specific activities of all retinal phospholipids in light compared to those in darkness. Likewise, [2-3H]glycerol incorporation into all retinal phospholipids and diglycerides was greater in light than in the dark. There was no effect of light on the incorporation of [2-3H]ethanolamine into phosphatidylethanolamine or of [3-3H]serine into phosphatidylserine, although these phospholipids were labeled to a greater extent in light with [2-3H]glycerol. There was no effect of light on the incorporation of [3H]palmitic acid into diglycerides and phospholipids, with the exception of phosphatidylinositol. Light also had no effect on the uptake of [2-3H]glycerol, [2-3H]inositol, or [methyl-3H]choline into the retina. We conclude from these studies that light stimulates the phosphoinositide effect in the rat retina. Although some of the results are consistent with a stimulation of de novo synthesis of all lipid classes, our studies with [3H]palmitate, [2-3H]ethanolamine, and [3-3H]serine do not support this conclusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1. The anaerobic rumen protozoon Entodinium caudatum was incubated either intact or with various radioactive precursors of phospholipids after ultrasonication. 2. Pulse-chase experiments showed a rapid turnover of phosphatidylinositol and much slower turnovers of phosphatidylethanolamine and phosphatidylcholine. 3. E. caudatum imbibed choline very rapidly; this was immediately and exclusively converted into phosphatidylcholine which was shown by radioautography after 10 min to be distributed throughout the cell membranes. 4. Phosphatidylcholine was synthesized through a phosphorylcholine-CDP-choline pathway, the methylation or base-exchange pathways not being present. 5. Under suitable conditions [Me-14C]choline can be substantially (50-60%) converted into CDP-choline by sonicated E. caudatum and this provides an excellent method of preparing this biosynthetic intermediary. 6. [2-14C]Ethanolamine was taken up much less readily than choline. The former was incorporated into phosphatidylethanolamine by the CDP-ethanolamine pathway. 7. Doubly labelled [32P]phosphatidyl[2-3H]ethanolamine was converted into ceramide phosphorylethanolamine and N-(1-carboxyethyl)phosphatidyl-ethanolamine, without change in the isotopic ratio. Ceramide phosphoryl [2-14C]-ethanolamine was converted into phsophatidylethanolamine. 8. Palmitic acid, oleic acid and linoleic acid were taken by E. caudatum cells and incorporated into phospholipids. By contrast, although stearic acid was taken up it was hardly incorporated into phospholipids.  相似文献   

7.
The incorporation of hydroxyeicosatetraenoic acids (HETEs) into cellular lipids was studied in cultures of human umbilical vein endothelial cells. 5-[3H]HETE was incorporated into the phospholipids (8%) and neutral lipids (15.5%). The uptake was at half maximum after 15 min and reached a plateau after 1 h. The incorporation occurred mainly into phosphatidylcholine (6.3%) with minimal uptake into phosphatidylserine and phosphatidylinositol (0.6%) or phosphatidylethanolamine (1.2%). There was no uptake of 12-[3H]HETE, 15-[3H]HETE or [3H]leukotriene B4 into phospholipids. Treatment of the phosphatidylcholine fraction with phospholipase A2 released 64% of the 5-[3H]HETE with 26% remaining in the lysophosphatidylcholine fraction. This indicates that the majority of the 5-HETE was in the sn-2 position. Unlabeled 5-HETE and arachidonic acid inhibited the uptake of 5-[3H]HETE into phosphatidylcholine with an ID50 of 2.5 and 1.25 microM, respectively. Stearic acid and 15-HETE were not effective inhibitors. Histamine, which activates phospholipases, increased the uptake of 5-[3H]HETE into phosphatidylcholine by 3-fold. Both 5-[3H]HETE and 12-[3H]HETE were incorporated into the neutral lipids of the cells. Analysis of the neutral lipid fraction revealed that 5-[3H]HETE was incorporated into mono-, di- and triacylglycerols but not cholesterol esters. Incorporation of 5-HETE into cellular lipids reduced histamine- and arachidonic acid-stimulated synthesis of 6-ketoprostaglandin F1 alpha and prostaglandin E2 in a concentration-related manner. Angiotensin I converting enzyme activity was not changed. Thus, 5-HETE is incorporated specifically into phosphatidylcholine and glycerol esters of human endothelial cells and this incorporation inhibits prostaglandin synthesis in these cells.  相似文献   

