首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclooxygenase-1/2 (COX-1/2) and 5-lipoxygenase (5-LOX) are enzymes in two different pathways in the inflammatory process. In the present study, a variety of new nimesulide derivatives were synthesized through incorporation of a 5-LOX pharmacophore into nimesulide followed with some structural modifications, which were then characterized for dual enzyme inhibitors for these two types of enzymes. Their structure-activity relationships (SARs) were studied, and compound 20f was found to be an excellent dual enzyme inhibitor. Its binding conformation and interaction mode were studied with molecular docking experiments. Compound 20f could become a lead compound for further development for potential anti-inflammatory drugs.  相似文献   

2.
The neuraminidase (NA) of the influenza virus is the target of antiviral drug, oseltamivir. Recently, cases were reported that influenza virus becoming resistant to oseltamivir, necessitating the development of new long-acting antiviral compounds. In this report, a novel class of lead molecule with potential NA inhibitory activity was identified using a combination of virtual screening (VS), molecular docking, and molecular dynamic approach. The PubChem database was used to perform the VS analysis by employing oseltamivir as query. Subsequently, the data reduction was carried out by employing molecular docking study. Furthermore, the screened lead molecules were analyzed with respect to the Lipinski rule of five, drug-likeness, toxicity profiles, and other physico-chemical properties of drugs by suitable software program. Final screening was carried out by normal mode analysis and molecular dynamic simulation approach. The result indicates that CID 25145634, deuterium-enriched oseltamivir, become a promising lead compound and be effective in treating oseltamivir sensitive as well as resistant influenza virus strains.  相似文献   

3.
Prostate cancer is one of the most prevalent types of malignant cancers in men and has a high mortality rate among all male cancers. Previous studies have demonstrated that Sentrin/SUMO-specific protease 1 (SENP1) plays an important role in the occurrence and development of prostate cancer, and has been identified as a novel drug target for development of small molecule drugs against prostate cancer. In this paper, we used virtual screening and docking to identify compound J5 as a novel lead compound inhibiting SENP1, from SPECS library. We further investigated the SAR (structure–activity relationship) of the benzoate substituent of compound J5, and discovered compounds 8d and 8e as better small molecule inhibitors of SENP1. Both compounds are the high potent SENP1 small molecule inhibitors discovered up to date, and further lead optimization may lead to a series of novel anti-SENP1 agents. Further SAR studies are in process and will be reported in due course.  相似文献   

4.
5.
Virtual compound screening using molecular docking is widely used in the discovery of new lead compounds for drug design. However, this method is not completely reliable and therefore unsatisfactory. In this study, we used massive molecular dynamics simulations of protein-ligand conformations obtained by molecular docking in order to improve the enrichment performance of molecular docking. Our screening approach employed the molecular mechanics/Poisson-Boltzmann and surface area method to estimate the binding free energies. For the top-ranking 1,000 compounds obtained by docking to a target protein, approximately 6,000 molecular dynamics simulations were performed using multiple docking poses in about a week. As a result, the enrichment performance of the top 100 compounds by our approach was improved by 1.6–4.0 times that of the enrichment performance of molecular dockings. This result indicates that the application of molecular dynamics simulations to virtual screening for lead discovery is both effective and practical. However, further optimization of the computational protocols is required for screening various target proteins.  相似文献   

