首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model is developed for ionic conduction in the sheep cardiac sarcoplasmic reticulum ryanodine receptor channel based on Eyring rate theory. A simple scheme is proposed founded on single-ion occupancy and an energy profile with four barriers and three binding sites. The model is able to quantitatively predict a large number of conduction properties of the purified and native receptor with monovalent and divalent cations as permeant species. It suggests that discrimination between divalent and monovalent cations is due to a high affinity central binding site and a process that favors the passage of divalent cations between binding sites. Furthermore, differences in conductance among the group Ia cations and among the alkaline earths are largely explained by differing affinity at this putative central binding site.  相似文献   

2.
Sheep cardiac muscle sarcoplasmic reticulum ryanodine receptors have been isolated by density-gradient centrifugation following solubilisation with the zwitterionic detergent, CHAPS. The functional state of the receptor complex has been assessed by quantification of [3H]ryanodine binding and by characterisation of single-channel conductance and gating properties following reconstitution into unilamellar proteo-liposomes and incorporation into planar phospholipid bilayers. A method of solubilisation is described which yields a receptor displaying high-affinity [3H]ryanodine binding (Kd 2.8 nM, Bmax 352 pmol/mg protein) and which functions as a cation-selective, ligand-regulated channel under voltage clamp conditions. Previous reports of channel activity of purified rabbit skeletal and canine cardiac muscle ryanodine receptors describe a range of sub- or variable-conductance events. In contrast, the sheep cardiac ryanodine receptor-channels isolated using the optimal conditions described in this report consistently display a single open state conductance with either Ca2+ or K+ as the charge carrying species.  相似文献   

3.
Blebs of the sarcoplasmic reticulum (SR) membrane of heart muscle cells were generated after saponin perforation of the plasma membrane followed by complete hypercontraction of the cell. Although characteristic proteins of the plasma membrane, namely the beta1-adrenoreceptor and Galphai, were stained by monoclonal antibodies in the hypercontracted cells, these proteins could not be detected in the adjacent blebs. Monoclonal antibodies to the cardiac ryanodine receptor (RyR2), calsequestrin and SERCA2 bound at different amounts to surface components of the blebs and to components of the hypercontracted cells. From the immunofluorescence signals we conclude that the blebs are mainly constituted of corbular and junctional SR membrane, and only to a lesser extent of network SR membrane. Deconvolution microscopy revealed that the membrane location of RyR2, calsequestrin and SERCA2 in the bleb is comparable to native SR membrane. At the bleb membrane giga-ohm seals could be obtained and patches could be excised in a way that single-channel currents could be measured, although these are not completely identified.  相似文献   

4.
We have examined the effects of a number of derivatives of ryanodine on K+ conduction in the Ca2+ release channel purified from sheep cardiac sarcoplasmic reticulum (SR). In a fashion comparable to that of ryanodine, the addition of nanomolar to micromolar quantities to the cytoplasmic face (the exact amount depending on the derivative) causes the channel to enter a state of reduced conductance that has a high open probability. However, the amplitude of that reduced conductance state varies between the different derivatives. In symmetrical 210 mM K+, ryanodine leads to a conductance state with an amplitude of 56.8 +/- 0.5% of control, ryanodol leads to a level of 69.4 +/- 0.6%, ester A ryanodine modifies to one of 61.5 +/- 1.4%, 9,21-dehydroryanodine to one of 58.3 +/- 0.3%, 9 beta,21beta-epoxyryanodine to one of 56.8 +/- 0.8%, 9-hydroxy-21-azidoryanodine to one of 56.3 +/- 0.4%, 10-pyrroleryanodol to one of 52.2 +/- 1.0%, 3-epiryanodine to one of 42.9 +/- 0.7%, CBZ glycyl ryanodine to one of 29.4 +/- 1.0%, 21-p-nitrobenzoyl-amino-9-hydroxyryanodine to one of 26.1 +/- 0.5%, beta-alanyl ryanodine to one of 14.3 +/- 0.5%, and guanidino-propionyl ryanodine to one of 5.8 +/- 0.1% (chord conductance at +60 mV, +/- SEM). For the majority of the derivatives the effect is irreversible within the lifetime of a single-channel experiment (up to 1 h). However, for four of the derivatives, typified by ryanodol, the effect is reversible, with dwell times in the substate lasting tens of seconds to minutes. The effect caused by ryanodol is dependent on transmembrane voltage, with modification more likely to occur and lasting longer at +60 than at -60 mV holding potential. The addition of concentrations of ryanodol insufficient to cause modification does not lead to an increase in single-channel open probability, such as has been reported for ryanodine. At concentrations of > or = 500 mu M, ryanodine after initial rapid modification of the channel leads to irreversible closure, generally within a minute. In contrast, comparable concentrations of beta-alanyl ryanodine do not cause such a phenomenon after modification, even after prolonged periods of recording (>5 min). The implications of these results for the site(s) of interaction with the channel protein and mechanism of the action of ryanodine are discussed. Changes in the structure of ryanodine can lead to specific changes in the electrophysiological consequences of the interaction of the alkaloid with the sheep cardiac SR Ca2+ release channel.  相似文献   