8.
The origin of axoplasmic RNA in the squid giant fiber was investigated after exposure of the giant axon or of the giant fiber lobe to [3H]uridine. The occurrence of a local process of synthesis was indicated by the accumulation of labeled axoplasmic RNA in isolated axons incubated with the radioactive precursor. Similar results were obtained in vivo after injection of [3H]uridine near the stellate nerve at a sizable distance from the ganglion. Exposure of the giant fiber lobe to [3H]uridine under in vivo and in vitro conditions was followed by the appearance of labeled RNA in the axoplasm and in the axonal sheath. While the latter process is attributed to incorporation of precursor by sheath cells, a sizable fraction of the radioactive RNA accumulating in the axoplasmic is likely to originate from neuronal perikarya by a process of axonal transport.  相似文献   

9.
Biosynthesis of membrane lipids in rat axons   总被引:4,自引:1,他引:3       下载免费PDF全文
Compartmented cultures of sympathetic neurons from newborn rats were employed to test the hypothesis that the lipids required for maintenance and growth of axonal membranes must be synthesized in the cell body and transported to the axons. In compartmented cultures the distal axons grow into a compartment separate from that containing the cell bodies and proximal axons, in an environment free from other contaminating cells such as glial cells and fibroblasts. There is virtually no bulk flow of culture medium or small molecules between the cell body and axonal compartments. When [methyl-3H]choline was added to the cell body-containing compartment the biosynthesis of [3H]-labeled phosphatidylcholine and sphingomyelin occurred in that compartment, with a gradual transfer of lipids (less than 5% after 16 h) into the axonal compartment. Surprisingly, addition of [methyl-3H]choline to the compartment containing only the distal axons resulted in the rapid incorporation of label into phosphatidylcholine and sphingomyelin in that compartment. Little retrograde transport of labeled phosphatidylcholine and sphingomyelin (less than 15%) into the cell body compartment occurred. Moreover, there was minimal transport of the aqueous precursors of these phospholipids (e.g., choline, phosphocholine and CDP-choline) between cell compartments. Similarly, when [3H]ethanolamine was used as a phospholipid precursor, the biosynthesis of phosphatidylethanolamine occurred in the pure axons, and approximately 10% of the phosphatidylethanolamine was converted into phosphatidylcholine. Experiments with [35S]methionine demonstrated that proteins were made in the cell bodies, but not in the axons. We conclude that axons of rat sympathetic neurons have the capacity to synthesize membrane phospholipids. Thus, a significant fraction of the phospholipids supplied to the membrane during axonal growth may be synthesized locally within the growing axon.  相似文献   

10.
Effects of the calmodulin antagonists chlorpromazine, trifluoperazine, and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide on phospholipid metabolism were examined in rabbit platelets using [3H]serine, [3H]ethanolamine, [3H]choline, and [3H]glycerol. All these drugs markedly stimulated the incorporation of [3H]serine into phosphatidylserine. On the other hand, these drugs had only a slight effect on the rate of incorporation of [3H]ethanolamine and [3H]choline into the corresponding phospholipid. When [3H]glycerol was used as a precursor of the phospholipids, 3H-labeled phospholipids were mainly composed of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Although the phosphorus content of phosphatidylserine was about 40% of that of phosphatidylcholine in rabbit platelets, the amount of phosphatidylserine labeled with [3H]glycerol was less than 2% of that of the labeled phosphatidylcholine, and calmodulin antagonists slightly stimulated the incorporation of [3H]glycerol into phosphatidylserine. Treatment with calmodulin antagonists caused a marked decrease in the content of endogenous free serine with concomitant increase in the contents of endogenous free ethanolamine and choline. On the other hand, the contents of other free amino acids, including essential and non-essential amino acids, were unchanged. These results suggest that the calmodulin antagonists we used did not affect de novo synthesis of phosphatidylserine, but did stimulate the serine phospholipid base-exchange reaction in rabbit platelets.  相似文献   

