首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The recognition site of type II restriction enzyme BglI is interrupted   总被引:5,自引:0,他引:5  
The Type II restriction endonuclease BglI recognizes the interrupted DNA sequence 5'-G-C-C-N-N-N-N-N-G-G-C-. This sequence occurs at all locations in over 33 000 base pairs of DNA sequence where the enzyme was found to cut DNA and nowhere else. All six of the specified bases are essential parts of the site since all groups of five of the six bases occur in the DNA sequences tested and none of them are cut by BglI. The length of the block of intervening unspecified positions must be exactly five since all other sizes between zero and 15 occur in the DNA sequences searched and none are cut by BglI. The 5'-terminal nucleotides of BglI cleaved phage G4 replicative form DNA and plasmid pER18 DNA were compared with the DNA sequences near the BglI sites on these DNAs. These results indicated that BglI cuts within the intervening unspecified region and produces single-stranded 3' termini that are three bases long. The BglI recognition site and cleavage points can thus be represented as follows: (Formula: see text). This study of the BglI recognition site was facilitated by the use of inexpensive microcomputers. A system of programs was developed that allowed analysis of over 33 kb of DNA sequences stored on flexible magnetic disks or audio cassettes. While these programs were generally written in the higher level language BASIC, some assembly language subroutines were utilized to reduce execution time.  相似文献   

2.
R.MwoI is a Type II restriction endonucleases enzyme (REase), which specifically recognizes a palindromic interrupted DNA sequence 5'-GCNNNNNNNGC-3' (where N indicates any nucleotide), and hydrolyzes the phosphodiester bond in the DNA between the 7th and 8th base in both strands. R.MwoI exhibits remote sequence similarity to R.BglI, a REase with known structure, which recognizes an interrupted palindromic target 5'-GCCNNNNNGGC-3'. A homology model of R.MwoI in complex with DNA was constructed and used to predict functionally important amino acid residues that were subsequently targeted by mutagenesis. The model, together with the supporting experimental data, revealed regions important for recognition of the common bases in DNA sequences recognized by R.BglI and R.MwoI. Based on the bioinformatics analysis, we designed substitutions of the S310 residue in R.MwoI to arginine or glutamic acid, which led to enzyme variants with altered sequence selectivity compared with the wild-type enzyme. The S310R variant of R.MwoI preferred the 5'-GCCNNNNNGGC-3' sequence as a target, similarly to R.BglI, whereas the S310E variant preferentially cleaved a subset of the MwoI sites, depending on the identity of the 3rd and 9th nucleotide residues. Our results represent a case study of a REase sequence specificity alteration by a single amino acid substitution, based on a theoretical model in the absence of a crystal structure.  相似文献   

3.
The crystal structure of the type II restriction endonuclease BglI bound to DNA containing its specific recognition sequence has been determined at 2.2 A resolution. This is the first structure of a restriction endonuclease that recognizes and cleaves an interrupted DNA sequence, producing 3' overhanging ends. BglI is a homodimer that binds its specific DNA sequence with the minor groove facing the protein. Parts of the enzyme reach into both the major and minor grooves to contact the edges of the bases within the recognition half-sites. The arrangement of active site residues is strikingly similar to other restriction endonucleases, but the co-ordination of two calcium ions at the active site gives new insight into the catalytic mechanism. Surprisingly, the core of a BglI subunit displays a striking similarity to subunits of EcoRV and PvuII, but the dimer structure is dramatically different. The BglI-DNA complex demonstrates, for the first time, that a conserved subunit fold can dimerize in more than one way, resulting in different DNA cleavage patterns.  相似文献   

4.
Many reactions in cells proceed via the sequestration of two DNA molecules in a synaptic complex. SfiI is a member of a growing family of restriction enzymes that can bind and cleave two DNA sites simultaneously. We present here the structures of tetrameric SfiI in complex with cognate DNA. The structures reveal two different binding states of SfiI: one with both DNA-binding sites fully occupied and the other with fully and partially occupied sites. These two states provide details on how SfiI recognizes and cleaves its target DNA sites, and gives insight into sequential binding events. The SfiI recognition sequence (GGCCNNNN[downward arrow]NGGCC) is a subset of the recognition sequence of BglI (GCCNNNN[downward arrow]NGGC), and both enzymes cleave their target DNAs to leave 3-base 3' overhangs. We show that even though SfiI is a tetramer and BglI is a dimer, and there is little sequence similarity between the two enzymes, their modes of DNA recognition are unusually similar.  相似文献   