6.
4-Phenyl-N-(beta-D-glucopyranosyl)-1H-1,2,3-triazole-1-acetamide (glucosyltriazolylacetamide) has been studied in kinetic and crystallographic experiments with glycogen phosphorylase b (GPb), in an effort to utilize its potential as a lead for the design of potent antihyperglycaemic agents. Docking and molecular dynamics (MD) calculations have been used to monitor more closely the binding modes in operation and compare the results with experiment. Kinetic experiments in the direction of glycogen synthesis showed that glucosyltriazolylacetamide is a better inhibitor (K(i) = 0.18 mM) than the parent compound alpha-D-glucose (K(i) = 1.7 mM) or beta-D-glucose (K(i) = 7.4 mM) but less potent inhibitor than the lead compound N-acetyl-beta-D-glucopyranosylamine (K(i) = 32 microM). To elucidate the molecular basis underlying the inhibition of the newly identified compound, we determined the structure of GPb in complex with glucosyltriazolylacetamide at 100 K to 1.88 A resolution, and the structure of the compound in the free form. Glucosyltriazolylacetamide is accommodated in the catalytic site of the enzyme and the glucopyranose interacts in a manner similar to that observed in the GPb-alpha-D-glucose complex, while the substituent group in the beta-position of the C1 atom makes additional hydrogen bonding and van der Waals interactions to the protein. A bifurcated donor type hydrogen bonding involving O3H, N3, and N4 is seen as an important structural motif strengthening the binding of glucosyltriazolylacetamide with GP which necessitated change in the torsion about C8-N2 bond by about 62 degrees going from its free to the complex form with GPb. On binding to GP, glucosyltriazolylacetamide induces significant conformational changes in the vicinity of this site. Specifically, the 280s loop (residues 282-288) shifts 0.7 to 3.1 A (CA atoms) to accommodate glucosyltriazolylacetamide. These conformational changes do not lead to increased contacts between the inhibitor and the protein that would improve ligand binding compared with the lead compound. In the molecular modeling calculations, the GOLD docking runs with and without the crystallographic ordered cavity waters using the GoldScore scoring function, and without cavity waters using the ChemScore scoring function successfully reproduced the crystallographic binding conformation. However, the GLIDE docking calculations both with (GLIDE XP) and without (GLIDE SP and XP) the cavity water molecules were, impressively, further able to accurately reproduce the finer details of the GPb-glucosyltriazolylacetamide complex structure. The importance of cavity waters in flexible receptor MD calculations compared to "rigid" (docking) is analyzed and highlighted, while in the MD itself very little conformational flexibility of the glucosyltriazolylacetamide ligand was observed over the time scale of the simulations.  相似文献   

7.
In the present work, the molecular structure and the antioxidant activity of 4-(5-chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic acid (A) and its derivatives (B-E) have been studied at the B3LYP/6-31++G(2d,2p) computational level. The obtained results indicate that the hydrogen atom transfer (HAT mechanism) is thermodynamically more favored in gas phase; whereas, the sequential proton loss-electron transfer (SPLET mechanism) is more preferred in polar solvents. The antioxidant activity of compounds A-E is also analyzed by the calculation of atomic spin densities, chemical hardnesses, dipole moments, and lipophilicity indexes. It turns out that compound E (R?=?t-Bu) is predicted to be more antioxidant than ascorbic acid and other derivatives A-D in both gas phase and polar solvents. The high antioxidant activity of compound E compared to other derivatives A-D is also rationalized using the molecular docking technique.  相似文献   

8.
Benign prostatic hyperplasia (BPH) is caused by augmented levels of androgen dihydrotestosterone (DHT) which is involved in the growth of the prostate in humans. 5α-Reductase type II (5αR2) is an intracellular enzyme that catalyses the formation of DHT from testosterone; hence, the inhibition of 5αR2 has emerged as one of the most promising strategies for the treatment of BPH. In this study, a computational approach that integrates ligand-based pharmacophore modelling, virtual screening, molecular docking and molecular dynamics (MD) simulations was adopted to discover novel 5αR2 inhibitors with less side effects. After validating by Fischer's randomisation and Güner–Henry test, the best quantitative pharmacophore model (Hypo1), consisting of two hydrogen-bond acceptors and three hydrophobic features, was subsequently used as a three-dimensional-query in virtual screening to identify potential hits from Maybridge and National Cancer Institute databases. These hits were further filtered by ADMET (absorption, distribution, metabolism, elimination and toxicology) and molecular docking experiments, and their binding stabilities were validated by 10-ns MD simulations. Finally, only one hit was identified as a potential lead based on higher predicted inhibitory activity to 5αR2 compared with the most active inhibitor (finasteride). Our results further suggest that this potential lead could easily be synthesised and has structural novelty, making it a promising candidate for treating BPH.  相似文献   

