首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Since liver regeneration after partial hepatectomy (PHx) is known to improve by pretreatment with recombinant human G-CSF (rhG-CSF), we investigated the mechanism by evaluating the distribution and activity of sinusoidal NK cells. F344 rats were treated with rhG-CSF (250 microg/kg/day) for 5 days before PHx. Pretreatment with rhG-CSF improved the serum ALT levels and DNA biosynthesis of the remnant liver tissues at 20 h after PHx. Notably, the rhG-CSF pretreatment decreased the number of NK cells in the liver determined by immunohistochemistry using anti-NKR-P1A mAb before and at 20 h after PHx with no significant change in the NK activity per cell base, while also increasing the number of NK cells in the peripheral blood detected by flow cytometry. The rhG-CSF induced a pre-PHx downregulation of the IL-12p70 protein levels, while also promoting the post-PHx reduction of the protein levels of IL-12p70 and IFN-gamma. Conversely, rhG-CSF had no effect on the pre-PHx mRNA levels or the PHx-induced upregulation of mRNA levels of TNF-alpha, IL-1beta, IL-6, TGF-beta, IL-10, HGF, and c-Met determined by real-time RT-PCR. These results strongly suggest that rhG-CSF-induced facilitation of liver regeneration is achieved by immunoregulation through the intrahepatic IL-12 downregulation and evacuation of sinusoidal NK cells.  相似文献   

3.
The role of liver cytosolic fatty acid binding protein (L-FABP) in fatty acid transport and metabolism is unclear. Female liver contains substantially more L-FABP than male liver. Female liver also has a different fatty acid transport phenotype, including more rapid uptake, efflux and cytoplasmic transport. However, it is not known if the greater levels of L-FABP are responsible for these differences. We therefore determined whether increasing L-FABP using clofibrate causes male liver to acquire a female transport phenotype. The multiple indicator dilution (MID) method was used to estimate the rate constants for influx, efflux and cytoplasmic diffusion of palmitate in isolated perfused rat livers. Clofibrate treatment increased cytosolic concentrations of L-FABP 4.2+/-0.8-fold, the rate of cytoplasmic diffusion of palmitate 4.3+/-1.7-fold, and the steady-state palmitate extraction 1.5+/-0.3-fold (mean+/-S.E.). Influx and efflux constants were both increased (by 44% and 79%, respectively) to levels typical of female livers. These data suggest that clofibrate-induced elevation of cytosolic L-FABP not only stimulates intracellular diffusion but also influx and efflux of fatty acids. Possible mechanisms include reducing fatty acid binding to cytoplasmic membranes, induction of membrane fatty acid carriers, and catalyzing fatty acid exchange between aqueous cytoplasm and the plasma membrane.  相似文献   

4.
Fatty acid binding proteins (FABPs) are abundantly present in tissues that actively metabolize fatty acids (FA). While their precise physiological function is not known, FABPs have been shown to play a role in the uptake and/or utilization of FA within the cell. FA metabolism is markedly altered during the host response to infection and inflammation. Previous studies have demonstrated that endotoxin or bacterial lipopolysaccharide (LPS) enhances hepatic FA synthesis and re-esterification while inhibiting FA oxidation in liver, heart and muscle. Now, we have examined the in vivo effects of LPS and cytokines on FABPs in liver (L-FABP), heart and muscle (H-FABP). Syrian hamsters were injected with LPS, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) and the mRNA and protein content for L-FABP and H-FABP were analyzed. 16 h after administration, LPS (100 microg/100 g body weight) produced a 72% decrease in L-FABP mRNA levels in liver and this effect was sustained for 24 h. LPS also produced a 41% decrease in the protein content of L-FABP in liver after 24 h of treatment. TNF-alpha and IL-1beta decreased L-FABP mRNA levels in liver by 30 and 45%, respectively. LPS decreased H-FABP mRNA levels in skeletal muscle by 60% and in heart by 65%. LPS also produced a 49% decrease in H-FABP protein content in muscle. Neither TNF-alpha nor IL-1beta had any significant effect on H-FABP mRNA expression in heart and muscle. Taken together, these results indicate that LPS decreases FABP mRNA and protein levels in liver, heart and muscle, tissues that normally utilize FA as their primary fuel, whereas the inhibitory effect of cytokines is limited to the liver. The LPS-induced decrease in L-FABP and H-FABP may be an additional mechanism contributing to the decrease in FA oxidation that is associated with the host response to infection and inflammation.  相似文献   