11.
1. Analogues of ethanolamine and choline were incubated with different labelled precursors of phospholipids and isolated hepatocytes and the effects on phospholipid synthesis were studied. 2. 2-Aminopropan-1-ol and 2-aminobutan-1-ol were the most efficient inhibitors of [(14)C]ethanolamine incorporation into phospholipids, whereas the incorporation of [(3)H]choline was inhibited most extensively by NN-diethylethanolamine and NN-dimethylethanolamine. 3. When the analogues were incubated with [(3)H]glycerol and hepatocytes, the appearance of (3)H in unnatural phospholipids indicated that they were incorporated, at least in part, via CDP-derivatives. The distribution of [(3)H]glycerol among molecular species of phospholipids containing 2-aminopropan-1-ol and 1-aminopropan-2-ol was the same as in phosphatidylethanolamine. In other phospholipid analogues the distribution of (3)H was more similar to that in phosphatidylcholine. 4. NN-Diethylethanolamine stimulated both the conversion of phosphatidylethanolamine into phosphatidylcholine and the incorporation of [Me-(14)C]methionine into phospholipids. Other N-alkyl- or NN-dialkyl-ethanolamines also stimulated [(14)C]methionine incorporation, but inhibited the conversion of phosphatidylethanolamine into phosphatidylcholine. This indicates that phosphatidyl-NN-diethylethanolamine is a poor methyl acceptor, in contrast with other N-alkylated phosphatidylethanolamines. 5. These results on the regulation of phospholipid metabolism in intact cells are discussed with respect to the possible control points. They also provide guidelines for future experiments on the manipulation of phospholipid polar-headgroup composition in primary cultures of hepatocytes.  相似文献   

12.
Lipid precursors ([2-3H]glycerol for phospholipids and [3H]acetate for cholesterol) were injected into the L-5 dorsal root ganglion of adult rats. At various times, animals were killed, the ganglion and consecutive 5-mm segments of sciatic nerve were dissected, and lipids were extracted and analyzed by TLC. Individual lipid classes exhibited markedly different transport patterns. The crest of radioactive phosphatidylcholine moved as a sharply defined front at about 300 mm/day, with a relatively flat plateau behind the moving crest. Although some radioactive phosphatidylethanolamine also moved at the same rate, the crest was continually attenuated as it moved so that a gradient of radioactive phosphatidylethanolamine along the axon was maintained for several days. Transported diphosphatidylglycerol exhibited a defined crest, as did phosphatidylcholine, but moved at about half the rate. Labeled cholesterol was transported at a rapid rate similar to that for phosphatidylcholine and phosphatidylethanolamine, but like phosphatidylethanolamine, the initial moving crest of radioactivity was continually attenuated. Relative to the phospholipids, cholesterol showed a more prolonged period of accumulation in the axons and was more metabolically stable. We propose that most labeled phosphatidylcholine, phosphatidylethanolamine, and cholesterol is transported in similar (or the same) rapidly moving membranous particles. Once incorporated into these particles, molecules of phosphatidylcholine tend to maintain associated with them during transport. In contrast, molecules of phosphatidylethanolamine and cholesterol in these transported particles exchange extensively with unlabeled molecules in stationary axonal structures. Diphosphatidylglycerol, localized in a specialized organelle, the mitochondrion, is transported at a slower rate than other phospholipids, and does not exchange with other structures.  相似文献   