5.
The human interferon-beta 2 gene (IFNB2) product is identical to that for the B-cell stimulation factor-2 (BSF-2), the hybridoma growth factor (HGF) ("interleukin-6"), and the hepatocyte stimulating factor (HSF). Proteins derived from this gene mediate the plasma protein response to tissue injury (acute-phase response) and regulate the growth and differentiation of both B and T cells. By using the enzymes MspI, BstNI, and BglI, three polymorphic systems were detected with probes for the IFNB2 gene. The MspI and BglI polymorphisms are likely to be due to base pair substitutions; the BstNI polymorphism was revealed by nine other enzymes and is likely to be due to DNA insertions within 1 kb of the 3' flanking region of the gene. This region is rich in AT dinucleotides, and slippage at DNA replication may generate the insertions of between 0.07 and 0.23 kb that were observed. The polymorphic MspI site also lies within the vicinity of the fifth exon. The BglI polymorphic site is likely to lie in 5' flanking DNA. The three polymorphisms are separate, and a variety of haplotypes was observed. A low level of linkage disequilibrium exists between the MspI and the BglI alleles. MspI and BstNI polymorphisms were observed in Caucasoids, CAR Pygmies, Zaire Pygmies, Melanesians, and Chinese but at differing frequencies, and not all alleles were present in all populations. The BglI polymorphism was observed in Caucasoids and Africans only. Linkage studies involving the IFNB2 gene and 27 other chromosome 7 markers have localized it to between D7S135 and D7S370 at 7p22-p21.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
MutH initiates mismatch repair by nicking the transiently unmethylated daughter strand 5' to a GATC sequence. Here, we report crystal structures of MutH complexed with hemimethylated and unmethylated GATC substrates. Both structures contain two Ca2+ ions jointly coordinated by a conserved aspartate and the scissile phosphate, as observed in the restriction endonucleases BamHI and BglI. In the hemimethylated complexes, the active site is more compact and DNA cleavage is more efficient. The Lys residue in the conserved DEK motif coordinates the nucleophilic water in conjunction with the phosphate 3' to the scissile bond; the same Lys is also hydrogen bonded with a carbonyl oxygen in the DNA binding module. We propose that this Lys, which is conserved in many restriction endonucleases and is replaced by Glu or Gln in BamHI and BglII, is a sensor for DNA binding and the linchpin that couples base recognition and DNA cleavage.  相似文献   

7.
Restriction endonucleases differ in their use of metal cofactors despite having remarkably similar folds for their catalytic regions. To explore this, we have characterized the interaction of endonuclease PvuII with the catalytically incompetent cation Ca(2+). The structure of a glutaraldehyde-crosslinked crystal of the endonuclease PvuII-DNA complex, determined in the presence of Ca(2+) at a pH of approximately 6.5, supports a two-metal mechanism of DNA cleavage by PvuII. The first Ca(2+) position matches that found in all structurally examined endonucleases, while the second position is similar to that of EcoRV but is distinct from that of BamHI and BglI. The location of the second metal in PvuII, unlike that in BamHI/BglI, permits no direct interaction between the second metal and the O3' oxygen leaving group. However, the interactions between the DNA scissile phosphate and the metals, the first metal and the attacking water, and the attacking water and DNA are the same in PvuII as they are in the two-metal models of BamHI and BglI, but are distinct from the proposed three-metal or the two-metal models of EcoRV.  相似文献   