5.
The initiation of liver regeneration is regulated by endogenously produced growth factors and cytokines and is accompanied by suppression of growth hormone (GH) binding to hepatocytes. We have demonstrated some of these factors, particularly GH, which modulate acid-labile subunit (ALS) expression in vitro. Consequently, we investigated ALS hepatic mRNA and serum levels in rats for 24 h after partial hepatectomy (PHx). There was a significant suppression of ALS gene expression (approximately 50%, P < 0.005) and serum levels (approximately 30%, P < 0.02) by 12 h in PHx rats relative to controls. Relative to intact animals, hepatic mRNA and serum levels of ALS were suppressed by approximately 60% at 24 h. Similarly, hepatic GH receptor mRNA levels were significantly reduced in PHx animals. Moreover, hepatocytes isolated from PHx animals were less responsive to GH than those from controls. Overall, our results demonstrate that suppression of ALS gene expression and serum levels during liver regeneration relates to lowered hepatic GH sensitivity. Suppressed circulating ALS may alter insulin-like growth factor bioavailability and constitute a mechanism to maintain relatively normal glucoregulation after loss of liver mass.  相似文献   

6.
Human fibrinogen-related protein-1/liver fibrinogen-related protein-1 (HFREP-l/LFIRE-1), a liver-specific protein, is a member of fibrinogen superfamily that exerts various biological activities. However, the function of HFREP-l/LFIRE-1 in liver remains unknown. Here we isolated its mouse ortholog gene-mouse fibrinogen-related protein-1 (mfrep-1), which encoded 314 amino acids, exhibiting 80.4% similarity to HFREP-l/LFIRE-1. Northern blot analysis revealed that 1.2-kb mfrep-1 mRNA was detected selectively in mouse liver. To explore the function of MFREP-1, we examined the levels of mfrep-1 mRNA during regeneration after 70% partial hepatectomy (PHx) in mice, mfrep-1 mRNA increased in the regenerating liver and reached the first shoulder peak at 2-4 h after PHx. Cycloheximide pretreatment could suppress the induction of mfrep-1, indicating the up-regulation of this gene need de novo protein synthesis. Its mRNA continued to elevate at 6 h thereafter and reached the second peak at 24 h. The enhanced express  相似文献   

7.
.16 +/- 0.062% of the fatty acid-binding protein purified from 50 mM N-ethylmaleimide-treated rat liver (L-FABP) was determined as a form S-thiolated by glutathione (L-FABP-SSG). L-FABP-SSG, which was prepared in vitro through thiol-disulfide exchange reaction, showed more acidic pI (approximately 5.0) than the pI (approximately 7.0) of reduced L-FABP. S-thiolation of L-FABP by glutathione decreased the affinity of the protein for unsaturated fatty acids without changing the equimolar maximum binding. The changes in Kd were from 0.63 +/- 0.054 microM to 1.03 +/- 0.14 microM for oleic acid, from 0.63 +/- 0.028 microM to 0.97 +/- 0.12 microM for linoleic acid and from 0.85 +/- 0.050 microM to 1.45 +/- 0.024 microM for arachidonic acid. This modification did not alter the affinity nor the maximum binding for saturated fatty acids, which were determined to be Kd of approximately 1.0 microM for palmitic acid and approximately 0.9 microM for stearic acids, and equimolar maximum binding for both fatty acids. The binding affinity of L-FABP for unsaturated fatty acid may be regulated by redox state of the liver.  相似文献   