13.
Since phospholipids are major components of all serum lipoproteins, the role of phospholipid biosynthesis in lipoprotein secretion from cultured rat hepatocytes has been investigated. In liver, phosphatidylcholine is made both by the CDP-choline pathway and by the methylation of phosphatidylethanolamine, which in turn is derived from both serine (via phosphatidylserine) and ethanolamine (via CDP-ethanolamine). Monolayer cultures of rat hepatocytes were incubated in the presence of [methyl-3H]choline, [1-3H] ethanolamine, or [3-3H]serine. The specific radioactivity of the phospholipids derived from each of these precursors was measured in the cells and in the secreted lipoproteins of the cultured medium. The specific radioactivities of phosphatidylcholine and phosphatidylethanolamine derived from [1-3H]ethanolamine were markedly lower (approximately one-half and less than one-tenth, respectively) in the secreted phospholipids than in the cellular phospholipids. Thus, ethanolamine was not an effective precursor of the phospholipids in lipoproteins. On the contrary, the specific radioactivity of phosphatidylcholine made from [methyl-3H]choline was approximately equal in cells and lipoproteins. In addition, over the first 4 h of incubation with [3-3H]serine, the specific radioactivities of phosphatidylcholine and phosphatidylethanolamine were significantly higher in the lipoproteins than in the cells. These data indicate that there is not a random and homogeneous labeling of the phospholipid pools from the radioactive precursors. Instead, specific pools of phospholipids are selected, on the basis of their routes of biosynthesis, for secretion into lipoproteins.  相似文献   

14.
The incorporation of polar and non-polar moieties into cerebral cortex (CC) and cerebellum (CRBL) phospholipids of adult (3.5-month-old) and aged (21.5-month-old) rats was studied in a minced tissue suspension. The biosynthesis of acidic phospholipids through [3H]glycerol appears to be slightly increased with respect to that of zwitterionic or neutral lipids in CC of aged rats with respect to adult rats. On the contrary, the synthesis of phosphatidylcholine (PC) from [3H]choline was inhibited. However, the incorporation of [14C]serine into phosphatidylserine (PS) was higher in CC and CRBL in aged rats with respect to adult rats. The synthesis of phosphatidylethanolamine (PE) from PS was not modified during aging. Saturated ([3H]palmitic) and polyunsaturated ([3H]arachidonic) acids were incorporated successfully by adult and aged brain lipids. In addition [3H]palmitic, [3H]oleic and [3H]arachidonic acid were employed as glycerolipid precursors in brain homogenate from aged (28.5 month old) and adult (3.5 month old) rats. [3H]oleic acid incorporation into neutral lipids (NL) and [3H]arachidonic acid incorporation into PC, PE and phosphatidylinositol (PI) were increased in aged rats with respect to adult rats. Present results show the ability and avidity of aged brain tissue in vitro to incorporate unsaturated fatty acids when they are supplied exogenously. They also suggest a different handling of choline and serine by base exchange enzyme activities to synthesize PC and PS during aging.  相似文献   