5.
Single Ca2+ release channels from vesicles of sheep cardiac junctional sarcoplasmic reticulum have been incorporated into uncharged planar lipid bilayers. Single-channel currents were recorded from Ca2(+)-activated channels that had a Ca2+ conductance of approximately 90 pS. Channel open probability increased sublinearly as the concentration of free Ca2+ was raised at the myoplasmic face, and without additional agonists the channels could not be fully activated even by 100 microM free Ca2+. Lifetime analysis revealed a minimum of two open and three closed states, and indicates that Ca2+ activated the channels by interacting with at least one of the closed states to increase the rate of channel opening. Correlations between adjacent lifetimes suggested there were at least two pathways between the open- and closed-state aggregates. An analysis of bursting behavior also revealed correlations between successive burst lengths and the number of openings per burst. The latter had two geometric components, providing additional evidence for at least two open states. One component appeared to comprise unit bursts, and the lifetime of most of these fell within the dominant shorter open-time distribution associated with over 90% of all openings. A cyclic gating scheme is proposed, with channel activation regulated by the binding of Ca2+ to a closed conformation of the channel protein. Mg2+ may inhibit activation by competing for this binding site, but lifetime and fluctuation analysis suggested that once activated the channels continue to gate normally.  相似文献   

6.
In striated muscle contraction is under the tight control of myoplasmic calcium concentration ([Ca2+]i): the elevation in [Ca2+]i and the consequent binding of calcium to troponin C enables, while the decrease in [Ca2+]i prevents the actin-myosin interaction. Calcium ions at rest are stored in the sarcoplasmic reticulum (SR) from which they are rapidly released upon the depolarisation of the sarcolemmal and transverse (T-) tubular membranes of the muscle cell. The protein responsible for this controlled and fast release of calcium is the calcium release channel found in the membrane of the terminal cisternae of the SR. This review focuses on the physiological and pharmacological modulators of the calcium release channel and tries to draw an up-to-date picture of the events that occur between T-tubular depolarisation and the release of calcium from the SR.  相似文献   

7.
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified as a single 450,000-dalton polypeptide from CHAPS-solubilized triads using immunoaffinity chromatography. The purified receptor had a [3H]ryanodine-binding capacity (Bmax) of 490 pmol/mg and a binding affinity (Kd) of 7.0 nM. Using planar bilayer recording techniques, we show that the purified receptor forms cationic channels selective for divalent ions. Ryanodine receptor channels were identical to the Ca-release channels described in native sarcoplasmic reticulum using the same techniques. In the present work, four criteria were used to establish this identity: (a) activation of channels by micromolar Ca and millimolar ATP and inhibition by micromolar ruthenium red, (b) a main channel conductance of 110 +/- 10 pS in 54 mM trans Ca, (c) a long-term open state of lower unitary conductance induced by ryanodine concentrations as low as 20 nM, and (d) a permeability ratio PCa/PTris approximately equal to 14. In addition, we show that the purified ryanodine receptor channel displays a saturable conductance in both monovalent and divalent cation solutions (gamma max for K and Ca = 1 nS and 172 pS, respectively). In the absence of Ca, channels had a broad selectivity for monovalent cations, but in the presence of Ca, they were selectively permeable to Ca against K by a permeability ratio PCa/PK approximately equal to 6. Receptor channels displayed several equivalent conductance levels, which suggest an oligomeric pore structure. We conclude that the 450,000-dalton polypeptide ryanodine receptor is the Ca-release channel of the sarcoplasmic reticulum and is the target site of ruthenium red and ryanodine.  相似文献   