9.
Protein tyrosine phosphatase 1B (PTP1B) acts as a negative regulator of insulin and leptin signalling and is crucially involved in the development of type 2 diabetes mellitus, obesity, cancer and neurodegenerative diseases. Pursuing our efforts to identify PTP1B inhibitors endowed with drug-like properties, we designed and evaluated 3-aryl-5-arylidene-2-thioxo-4-imidazolidinones (7) as a novel class of non-carboxylate PTP1B inhibitors. In agreement with our design, kinetic studies demonstrated that selected compounds 7 act as reversible, non-competitive inhibitors of the target enzyme at low micromolar concentrations. Accordingly, molecular docking experiments suggested that these inhibitors can fit an allosteric site of PTP1B that we previously individuated. Moreover, cellular assays demonstrated that compound 7e acts as a potent insulin-sensitizing agent in human liver HepG2 cells. Taken together, our results showed that these non-competitive PTP1B inhibitors can be considered promising lead compounds aimed to enhance druggability of the target enzyme and identify novel antidiabetic drugs.  相似文献   

10.
To identify new potent chemotherapeutic agents, we synthesized compounds with 3-(naphthalen-2-yl)-N,5-diphenyl-pyrazoline-1-carbothioamide (NDPC) skeletons and evaluated their cytotoxicities using a clonogenic long-term survival assay. Their half-maximal cell growth inhibitory concentrations ranged from a few hundred nanomolars to a few micromolars. Further biological experiments including flow cytometry and western blotting analysis were performed with the derivative showing the best cytotoxicity. To identify a target protein of the selected compound, an in vitro kinase assay was carried out, which revealed that aurora kinases A and B were inhibited by the test compound, and this was confirmed using western blot analysis. The molecular binding mode between the selected compound and the kinases was elucidated using in silico docking. The structural conditions required for good cytotoxicity were identified based on the quantitative relationships between the physicochemical properties of the derivatives and their cytotoxicities.  相似文献   

11.
Ab initio calculations (B3LYP/Lanl2DZ level of theory) were performed in this study to determine all the structural and catalytic zinc parameters required in order to study MMPs and their complexes with hydroxamate inhibitors by means of the AMBER force field. The parameters thus obtained were used in order to study the docking of some known MMPi (Batimastat, CGS 27023A and Prinomastat) and our previously described inhibitor a which had shown an inhibitory activity for MMP-1, and -2, with the aim of explaining the different selectivity. On this basis the two enantiomers (R)-b and (S)-b were designed and synthesized, as more potent MMP-2 inhibitors than our previously described inhibitor a. Between these two enantiomers the eutomer (R)-b proved to be 24.7 times and 15.3 times more potent than CGS 27023A and the parent compound a on MMP-2, maintaining a higher index of MMP-2/MMP-1 selectivity compared with CGS 27023A and the more potent inhibitor Prinomastat. The hydroxamate (R)-b can be considered as a progenitor of a new class of biphenylsulfonamido-based inhibitors that differ from compound a in the presence of an alkyl side chain on the C alpha atom, and show different potency and selectivity profiles on the two MMPs considered.  相似文献   

12.
N-cyclohexylacrylam?de (NCA), the synthesized compound, was evaluated for their cytotoxic activities against HeLa cancer cell line. Also, the current study has been analyzed by the use of molecular docking as protein-ligand interactions play a vital role in drug design. The docking study of NCA was performed with BCL-2, BCL-W, MCl-1, AKT, BRAF, CDK2, VEGFR, EGFR PARP1, CDK6 proteins. The 3D structures of proteins were obtained from the protein data bank and 3D structure of NCA compounds using GAUSSIAN. The in silico molecular docking results indicated that NCA compound can inhibit cancer-related proteins and can play a role as potential lead compounds for developing new drugs for cancer therapy with chemical modification.  相似文献   