15.
Exposure of fetal type II pneumocytes to phospholipase A2 inhibitors led to significantly reduced choline uptake and decreased synthesis of total and disaturated phosphatidylcholines from both [methyl-14C]choline and [9,10(n)-3H]palmitate precursors. The percentage of the total synthesized phosphatidylcholine recovered as disaturated phosphatidylcholine was increased when compared to that in control cultures, suggesting that unsaturated phosphatidylcholine synthesis was reduced to a greater extent than that of the disaturated species. Synthesis of sphingomyelin and phosphatidylethanolamine from labeled palmitate was also reduced, whereas that of phosphatidylinositol and phosphatidylglycerol was significantly increased. Addition of phospholipase C resulted in increased synthesis of phosphatidylcholine from both labeled precursors; no significant changes were found in synthesis of most of the other 3H-labeled lipids. Added phospholipase A2 did not lead to any changes in either choline or palmitate incorporation. However, when melittin (a phospholipase A2 activator) was added to the cultures, greater incorporation of both palmitate and choline was observed, along with a significant increase in the percentage of total cellular radioactivity in 14C-labeled lipids, indicating also stimulation of phosphatidylcholine synthesis. A marked increase in CTP: phosphorylcholine cytidylyltransferase activity was found after treatment of the cultures with phospholipase C. Exposure to quinacrine also increased the activity of this enzyme. Addition of phospholipase C and melittin to prelabeled pneumocyte cultures accelerated degradation of cell phospholipids and the release of free fatty acids as the main degradation products. These findings suggest that intracellular phospholipases are regulators of synthesis of surfactant phospholipids in fetal type II pneumocytes, and that activation or inhibition of these phospholipases could represent a mechanism through which hormones and pharmacological agents modify surfactant and other phospholipid synthesis.  相似文献   

16.
Cytidine, as cytidine 5'-diphosphate choline, is a major precursor in the synthesis of phosphatidylcholine in cell membranes. In the present study, we examined the relationships between extracellular levels of cytidine, the conversion of [14C]choline to [14C]phosphatidylcholine, and the net syntheses of phosphatidylcholine and phosphatidylethanolamine by PC12 cells. The rate at which cytidine (as [3H]cytidine) was incorporated into the PC12 cells followed normal Michaelis-Menten kinetics (Km = 5 microM; Vmax = 12 x 10(-3) mmol/mg of protein/min) when the cytidine concentrations in the medium were below 50 microM; at higher concentrations, intracellular [3H]cytidine nucleotide levels increased linearly. Once inside the cell, cytidine was converted mainly into cytidine triphosphate. In pulse-chase experiments, addition of cytidine to the medium caused a time- and dose-dependent increase (by up to 30%) in the incorporation of [14C]choline into membrane [14C]-phosphatidylcholine. When the PC12 cells were supplemented with both cytidine and choline for 14 h, small but significant elevations (p less than 0.05) were observed in their absolute contents of membrane phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, all increasing by 10-15% relative to their levels in cells incubated with choline alone. Exogenous cytidine, acting via cytidine triphosphate, can thus affect the synthesis and levels of cell membrane phospholipids.  相似文献   

17.
The ability in vitro of yeast mitochondrial and microsomal fractions to synthesize lipid de novo was measured. The major phospholipids synthesized from sn-[2-(3)H]glycerol 3-phosphate by the two microsomal fractions were phosphatidylserine, phosphatidylinositol and phosphatidic acid. The mitochondrial fraction, which had a higher specific activity for total glycerolipid synthesis, synthesized phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine and phosphatidic acid, together with smaller amounts of neutral lipids and diphosphatidylglycerol. Phosphatidylcholine synthesis from both S-adenosyl[Me-(14)C]methionine and CDP-[Me-(14)C]choline appeared to be localized in the microsomal fraction.  相似文献   

18.
Phospholipids of Nocardia coeliaca   总被引:2,自引:2,他引:0       下载免费PDF全文
The lipids of Nocardia coeliaca were separated into at least 10 components by the use of thin-layer chromatography. Phosphatidylcholine was the most abundant phospholipid in this organism, accounting for 25 to 40% of the total phospholipids. The major fatty acid components of the phosphatidylcholine were 14-methyl-pentadecanoic acid (41%), the other C(15) and C(17) iso- and anteiso-fatty acids (29%), and palmitic acid (13.5%). The next most abundant phospholipid was phosphatidylethanolamine (25 to 30%), followed by phosphatidylinositol (11 to 14%) and cardiolipin (7 to 15%). Phosphatidylethanolamine and phosphatidylinositol were very similar to the phosphatidylcholine in fatty acid composition, whereas cardiolipin was characterized by a higher content of palmitic acid (30%). In all of the phospholipids examined, only trace amounts of monounsaturated fatty acids were present. When washed cells of N. coeliaca were incubated with methionine-methyl-(14)C for 1 to 3 hr, the radioactivity was mainly incorporated into the choline moiety of the phosphatidylcholine. In contrast, acetate-1-(14)C or glycerol-1-(14)C was incorporated much more slowly into the phosphatidylcholine than into the other phospholipids and neutral lipids. No phosphatidylcholine was detected in 10 other species of Nocardia examined.  相似文献   