8.
We have examined the effect of the charged local anesthetics QX314, QX222, and Procaine on monovalent cation conduction in the Ca2+ release channel of the sheep cardiac sarcoplasmic reticulum. All three blockers only affect cation conductance when present at the cytoplasmic face of the channel. QX222 and Procaine act as voltage-dependent blockers. With 500 Hz filtering, this is manifest as a relatively smooth reduction in single-channel current amplitude most prominent at positive holding potentials. Quantitative analysis gives an effective valence of approximately 0.9 for both ions and Kb(0)s of 9.2 and 15.8 mM for QX222 and Procaine, respectively. Analysis of the concentration dependence of block suggests that QX222 is binding to a single site with a Km of 491 microM at a holding potential of 60 mV. The use of amplitude distribution analysis, with the data filtered at 1 to 2 kHz, reveals that the voltage and concentration dependence of QX222 block occurs largely because of changes in the blocker on rate. The addition of QX314 has a different effect, leading to the production of a substate with an amplitude of approximately one-third that of the control. The substate's occurrence is dependent on holding potential and QX314 concentration. Quantitative analysis reveals that the effect is highly voltage dependent, with a valence of approximately 1.5 caused by approximately equal changes in the on and off rates. Kinetic analysis of the concentration dependence of the substate occurrence reveals positive cooperativity with at least two QX314s binding to the conduction pathway, and this is largely accounted for by changes in the on rate. A paradoxical increase in the off rate at high positive holding potentials and with increasing QX314 concentration at 80 mV suggests the existence of a further QX314-dependent reaction that is both voltage and concentration dependent. The substate block is interpreted physically as a form of partial occlusion in the vestibule of the conduction pathway giving a reduction in single-channel current by electrostatic means.  相似文献   

9.
The effect of gadolinium ions on the sarcoplasmic reticulum (SR) calcium release channel/ryanodine receptor (RyR1) was studied using heavy SR (HSR) vesicles and RyR1 isolated from rabbit fast twitch muscle. In the [(3)H]ryanodine binding assay, 5 microM Gd(3+) increased the K(d) of the [(3)H]ryanodine binding of the vesicles from 33.8 nM to 45.6 nM while B(max), referring to the binding capacity, was not affected significantly. In the presence of 18 nM[(3)H]ryanodine and 100 microM free Ca(2+), Gd(3+) inhibited the binding of the radiolabeled ryanodine with an apparent K(d) value of 14.7 microM and a Hill coefficient of 3.17. In (45)Ca(2+) experiments the time constant of (45)Ca(2+) efflux from HSR vesicles increased from 90.9 (+/- 11.1) ms to 187.7 (+/- 24.9) ms in the presence of 20 microM gadolinium. In single channel experiments gadolinium inhibited the channel activity from both the cytoplasmic (cis) (IC(50) = 5.65 +/- 0.33 microM, n(Hill) = 4.71) and the luminal (trans) side (IC(50) = 5.47 +/- 0.24 microM, n(Hill) = 4.31). The degree of inhibition on the cis side didn't show calcium dependency in the 100 microM to 1 mM Ca(2+) concentration range which indicates no competition with calcium on its regulatory binding sites. When Gd(3+) was applied at the trans side, EGTA was present at the cis side to prevent the binding of Gd(+3) to the cytoplasmic calcium binding regulatory sites of the RyR1 if Gd(3+) accidentally passed through the channel. The inhibition of the channel did not show any voltage dependence, which would be the case if Gd(3+) exerted its effect after getting to the cis side. Our results suggest the presence of inhibitory binding sites for Gd(3+) on both sides of the RyR1 with similar Hill coefficients and IC(50) values.  相似文献   