13.
We report the structure–activity relationship of a series of coumarins as aldose reductase 2 (ALR2) inhibitors and their suppressive effect on the accumulation of galactitol in the rat lens. We evaluated their ALR2 selectivity profile against sorbitol dehydrogenase and aldehyde reductase (ALR1). Our study revealed that substitutions in the C7 OH group enhanced the potency toward ALR2, while the C6 OH group interferes with ALR1 inhibition activity. Having the phenyl moiety at C4 leads to improved potency and improved selectivity. A molecular docking study suggested that 6,7-dihydroxy-4-phenylcoumarin (15) binds to ALR2 in a different manner from epalrestat. Furthermore, compound 15 clearly suppressed galactitol accumulation in a dose-dependent manner. These results provide an insight into the structural requirements of coumarins for developing a new-type of selective ALR2 inhibitor.  相似文献   

14.
The combination of experimental (inhibition of colchicine binding) and computational (COMPARE, docking studies) data unequivocally identified diaryl 5-amino-1,2,4-oxadiazoles as potent tubulin inhibitors. Good correlation was observed between tubulin binding and cytostatic properties for all tested compounds with the notable exception of the lead candidate, 3-(3-methoxyphenyl)-5-(4-methoxyphenyl)amino-1,2,4-oxadiazole (DCP 10500078). This compound was found to be substantially more active in our in vitro experiments than the monofluorinated title compound, 3-(2-fluorophenyl)-5-(4-methoxyphenyl)amino-1,2,4-oxadiazole (DCP 10500067/NSC 757486), which in turn demonstrated slightly better tubulin binding activity. Comparative SAR analysis of 25 diaryl 5-amino-1,2,4-oxadiazoles with other known tubulin inhibitors, such as combretastatin A-4 (CA-4) and colchicine, provides further insight into the specifics of their binding as well as a plausible mechanism of action.  相似文献   

15.
Evidence is accumulating indicating that trypsin stimulates divergent cellular reactions through the proteinase-activated receptor, in addition to its role as the digestive enzyme. In this report, we introduce (2R,4R)- 4-phenyl-1-[N(alpha)-(7-methoxy-2-naphthalenesulfonyl)-l-arginyl]- 2-p iperidinecarboxylic acid as a potent and selective trypsin inhibitor. The agent inhibited trypsin competitively with the K(i) value of 0. 1 micrometer. It inhibited thrombin weakly (K(i) = 2 micrometer) and did not inhibit plasmin, plasma kallikrein, urokinase, and mast cell tryptase (K(i) values for these enzymes are >60 micrometer). Comparative studies with several established proteinase inhibitors revealed that the compound was the first small molecular weight trypsin inhibitor without tryptase inhibitory activity. A docking study has provided a plausible explanation for the molecular mechanism of the selective inhibition showing that the agent fits into the active site of trypsin without any severe collision but that it comes into clash at the 4-phenyl group of piperidine ring against the "60-insertion loop" of thrombin and at the 7-methoxy-2-naphthalenesulfonyl group against Gln(98) of tryptase.  相似文献   

16.
In the present work, several computational methodologies were combined to develop a model for the prediction of PDE4B inhibitors' activity. The adequacy of applying the ligand docking approach, keeping the enzyme rigid, to the study of a series of PDE4 inhibitors was confirmed by a previous molecular dynamics analysis of the complete enzyme. An exhaustive docking procedure was performed to identify the most probable binding modes of the ligands to the enzyme, including the active site metal ions and the surrounding structural water molecules. The enzyme-inhibitor interaction enthalpies, refined by using the semiempirical molecular orbital approach, were combined with calculated solvation free energies and entropy considerations in an empirical free energy model that enabled the calculation of binding free energies that correlated very well with experimentally derived binding free energies. Our results indicate that both the inclusion of the structural water molecules close to the ions in the binding site and the use of a free energy model with a quadratic dependency on the ligand free energy of solvation are important aspects to be considered for molecular docking investigations involving the PDE4 enzyme family.  相似文献   