8.
Yan J  Ying H  Gu F  He J  Li YL  Liu HM  Xu YH 《Cell research》2002,12(5-6):353-361
Human fibrinogen-related protein-1/liver fibrinogen-related protein-1 (HFREP-1/LFIRE-1), a liver-specific protein, is a member of fibrinogen superfamily that exerts various biological activities. However, the function of HFREP-1/LFIRE-1 in liver remains unknown. Here we isolated its mouse ortholog gene-mouse fibrinogen-related protein-1 (mfrep-1), which encoded 314 amino acids, exhibiting 80.4% similarity to HFREP-1/LFIRE-1. Northern blot analysis revealed that 1.2-kb mfrep-1 mRNA was detected selectively in mouse liver. To explore the function of MFREP-1, we examined the levels of mfrep-1 mRNA during regeneration after 70% partial hepatectomy (PHx) in mice. mfrep-1 mRNA increased in the regenerating liver and reached the first shoulder peak at 2-4 h after PHx. Cycloheximide pretreatment could suppress the induction of mfrep-1, indicating the up-regulation of this gene need de novo protein synthesis. Its mRNA continued to elevate at 6 h thereafter and reached the second peak at 24 h. The enhanced expression of mfrep-1 maintained high until 72 h and then declined slowly to the basal level. Immunohistochemistry assessment confirmed the up-regulated expression of MFREP-1 protein in parenchymal cells during liver regeneration. These data suggested that MFREP-1 might play an important role in liver regeneration and be involved in the regulation of cell growth.  相似文献   

9.
Although liver fatty acid binding protein (L-FABP) is known to enhance uptake and esterification of straight-chain fatty acids such as palmitic acid and oleic acid, its effects on oxidation and further metabolism of branched-chain fatty acids such as phytanic acid are not completely understood. The present data demonstrate for the first time that expression of L-FABP enhanced initial rate and average maximal oxidation of [2,3-3H] phytanic acid 3.5- and 1.5-fold, respectively. This enhancement was not due to increased [2,3-3H] phytanic acid uptake, which was only slightly stimulated (20%) in L-FABP expressing cells after 30 min. Similarly, L-FABP also enhanced the average maximal oxidation of [9,10-3H] palmitic acid 2.2-fold after incubation for 30 min. However, the stimulation of L-FABP on palmitic acid oxidation nearly paralleled its 3.3-fold enhancement of uptake. To determine effects of metabolism on fatty acid uptake, a non-metabolizable fluorescent saturated fatty acid, BODIPY-C16, was examined by laser scanning confocal microscopy (LSCM). L-FABP expression enhanced uptake of BODIPY-C16 1.7-fold demonstrating that L-FABP enhanced saturated fatty acid uptake independent of metabolism. Finally, L-FABP expression did not significantly alter [2,3-3H] phytanic acid esterification, but increased [9,10-3H] palmitic acid esterification 4.5-fold, primarily into phospholipids (3.7-fold) and neutral lipids (9-fold). In summary, L-FABP expression enhanced branched-chain phytanic acid oxidation much more than either its uptake or esterification. These data demonstrate a potential role for L-FABP in the peroxisomal oxidation of branched-chain fatty acids in intact cells.  相似文献   

10.
11.
Selective binding of cholesterol by recombinant fatty acid binding proteins   总被引:3,自引:0,他引:3  
The sterol binding specificity of rat recombinant liver fatty acid binding protein (L-FABP) and intestinal fatty acid binding protein (I-FABP) was characterized with [3H]cholesterol and a fluorescent sterol analog dehydroergosterol. Ligand binding analysis, fluorescence spectroscopy, and activation of microsomal acyl-CoA:cholesterol acyltransferase activity showed that L-FABP-bound sterols. 1) Lipidex-1000 assay showed a dissociation constant Kd = 0.78 +/- 0.18 microM and stoichiometry of 0.47 +/- 0.16 mol/mol for [3H]cholesterol binding to L-PABP. 2) With [3H]cholesterol/phosphatidylcholine liposomes, the cholesterol binding parameters for L-FABP were Kd = 1.53 +/- 0.28 microM and stoichiometry 0.83 +/- 0.07 mol/mol. 3) L-FABP interaction with dehydroergosterol altered the fluorescence intensity and polarization of dehydroergosterol. Dehydroergosterol bound to L-FABP with Kd = 0.37 microM and a stoichiometry of 0.83 mol/mol. 4) Cholesterol and dehydroergosterol decreased L-FABP tyrosine lifetime. Dehydroergosterol binding produced sensitized emission of bound dehydroergosterol with longer lifetime.5) L-FABP bound two cis-parinaric acid molecules/molecule of protein. Cholesterol displaced one of these bound cis-parinaric acids. 6) L-FABP enhanced acyl-CoA:cholesterol acyltransferase in a concentration-dependent manner. In contrast, these assays indicated that I-FABP did not bind sterols. Thus, L-FABP appears able to bind 1 mol of cholesterol/mol of L-FABP, the L-FABP sterol binding site is equivalent to one of the two fatty acid binding sites, and L-FABP stimulates acyl-CoA:cholesterol acyltransferase by transfer of cholesterol.  相似文献   