8.
Type II restriction enzymes generally recognize continuous sequences of 4-8 consecutive base pairs on DNA, but some recognize discontinuous sites where the specified sequence is interrupted by a defined length of nonspecific DNA. To date, a mechanism has been established for only one type II endonuclease with a discontinuous site, SfiI at GGCCNNNNNGGCC (where N is any base). In contrast to orthodox enzymes such as EcoRV, dimeric proteins that act at a single site, SfiI is a tetramer that interacts with two sites before cleaving DNA. BglI has a similar recognition sequence (GCCNNNNNGGC) to SfiI but a crystal structure like EcoRV. BglI and several other endonucleases with discontinuous sites were examined to see if they need two sites for their DNA cleavage reactions. The enzymes included some with sites containing lengthy segments of nonspecific DNA, such as XcmI (CCANNNNNNNNNTGG). In all cases, they acted at individual sites. Elongated recognition sites do not necessitate unusual reaction mechanisms. Other experiments on BglI showed that it bound to and cleaved DNA in the same manner as EcoRV, thus further delineating a distinct group of restriction enzymes with similar structures and a common reaction mechanism.  相似文献   

9.
The restriction endonuclease BglI produces different individual fragment ends from different cut sites. This property has allowed us to reconstruct efficiently several commonly used plasmid and bacteriophage genomes and a number of recombinant plasmids containing up to seven BglI restriction sites from their constituent BglI fragments. It is demonstrated that in vitro reconstitution from BglI fragments can be used to create, in a simple way, recombinant DNA molecules by recombining in vitro BglI fragments from different mutated or otherwise related genomes. Further applications of the method are discussed.  相似文献   

10.
Bacillus globigii contains two site-specific endonucleases, BPGLI AND BglI. A rapid technique for selection of mutants deficient in each of these enzymes was developed using sensitivity to infection by bacteriophage SP50 as an indication of the levels of enzyme. Mutants defective in BglI, BglII, and both BglI and BglII retained the wild-type modification phenotype. Genetic and biochemical studies have established that these enzymes are involved in restriction in vivo. Simplified purification procedures for BglI and BglII using these mutants are described.  相似文献   

11.
The 4207-bp cryptic plasmid (pJD1) of Neisseria gonorrhoeae has 5-methylcytosine bases present at several positions in the DNA sequence. Fortuitously, these modified bases lie in the recognition sequences of many restriction enzymes. This feature makes the cryptic plasmid a model system for assaying the effect of these modified cytosines on the activities of the following restriction endonucleases and their isoschizomers: R X AvaII, R X BamHI, R X BglI, R X Fnu4HI, R X HaeII, R X HaeIII, R X HhaI, R X HpaII, R X KpnI, R X MspI, R X NaeI, R X NarI, R X NciI, R X NgoI, R X NgoII, and R X Sau96I. Of particular interest was the finding that methylation of one of the external cytosines of the palindrome 5'-CCGG-3' prevented its cleavage by R X MspI, but not by R X HpaII as had been suggested by Walder et al. [J. Biol. Chem. (1983) 258, 1235-1241].  相似文献   

12.
One hundred and forty isolates of thermophilic bacteria from the genus Thermus were screened for the presence of restriction endonuclease activity. Thermostable isoschizomers of restriction endonucleases, such as AceIII, BbvI, BglI, BsePI, FnuDII, HgiAI, MaeII, MboI, MseI, PvuII, StuI, TaqI, Tsp4CI, TspEI, XhoI and XmaIII, were isolated. Two restriction enzymes, TatI and TauI, recognizing novel degenerate sequences 5'-W (downward arrow)GTACW-3' and 5'-GCSG (downward arrow)C-3' respectively were partially purified and the recognition and cleavage sites were determined.  相似文献   

13.
Mapping of the 3'-end positions of simian virus 40 nascent strands   总被引:5,自引:0,他引:5  
Using the instability of replication loops as the basis for the isolation of replication origins, we have undertaken an analysis of the 3' ends of the extruded nascent strands of replicating simian virus 40 (SV40) DNA. DNA fragments containing the SV40 origin of replication were obtained by digesting highly purified replicative intermediates of SV40 with BamHI and then heating at 55 degrees C for 16h. The origin-containing fragments extruded under these conditions were purified and cloned into pBR322. We used restriction mapping to analyze 640 clones of the 674 that contained SV40 sequences. A large majority of the clones were found to contain rearrangements in the sequences of either pBR322 or SV40 and were disregarded. Those clones that contained legitimate SV40 and pBR322 sequences were presumed to have been derived from the extruded SV40 nascent strands and were further analyzed. A combination of restriction enzymes was used that allowed us to define the 3' ends with an accuracy of +/- 20 base-pairs. The results of restriction analysis were confirmed by nucleotide sequence analysis of selected clones. The results show that the replication forks move with a high degree of symmetry, with respect to the initiation site of DNA replication, and are consistent with the existence of pause sites for the extension of replication forks. From the clones analyzed, it appears that the center of the replication bubble is to the early side of the BglI site.  相似文献   