10.
The subcellular distribution of the Ca(2+)-release channel/ryanodine receptor in adult rat papillary myofibers has been determined by immunofluorescence and immunoelectron microscopical studies using affinity purified antibodies against the ryanodine receptor. The receptor is confined to the sarcoplasmic reticulum (SR) where it is localized to interior and peripheral junctional SR and the corbular SR, but it is absent from the network SR where the SR-Ca(2+)-ATPase and phospholamban are densely distributed. Immunofluorescence labeling of sheep Purkinje fibers show that the ryanodine receptor is confined to discrete foci while the SR-Ca(2+)-ATPase is distributed in a continuous network-like structure present at the periphery as well as throughout interior regions of these myofibers. Because Purkinje fibers lack T- tubules, these results indicate that the ryanodine receptor is localized not only to the peripheral junctional SR but also to corbular SR densely distributed in interfibrillar spaces of the I-band regions. We have previously identified both corbular SR and junctional SR in cardiac muscle as potential Ca(2+)-storage/Ca(2+)-release sites by demonstrating that the Ca2+ binding protein calsequestrin and calcium are very densely distributed in these two specialized domains of cardiac SR in situ. The results presented here provide strong evidence in support of the hypothesis that corbular SR is indeed a site of Ca(2+)-induced Ca2+ release via the ryanodine receptor during excitation contraction coupling in cardiac muscle. Furthermore, these results indicate that the function of the cardiac Ca(2+)-release channel/ryanodine receptor is not confined to junctional complexes between SR and the sarcolemma.  相似文献   

11.
The solubilized [3H]ryanodine receptor from cardiac sarcoplasmic reticulum was centrifuged through linear sucrose gradients. A single peak of radioactivity with apparent sedimentation coefficient of approximately 30S specifically comigrated with a high molecular weight protein of apparent relative molecular mass approximately 400,000. Incorporation of the ryanodine receptor into lipid bilayers induced single Ca2+ channel currents with conductance and kinetic behavior almost identical to that of native cardiac Ca2+ release channels. These results suggest that the cardiac ryanodine receptor comprises the Ca2+ release channel involved in excitation-contraction coupling in cardiac muscle.  相似文献   

12.
We have cloned and sequenced cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. The cDNA, 16,532 base pairs in length, encodes a protein of 4,969 amino acids with a Mr of 564,711. The deduced amino acid sequence is 66% identical with that of the skeletal muscle ryanodine receptor, but analysis of predicted secondary structures and hydropathy plots suggests that the two isoforms exhibit the same topology in both transmembrane and cytoplasmic domains. A potential ATP binding domain was identified at residues 2619-2652, a potential phosphorylation site at residue 2809, and potential calmodulin binding sites at residues 2775-2807, 2877-2898, and 2998-3016. We suggest that a modulator binding domain in the protein lies between residues 2619 and 3016. Northern blot analysis of mRNA from a variety of tissues demonstrated that the cardiac isoform is expressed in heart and brain, while the skeletal muscle isoform is expressed in both fast- and slow-twitch muscle. No ryanodine receptor mRNA was detected in extracts from smooth muscle or any other non-muscle tissue examined. The two receptors are clearly the products of separate genes, and the gene encoding the cardiac muscle ryanodine receptor was localized to chromosome 1.  相似文献   

13.
Single channel currents through cardiac sarcoplasmic reticulum (SR) Ca2+ release channels were measured in very low levels of current carrier (e.g., 1 mM Ba2+). The hypothesis that surface charge contributes to these anomalously large single channel currents was tested by changing ionic strength and surface charge density. Channel identity and sidedness was pharmacologically determined. At low ionic strength (20 mM Cs+), Cs+ conduction in the lumen-->myoplasm (L-->M) direction was significantly greater than in the reverse direction (301.7 +/- 92.5 vs 59.8 +/- 38 pS, P < 0.001; mean +/- SD, t test). The Cs+ concentration at which conduction reached half saturation was asymmetric (32 vs 222 mM) and voltage independent. At high ionic strength (400 mM Cs+), conduction in both direction saturated at 550 +/- 32 pS. Further, neutralization of carboxyl groups on the lumenal side of the channel significantly reduced conduction (333.0 +/- 22.5 vs 216.2 +/- 24.4 pS, P < 0.002). These results indicate that negative surface charge exists near the lumenal mouth of the channel but outside the electric field of the membrane. In vivo, this surface charge may potentiate conduction by increasing the local Ca2+ concentration and thus act as a preselection filter for this poorly selective channel.  相似文献   