12.
Martin GG  Huang H  Atshaves BP  Binas B  Schroeder F 《Biochemistry》2003,42(39):11520-11532
Although liver fatty acid binding protein (L-FABP) is known to bind not only long chain fatty acid (LCFA) but also long chain fatty acyl CoA (LCFA-CoA), the physiological significance of LCFA-CoA binding has been questioned and remains to be resolved. To address this issue, the effect of L-FABP gene ablation on liver cytosolic LCFA-CoA binding, LCFA-CoA pool size, LCFA-CoA esterification, and potential compensation by other intracellular LCFA-CoA binding proteins was examined. L-FABP gene ablation resulted not only in loss of L-FABP but also in concomitant upregulation of two other intracellular LCFA-CoA binding proteins, acyl CoA binding protein (ACBP) and sterol carrier protein-2 (SCP-2), by 45 and 80%, respectively. Nevertheless, the soluble fraction from livers of L-FABP (-/-) mice bound 95% less radioactive oleoyl-CoA than wild-type L-FABP (+/+) mice. The intracellular LCFA-CoA binding protein fraction (Fraction III) from wild-type L-FABP (+/+) mice, isolated by gel permeation chromatography of liver soluble proteins, exhibited one high-affinity binding and several low-affinity binding sites for cis-parinaroyl-CoA, a naturally occurring fluorescent LCFA-CoA. In contrast, high-affinity LCFA-CoA binding was absent from Fraction III of L-FABP (-/-) mice. While L-FABP gene ablation did not alter liver LCFA-CoA pool size, LCFA-CoA acyl chains of L-FABP (-/-) mouse livers were enriched 2.1-fold in C16:1 and decreased 1.9-fold in C20:0 fatty acids. Finally, L-FABP gene ablation selectively increased the amount of LCFAs esterified into liver phospholipid > cholesteryl ester, while concomitantly decreasing the amount of fatty acids esterified into triglycerides by 40%. In summary, these data with L-FABP (-/-) mice demonstrated for the first time that L-FABP is a physiologically significant contributor to determining liver cytosolic LCFA-CoA binding capacity, LCFA-CoA acyl chain distribution, and esterified fatty acid distribution.  相似文献   

13.
14.
15.
Human fibrinogen-related protein-1/liver fibrinogen-related protein-1 (HFREP-1/LFIRE-1), a liver-specificprotein, is a member of fibrinogen superfamily that exerts various biological activities. However, the func-tion of HFREP-1/LFIRE-1 in liver remains unknown. Here we isolated its mouse ortholog gene-mousefibrinogen-related protein-1 (mfrep-1), which encoded 314 amino acids, exhibiting 80.4% similarity toHFREP-1/LFIRE-1. Northern blot analysis revealed that 1.2-kb mfrep-1 mRNA was detected selectivelyin mouse liver. To explore the function of MFREP-1, we examined the levels of mfrep-1 mRNA duringregeneration after 70% partial hepatectomy (PHx) in mice. mfrep-1 mRNA increased in the regeneratingliver and reached the first shoulder peak at 2-4 h after PHx. Cycloheximide pretreatment could suppress theinduction of mfrep-1, indicating the up-regulation of this gene need de novo protein synthesis. Its mRNAcontinued to elevate at 6 h thereafter and reached the second peak at 24 h. The enhanced expression ofmfrep-1 maintained high until 72 h and then declined slowly to the basal level. Immunohistochemistryassessment confirmed the up-regulated expression of MFREP-1 protein in parenchymal cells during liverregeneration. These data suggested that MFREP-1 might play an important role in liver regeneration andbe involved in the regulation of cell growth.  相似文献   