19.
The role of lipids in maintaining ligand binding properties of affinity-purified bovine striatal dopamine D2 receptor was investigated in detail. The receptor, purified on a haloperidol-linked Sepharose CL6B affinity column, exhibited low [3H]spiroperidol binding unless reconstituted with soybean phospholipids. In order to understand the role of individual phospholipids in maintaining the receptor binding activity, the purified preparation was reconstituted separately with individual phospholipids and assayed for [3H]spiroperidol binding. Except for phosphatidylcholine and phosphatidylethanolamine, that respectively restored 30 and 20% binding as compared to that obtained with soybean lipids, reconstitution with other lipids had very little effect. When various combinations of phospholipids were used for reconstitution, a phosphatidylcholine and phosphatidylserine mixture seemed to almost fully restore the receptor binding. A mixture of phosphatidylcholine and phosphatidylethanolamine was as effective as phosphatidylcholine alone in reconstituting ligand binding; however, when phosphatidylserine was also included in the mixture, there was a pronounced increase in binding (about 2-fold compared to the soybean lipids and about 6-fold compared to the phosphatidylcholine-phosphatidylethanolamine mixture). Substitution of other phospholipids or cholesterol for phosphatidylserine in phosphatidylcholine and phosphatidylethanolamine mixture had little effect. Maximal reconstitution of [3H]spiroperidol binding was obtained with phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine mixture (2:2:1, w/w) at a concentration of 0.5 mg/ml. The reconstituted receptor exhibited high affinity binding for [3H]spiroperidol which was comparable to that obtained with membrane or solubilized preparations. Various dopaminergic antagonists and agonists showed appropriate order of potency for the reconstituted receptor. The presently described reconstitution data suggest a role of specific phospholipids in preserving the binding properties of dopamine D2 receptor and should prove useful in studies on functional reconstitution of the receptor.  相似文献   

20.
Isolated squid stellate nerves and giant fiber lobes were incubated for 8 hr in Millipore filtered sea water containing [3H]uridine. The electrophoretic patterns of radioactive RNA purified from the axoplasm of the giant axon and from the giant fiber lobe (cell bodies of the giant axon) demonstrated the presence of RNA species with mobilities corresponding to tRNA and rRNA. The presence of labeled rRNAs was confirmed by the behavior of the large rRNA component (31S) which, in the squid, readily dissociates into its two constituent moyeties (17S and 20S). Comparable results were obtained with the axonal sheath and the stellate nerve. In all the electrophoretic patterns, additional species of radioactive RNA migrated between the 4S and the 20S markers, i.e. with mobilities corresponding to presumptive mRNAs. Chromatographic analysis of the purified RNAs on oligo(dT)cellulose indicated the presence of labeled poly(A)+ RNA in all tissue samples. Radioactive poly(A)+ RNA represented approximately 1% of the total labeled RNA in the axoplasm, axonal sheath and stellate nerve, but more than 2% in the giant fiber lobe. The labeled poly(A)+ RNAs of the giant fibre lobe showed a prevalence of larger species in comparison to the axonal sheath and stellate nerve. In conclusion, the axoplasmic RNAs synthesized by the isolated squid giant axon appear to include all the major classes of axoplasmic RNAs, that is rRNA, tRNA and mRNA.Special Issue dedicated to Prof. Holger Hydén.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号