14.
Radioligand binding experiments and single channel recordings demonstrate that verapamil interacts with the ryanodine receptor Ca2+ release channel of the sarcoplasmic reticulum of rabbit skeletal muscle. In isolated triads, verapamil decreased binding of [3H]Ryanodine with an IC50 of approximately 8 microM at an optimal pH 8.5 and pCa 4.3. Nitrendipine and d-cis-diltiazem did not interfere with binding of [3H]Ryanodine to triads, suggesting that the action of verapamil does not involve the dihydropyridine receptor. Single channel recordings showed that verapamil blocked Ca2+ release channels by decreasing open probability, duration of open events, and number of events per unit time. A direct interaction of verapamil with the ryanodine receptor peptide was demonstrated after purification of the approximately 400 kDa receptor protein from Chaps-solubilized triads. The purified receptor displayed high affinity for [3H]Ryanodine with a Kd of approximately 5 nM and a Bmax of approximately 400 pmol/mg. Verapamil and D600 decreased [3H]Ryanodine binding noncompetitively by reducing the Bmax. Thus the presence of binding sites for phenylalkylamines in the Ca2+ release channel was confirmed. Verapamil blockade of Ca2+ release channels may explain some of the paralyzing effects of phenylalkylamines observed during excitation-contraction coupling of skeletal muscle.  相似文献   

15.
The functional effects of calmodulin (CaM) on single cardiac sarcoplasmic reticulum Ca(2+) release channels (ryanodine receptors) (RyR2s) were determined in the presence of two endogenous channel effectors, MgATP and reduced glutathione, using the planar lipid bilayer method. Single-channel activities, number of events, and open and close times were determined at varying cytosolic Ca(2+) concentrations. CaM reduced channel open probability at <10 micro M Ca(2+) by decreasing channel events and mean open times and increasing mean close times. At >10 micro M Ca(2+), CaM was less effective in inhibiting RyR2. CaM decreased mean open times but increased channel events, without significantly affecting mean close times. A series of voltage pulses was applied to the bilayer from +50 to -50 mV and from -50 mV to +50 mV to rapidly increase and decrease open channel-mediated sarcoplasmic reticulum lumenal to cytosolic Ca(2+) fluxes. CaM decreased the duration of the open events after the voltage switch from -50 mV to +50 mV. In parallel experiments, a Ca(2+)-insensitive calmodulin mutant was without effect on RyR2 activity. The results are discussed in terms of a possible role of CaM in the termination of cardiac sarcoplasmic reticulum Ca(2+) release.  相似文献   

16.
We have reported that the large impermeant organic cations tetrabutyl ammonium (TBA+), tetrapentyl ammonium, and the charged local anesthetic QX314 produce unique reduced conductance states in the purified sheep cardiac sarcoplasmic reticulum Ca2+ release channel when present at the cytoplasmic face of the channel. We have interpreted this as a form of partial occlusion by the blocking cation in wide vestibules of the conduction pathway. Following modification with ryanodine, which causes the channel to enter a reduced conductance state with long open dwell time, these cations block the receptor channel to a level that is indistinguishable from the closed state. The voltage dependence of TBA+'s interaction with the Ca2+ release channel is the same before and after ryanodine modification. The concentration dependence is different, in that the ryanodine-modified channel has one-third the affinity for TBA+, which is accounted for predominantly by changes in the TBA+ on rate. The data are compatible with a structural change in the vestibule of the conduction pathway consequent upon ryanodine binding that reduces the capture radius for blocking ion entry.  相似文献   