16.
Liver regeneration is an important repair response to liver injury. Chronic ethanol consumption inhibits and delays liver regeneration in experimental animals. We studied the effects of chronic ethanol treatment on messenger RNA (mRNA) and microRNA (miRNA) expression profiles during the first 24 h after two-thirds partial hepatectomy (PHx) and found an increase in hepatic miR-21 expression in both ethanol-fed and pair-fed control rats after PHx. We demonstrate that the increase of miR-21 expression during liver regeneration is more robust in ethanol-fed rats. Peak miR-21 expression occurs at 24 h after PHx in both ethanol-fed and control rats, corresponding to the peak of hepatocyte S phase in control rats, but not in ethanol-exposed livers in which cell cycle is delayed. The induction of miR-21 24 h after PHx in control rats is not greater than the increase in expression of miR-21 due to sham surgery. However, in the ethanol-fed rat, miR-21 is induced to a greater extent by PHx than by sham surgery. To elucidate the implications of increased miR-21 expression during liver regeneration, we employed unbiased global target analysis using gene expression data compiled by our group. Our analyses suggest that miR-21 may play a greater role in regulating gene expression during regeneration in the ethanol-fed rat than in the control rat. Our analysis of potential targets of miR-21 suggests that miR-21 affects a broad range of target processes and may have a widespread regulatory role under conditions of suppressed liver regeneration in ethanol-treated animals.  相似文献   

17.
An appropriate choice for a suitable diet during liver regeneration still remains an enigma. To investigate the effect of isocaloric enteral feeding with medium-chain triacylglycerols (MCT) and long-chain triacylglycerols (LCT) supplement (MCT+LCT, 40%:60% w:w) (178 kJ/kg b.w./24 h), rat liver regeneration was studied 24 and 72 h after partial hepatectomy. The liver DNA synthesis 24 h after partial hepatectomy was significantly higher in the MCT+LCT-supplemented rats (30.2+/-8.2 x 10(3) dpm/mg liver DNA) compared to MCT-treated animals (18.1+/-5.7 x 10(3) dpm/mg liver DNA). Liver protein synthesis was non-significantly elevated both 24 and 72 h after surgery in MCT+LCT-supplemented rats (13.7+/-1.1 and 10.9+/-3.1 x 10(3) dpm/mg liver protein). Seventy-two hours after partial hepatectomy, the hepatocyte mitotic activity was significantly increased in MCT+LCT- supplemented group vs. LCT- or MCT-fed rats (3.3+/-0.7 vs. 1.9+/-0.7 or 1.0+/-0.6 mitoses per 1000 hepatocytes), thus exhibiting an increased proliferative potential. The results showed a qualitative difference according to the proportion of MCT to LCT in the enteral supplements. Overfeeding with MCT decreased body weight, increased liver weight by its fatty infiltration, increased rat mortality rate and reduced spontaneous caloric intake. We conclude that the balanced supplement of MCT+LCT (40%:60% w:w) preserves liver regeneration, whereas overfeeding with MCT seems to be deleterious.  相似文献   

18.
The effects of non-esterified fatty acids (NEFA) and hormone dehydroepiandrosterone (DHEA) on the levels of mRNAs of protein kinase C (PKC) -delta and -epsilon isoforms and those of liver fatty acid binding protein (L-FABP) were investigated in the human hepatoma HepG2 cell line. The cells were kept in low-serum, low-albumin medium during experiments. Low FA levels (100 microM) and time intervals of 4 h and 20 h were used. In these conditions, the saturated (palmitic, stearic) and monounsaturated (oleic) acids rather selectively stimulated PKC-epsilon mRNA levels. Unexpectedly, we found that these acids also suppressed liver fatty-acid binding protein (L-FABP) mRNA levels. DHEA in pharmacological doses (100 microM) produced a significant increase in PKC-delta and -epsilon mRNA levels. Although molecular mechanisms underlying the identified changes have not been investigated in this paper, our findings emphasize that NEFA-induced modulation of mRNA levels of key signalling components represent an additional mechanism for how the ambient NEFA can influence metabolic homeostasis in cells.  相似文献   