14.
The effect of binding of an antitumour drug cis-diamminedichloroplatinum(II) (cis-[Pt(NH3)2Cl2]) to DNA on cutting effectiveness of BamHI, EcoRI, and SalI restriction endonucleases was quantitatively determined. The platinum complex inhibits the cleavage of plasmid pHC624 DNA linearized by BglI restrictase. From the present results we conclude that the yield of restriction endonuclease cleavage is also lowered if the platinum complex is bound outside the recognition DNA sequence of these enzymes. We propose that the origin of platinum adducts on DNA outside the recognition sequence can decrease the yield of restriction enzyme cleavage via inducing a conformational perturbation in the recognition DNA sequence of these enzymes and also via inhibition of the linear diffusion of these enzymes on DNA.  相似文献   

15.
The effects of DNA methyltransferases on Tn3 transposition were investigated. The E. coli dam (deoxyadenosine methylase) gene was found to have no effect on Tn3 transposition. In contrast, Tn3 was found to transpose more frequently in dcm+ (deoxycytosine methylase) cells than in dcm- mutants. When the EcoRII methylase gene was introduced into dcm- cells (E. coli strain GM208), the frequency of Tn3 transposition in GM208 was dramatically increased. The EcoRII methylase recognizes and methylates the same sequence as does the dcm methylase. These results suggest that deoxycytosine methylase modified DNA may be a preferred target for Tn3 transposition. Experiments were also performed to determine whether the Tn3 transposase was involved in DNA modification. Plasmid DNA isolated from dcm- E. coli containing the Tn3 transposase gene was susceptible to ApyI digestion but resistant to EcoRI digestion, suggesting that Tn3 transposase modified the dcm recognition sequence. In addition, restriction enzymes TaqI, AvaII, BglI and HpaII did not digest this DNA completely, suggesting that the recognition sequences of TaqI, AvaII, BglI and HpaII were modified by Tn3 transposase to a certain degree. The type(s), the extent and mechanism(s) of this modification remain to be investigated.  相似文献   

16.
Liu J  Déclais AC  Lilley DM 《Biochemistry》2006,45(12):3934-3942
The chemical mechanism of phosphodiester bond hydrolysis catalyzed by a junction-resolving enzyme has been investigated. Endonuclease I of phage T7 is a member of the nuclease superfamily of proteins that include many restriction enzymes, and the structure of the active site is very similar to that of BglI in particular. It contains three acidic amino acids that coordinate two divalent metal ions. Using mass spectrometry we have shown that endonuclease I catalyzes the breakage of the P-O3' bond, in common with restriction enzymes. We have found that the pH dependence of the hydrolysis reaction is log-linear, with a gradient of 0.9. Substitution of the scissile phosphate by an electrically neutral methylphosphonate significantly impairs the rate of bond cleavage. However, the introduction of chirally pure methylphosphonate groups shows that the effect of substitution of the proS oxygen atom is much greater than that for the proR. This is consistent with our current model of the structure of the DNA bound in the active site of endonuclease I, where the proS oxygen atom is coordinated directly to both metal ions as it is in BglI. The activity is also very sensitive to repositioning of the carboxylate groups of Asp 55 and Glu 65 in the active site, although some restoration of activity in endonuclease I E65D was observed in the presence of Mn2+ ions. A mechanism of hydrolysis consistent with all of these data is proposed.  相似文献   

17.
A cleavage map of a recombinant plasmid carrying Tn10 was constructed for 13 different restriction enzymes. The Tn10 region of this plasmid contains cleavage sites for BamHI, AvaI, BglI, BglII, EcoRI, XbaI, HincII, HindIII, and HpaI. Restriction enzymes PstI, SmaI, KpnI, XhoI, SalI, and PvuI do not cleave within the Tn10 element. This map confirms the previously reported structure of this transposon; it is composed of a unique sequence (approximately6,400 base pairs long), which in part codes for the tetracycline resistance functions and is bounded by inverted repeats (approximately 1,450 base pairs long).  相似文献   

18.