17.
Inhibition of VEGFR-2 kinase has been highlighted as one of the well-defined strategies to suppress tumor growth via blockade of angiogenesis. Guided by the principles of bioisosteric replacement and pharmacophoric fragment migration, a series of novel quinoxalinone derivates were designed, synthesized and evaluated for their VEGFR-2 inhibitory potencies. Among them, compounds 7c, 8b, 8c, 8e and 10b displayed antiangiogenic abilities via the in vitro tube formation assay (cellular level) and ex vivo rat aortic ring assay (tissue level) at a low concentration (0.1 μM). By means of in vivo zebrafish embryo model, two (Z)-3-(2-(pyridin-4-yl)vinyl)quinoxalinone derivates 8c and 8e showed significant antiangiogenesis effects, suggesting they have potentials to be developed into antiangiogenesis agents via further structural optimization. Moreover, these two compounds also demonstrated potent inhibition toward VEGFR-2 and B-raf kinases in a low concentration (1 μM). A possible interpretation of our evaluation result has been presented by a molecular docking study by docking representative compound 8c with VEGFR-2.  相似文献   

18.
A series of new 4-arylthiazole-2-amine derivatives as acetylcholinesterase inhibitors (AChEIs) were designed and synthesized, Furthermore, their inhibitory activities against acetylcholinesterase in vitro were tested by Ellman spectrophotometry, and the results of inhibitory activity test showed that most of them had a certain acetylcholinesterase inhibitory activity in vitro. Moreover, the IC50 value of compound 4f was to 0.66 μM, which was higher than that of Rivastigmine and Huperzine-A as reference compounds, and it had a weak inhibitory effect on butyrylcholinesterase. The potential binding mode of compound 4f with AChE was investigated by the molecular docking, and the results showed that 4f was strongly bound up with AChE with the optimal conformation, in addition, their binding energy reached −11.27 Kcal*mol−1. At last, in silico molecular property of the synthesized compounds were predicted by using Molinspiration online servers. It can be concluded that the lead AChEIs compound 4f presented satisfactory drug-like characteristics.  相似文献   

19.
Colonization of human stomach by the bacterium Helicobacter pylori is a major causative factor for gastrointestinal illnesses and gastric cancer. However, the discovery of anti-H. pylori agents is a difficult task due to lack of mature protein targets. Therefore, identifying new molecular targets for developing new drugs against H. pylori is obviously necessary. In this study, the in-house potential drug target database (PDTD, http://www.dddc.ac.cn/tarfisdock/) was searched by the reverse docking approach using an active natural product (compound 1) discovered by anti-H. pylori screening as a probe. Homology search revealed that, among the 15 candidates discovered by reverse docking, only diaminopimelate decarboxylase (DC) and peptide deformylase (PDF) have homologous proteins in the genome of H. pylori. Enzymatic assay demonstrated compound 1 and its derivative compound 2 are the potent inhibitors against H. pylori PDF (HpPDF) with IC50 values of 10.8 and 1.25 microM, respectively. X-ray crystal structures of HpPDF and the complexes of HpPDF with 1 and 2 were determined for the first time, indicating that these two inhibitors bind well with HpPDF binding pocket. All these results indicate that HpPDF is a potential target for screening new anti-H. pylori agents. In addition, compounds 1 and 2 were predicted to bind to HpPDF with relatively high selectivity, suggesting they can be used as leads for developing new anti-H. pylori agents. The results demonstrated that our strategy, reverse docking in conjunction with bioassay and structural biology, is effective and can be used as a complementary approach of functional genomics and chemical biology in target identification.  相似文献   

20.
A number of 2-(1H-indol-3-yl)quinoline-3-carbonitrile derivatives were synthesized via AlCl(3)-mediated C-C bond forming reaction between 2-chloroquinoline-3-carbonitrile and various indoles. The methodology does not require any N-protection of the indoles employed and provided the corresponding products in good yields. The molecular structure of a representative compound was established unambiguously by single crystal X-ray diffraction and structural elaboration of a compound synthesized has been demonstrated. Many of these compounds synthesized showed PDE4 inhibitory properties in vitro. A brief structure-activity relationship studies within the series along with docking results of a representative compound (EC(50) ~0.89 μM) is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号