19.
Although a role for liver fatty acid protein (L-FABP) in the metabolism of branched-chain fatty acids has been suggested based on data obtained with cultured cells, the physiological significance of this observation remains to be demonstrated. To address this issue, the lipid phenotype and metabolism of phytanic acid, a branched-chain fatty acid, were determined in L-FABP gene-ablated mice fed a diet with and without 1% phytol (a metabolic precursor to phytanic acid). In response to dietary phytol, L-FABP gene ablation exhibited a gender-dependent lipid phenotype. Livers of phytol-fed female L-FABP–/– mice had significantly more fatty lipid droplets than male L-FABP–/– mice, whereas in phytol-fed wild-type L-FABP+/+ mice differences between males and females were not significant. Thus L-FABP gene ablation exacerbated the accumulation of lipid droplets in phytol-fed female, but not male, mice. These results were reflected in the lipid profile, where hepatic levels of triacylglycerides in phytol-fed female L-FABP–/– mice were significantly higher than in male L-FABP–/– mice. Furthermore, livers of phytol-fed female L-FABP–/– mice exhibited more necrosis than their male counterparts, consistent with the accumulation of higher levels of phytol metabolites (phytanic acid, pristanic acid) in liver and serum, in addition to increased hepatic levels of sterol carrier protein (SCP)-x, the only known peroxisomal enzyme specifically required for branched-chain fatty acid oxidation. In summary, L-FABP gene ablation exerted a significant role, especially in female mice, in branched-chain fatty acid metabolism. These effects were only partially compensated by concomitant upregulation of SCP-x in response to L-FABP gene ablation and dietary phytol. gene targeting; phytanic acid  相似文献   

20.
Former studies have linked hepatocyte growth with liver fatty acid binding protein (L-FABP) of rat liver cytosol. In search for the roles of L-FABP in hepatocytes, we previously stably transfected rat L-FABP sense and antisense cDNAs into rat hepatoma HTC cells that do not contain L-FABP RNA or protein, thereby providing a zero-background, homologous cell model of L-FABP-expression suitable for controlled studies of its intracellular functions in hepatocyte-derived cells. The present study demonstrates the abilities of L-FABP to promote DNA synthesis and cell growth, preserve cell morphology, extend survival, and act cooperatively with unsaturated fatty acids in the transfected hepatoma cells in the absence of serum. Following removal of serum, the three control L-FABP-nonexpressing cell lines increased in cell lines increased in cell number for 24 hr and thereafter declined, whereas the three L-FABP-expressing cell lines exhibited a 39% higher rate of DNA synthesis per cell at 24 hr and grew in cell number for 48 hr. As a result, at 72 hr there were 2.5-fold (avg.) as many L-FABP-expressing cells than L-FABP-nonexpressing cells. In addition, the L-FABP-expressing cells retained their original polygonal morphology at 48 hr, when in contrast most of the control nonexpressing cells were spherical in shape with membrane blebs. In an effort to identify the agonists that collaborate with L-FABP in the growth promotion and preservation of cell morphology, various free fatty acids were examined at 48 hr for their ability to elminate the differences in behavior of the two cell types in the serum-free medium. The unsaturated fatty acids, oleic acid (18:1 ω9), linoleic acid (18:2ω6), α-linolenic acid (18: 3ω3), and arachidonic acid (20:4ω6), at 1 μM markedly elevated the level of DNA synthesis in the more depressed control L-FABP-nonexpressing cells and moderately raised it in the less depressed L-FABP-expressing cells. In accord, the control L-FABP-nonexpressing cells needed 10?6–10?5 M linoleic acid to achieve the extent of DNA synthesis attained by the expressing cells in the absence of added fatty acid. At 10 μM linoleic acid, their levels of DNA synthesis were equal. In contrast, five saturated fatty acids had no detectable effect on DNA synthesis. In addition, linoleic acid at 1 μM, but not the saturated fatty acid palmitic acid (16:0), prevented the above morphological alterations in the control L-FABP-nonexpressing cells observed in the absence of serum, thereby retaining their original polygonal morphology and that of the expressing cells. The findings are consistent with the concept that L-FABP improves the efficacy of the utilization of unsaturated fatty acid ligands of L-FABP in the formation, integrity, and fluidity of cell membranes that are involved in cell growth, morphology, and survival. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号