Background

Restriction enzymes (REases) are commercial reagents commonly used in recombinant DNA technologies. They are attractive models for studying protein-DNA interactions and valuable targets for protein engineering. They are, however, extremely divergent: the amino acid sequence of a typical REase usually shows no detectable similarities to any other proteins, with rare exceptions of other REases that recognize identical or very similar sequences. From structural analyses and bioinformatics studies it has been learned that some REases belong to at least four unrelated and structurally distinct superfamilies of nucleases, PD-DxK, PLD, HNH, and GIY-YIG. Hence, they are extremely hard targets for structure prediction and homology-based inference of sequence-function relationships and the great majority of REases remain structurally and evolutionarily unclassified.

Results

SfiI is a REase which recognizes the interrupted palindromic sequence 5'GGCCNNNN^NGGCC3' and generates 3 nt long 3' overhangs upon cleavage. SfiI is an archetypal Type IIF enzyme, which functions as a tetramer and cleaves two copies of the recognition site in a concerted manner. Its sequence shows no similarity to other proteins and nothing is known about the localization of its active site or residues important for oligomerization. Using the threading approach for protein fold-recognition, we identified a remote relationship between SfiI and BglI, a dimeric Type IIP restriction enzyme from the PD-DxK superfamily of nucleases, which recognizes the 5'GCCNNNN^NGGC3' sequence and whose structure in complex with the substrate DNA is available. We constructed a homology model of SfiI in complex with its target sequence and used it to predict residues important for dimerization, tetramerization, DNA binding and catalysis.

Conclusions

The bioinformatics analysis suggest that SfiI, a Type IIF enzyme, is more closely related to BglI, an "orthodox" Type IIP restriction enzyme, than to any other REase, including other Type IIF REases with known structures, such as NgoMIV. NgoMIV and BglI belong to two different, very remotely related branches of the PD-DxK superfamily: the α-class (EcoRI-like), and the β-class (EcoRV-like), respectively. Thus, our analysis provides evidence that the ability to tetramerize and cut the two DNA sequences in a concerted manner was developed independently at least two times in the evolution of the PD-DxK superfamily of REases. The model of SfiI will also serve as a convenient platform for further experimental analyses.  相似文献   

19.
The nucleotide sequence of a highly repetitive sequence region upstream from the human insulin gene is reported. The length of this region varies between alleles in the population, and appears to be stably transmitted to the next generation in a Mendelian fashion. There is no significant correlation between the length of this sequence and two types of diabetes mellitus. We observe variation in the cleavability of a BglI recognition site downstream from the human insulin gene, which is probably due to variable nucleotide modification. This presumed modification state appears not to be inherited, and varies between tissues within an individual and between individuals for a given tissue. Both alleles in a given tissue DNA sample are modified to the same extent.  相似文献   

20.
The arrangement of transfer ribonucleic acid (RNA) genes in the chromosome of Escherichia coli K-12 (C600) was examined with the techniques of restriction endonuclease digestion and Southern blotting. The number and size of restriction fragments containing transfer or ribosomal RNA sequences or both were estimated by a variety of restriction endonucleases, including EcoRI, BglI, SmaI, SalI, BamHI, and PstI. EcoRI liberated a minimum of 27 fragments which hybridized to transfer RNA and 16 which hybridized to ribosomal RNA. Enzymes which did not cut within the ribosomal RNA operons (PstI and BamHI) liberated 16 and 13 fragments, respectively, which hybridized to transfer RNA. Five PstI and six BamHi fragments also hybridized to ribosomal RNA, suggesting that there may be at least 11 chromosomal locations distinct from ribosomal RNA operons which encode transfer RNA genes. In addition, our data indicated that several transfer RNA genes may be very close to the 5' proximal ends of certain ribosomal RNA operons and close to the 3' distal ends of all seven ribosomal RNA operons. Similar studies have been carried out with 22 purified species of transfer RNA, and we report here the number and size of EcoRI restriction fragments which hybridize to these transfer RNA species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号