17.
Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia   总被引:17,自引:0,他引:17  
Previous studies have demonstrated that skeletal muscle from individuals susceptible to malignant hyperthermia (MH) has a defect associated with the mechanism of calcium release from its intracellular storage sites in the sarcoplasmic reticulum (SR). In this report we demonstrate that the [3H]ryanodine receptor of isolated MH-susceptible (MHS) porcine heavy SR exhibits an altered Ca2+ dependence of [3H]ryanodine binding at the low affinity Ca2+ site as well as a lower Kd for ryanodine (92 versus 265 nM) when compared to normal porcine SR. The Bmax of the normal and MHS [3H] ryanodine receptor (9.3-12.6 pmol/mg) was not significantly different, and analysis of MHS and normal SR proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis did not reveal a significant difference in the intensity of Coomassie Blue staining of the spanning protein/ryanodine receptor region of the gels (Mr greater than 300,000). We also find that MHS porcine muscle intact fiber bundles exhibit a 5-10-fold lower ryanodine threshold for twitch and tetanus inhibition, and contracture onset when compared to normal muscle. Since the SR ryanodine receptor is a calcium release channel as well as a component intimately involved in transverse tubule-SR communication, abnormalities in the skeletal muscle ryanodine receptor may be responsible for the abnormal SR calcium release and contractile properties demonstrated by MHS muscle.  相似文献   

18.
[3H]Ryanodine binding to a preparation of isolated cardiac sarcoplasmic reticulum has been investigated. A method is reported which produces a very high level of specific binding. Scatchard analysis of binding up to 50 nM ryanodine yields data which infer a single class of binding sites with a Kd of 1.4 nM and a Bmax of 9.7 pmol/mg protein. Micromolar calcium is the principal activating ligand and its effects on binding are modulated by ligands which similarly affect the activity of single calcium-release channels incorporated into artificial planar phospholipid bilayers. The benzimidazole drug, sulmazole, is able to stimulate ryanodine binding in the presence of sub-activating calcium concentrations. Ryanodine binds to the native channel only when it is in its open state and stimulation of maximal ryanodine binding is achieved by ligands which are insufficient to produce full single-channel activation. A model is proposed which relates the modulation of ryanodine binding to the behaviour of single channels.  相似文献   

19.
Mechanism of action of ryanodine on cardiac sarcoplasmic reticulum   总被引:4,自引:0,他引:4  
Ryanodine was found to initially inhibit calcium uptake by cardiac sarcoplasmic reticulum. This initial depression was followed by a later marked stimulation of calcium uptake. These effects were noted when calcium uptake was measured in the presence or absence of oxalate. The requirement for preincubation with ryanodine was highly dependent on ryanodine concentration and temperature. The mechanism of action of ryanodine clearly was not an effect on oxalate entry or calcium oxalate precipitation because the effects were also observed in the absence of oxalate. Ryanodine also had no effect on passive calcium efflux from actively loaded vesicles. Because ryanodine had no effect on Ca2+-ATPase activity under defined conditions of an ATP-regenerating system and no calcium gradient, we suggest ryanodine does not change the stoichiometry of the pump. Our results are consistent with the hypothesis that ryanodine closes a calcium channel in a subpopulation of the vesicles.  相似文献   

20.
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified by immunoaffinity chromatography as a single approximately 450,000-Da polypeptide and it was shown to mediate single channel activity identical to that of the ryanodine-treated Ca2+ release channel of the sarcoplasmic reticulum. The purified receptor had a [3H]ryanodine binding capacity (Bmax) of 280 pmol/mg and a binding affinity (Kd) of 9.0 nM. [3H]Ryanodine binding to the purified receptor was stimulated by ATP and Ca2+ with a half-maximal stimulation at 1 mM and 8-9 microM, respectively. [3H]Ryanodine binding to the purified receptor was inhibited by ruthenium red and high concentrations of Ca2+ with an IC50 of 2.5 microM and greater than 1 mM, respectively. Reconstitution of the purified receptor in planar lipid bilayers revealed the Ca2+ channel activity of the purified receptor. Like the native sarcoplasmic reticulum Ca2+ channels treated with ryanodine, the purified receptor channels were characterized by (i) the predominance of long open states insensitive to Mg2+ and ruthenium red, (ii) a main slope conductance of approximately 35 pS and a less frequent 22 pS substate in 54 mM trans-Ca2+ or Ba2+, and (iii) a permeability ratio PBa or PCa/PTris = 8.7. The approximately 450,000-Da ryanodine receptor channel thus represents the long-term open "ryanodine-altered" state of the Ca2+ release channel from sarcoplasmic reticulum. We propose that the ryanodine receptor constitutes the physical pore that mediates Ca2+ release from the sarcoplasmic reticulum of skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号