首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutacin 1140 and nisin A are peptide antibiotics that belong to the lantibiotic family. N-Terminal rings A and B of nisin A and mutacin 1140 (lipid II-binding domain) share many structural and sequence similarities. Nisin A binds lipid II and thus disrupts cell wall synthesis and also forms transmembrane pores. Very little is known about mutacin 1140 in this regard. We performed fluorescence-based studies using a bacteria-mimetic membrane system. The results indicated that lipid II monomers are arranged differently in the mutacin 1140 complex than in the nisin A complex. These differences in complex formation may be attributed to the fact that nisin A uses lipid II to form a distinct pore complex, while mutacin 1140 does not form pores in this membrane system. Further experiments demonstrated that the mutacin 1140-lipid II and nisin A-lipid II complexes are very stable and capable of withstanding competition from each other. Transmembrane electrical potential experiments using a Streptococcus rattus strain, which is sensitive to mutacin 1140, demonstrated that mutacin 1140 does not form pores in this strain even at a concentration 8 times higher than the minimum inhibitory concentration (MIC). Circular complexes of mutacin 1140 and nisin A were observed by electron microscopy, providing direct evidence for a lateral assembly mechanism for these antibiotics. Mutacin 1140 did exhibit a membrane disruptive function in another commonly used artificial bacterial membrane system, and its disruptive activity was enhanced by increasing amounts of anionic phospholipids.  相似文献   

2.
Nisin, a peptide antibiotic, efficiently kills bacteria through a unique mechanism which includes inhibition of cell wall biosynthesis and pore formation in cytoplasmic membranes. Both mechanisms are based on interaction with the cell wall precursor lipid II which is simultaneously used as target and pore constituent. We combined two biosensor techniques to investigate the nisin activity with respect to membrane binding and pore formation in real time. Quartz crystal microbalance (QCM) allows the detection of nisin binding kinetics. The presence of 0.1 mol% lipid II strongly increased nisin binding affinity to DOPC (k(D) 2.68 x 10(-7) M vs. 1.03 x 10(-6) M) by a higher association rate. Differences were less pronounced while using negatively charged DOPG membranes. However, lipid II does not influence the absolute amount of bound nisin. Cyclic voltammetry (CV) data confirmed that in presence of 0.1 mol% lipid II, nanomolar nisin concentrations were sufficient to form pores, while micromolar concentrations were necessary in absence of lipid II. Both techniques suggested unspecific destruction of pure DOPG membranes by micromolar nisin concentrations which were prevented by lipid II. This model membrane stabilization by lipid II was confirmed by atomic force microscopy. Combined CV and QCM are valuable to interpret the role of lipid II in nisin activity.  相似文献   

3.
The interaction of the lantibiotic gallidermin and the glycopeptide antibiotic vancomycin with bacterial membranes was simulated using mass sensitive biosensors and isothermal titration calorimetry (ITC). Both peptides interfere with cell wall biosynthesis by targeting the cell wall precursor lipid II, but differ clearly in their antibiotic activity against individual bacterial strains. We determined the binding affinities of vancomycin and gallidermin to model membranes±lipid II in detail. Both peptides bind to DOPC/lipid II membranes with high affinity (K(D) 0.30 μM and 0.27 μM). Gallidermin displayed also strong affinity to pure DOPC membranes (0.53 μM) an effect that was supported by ITC measurements. A surface acoustic wave (SAW) sensor allowed measurements in the picomolar concentration range and revealed that gallidermin targets lipid II at an equimolar ratio and simultaneously inserts into the bilayer. These results indicate that gallidermin, in contrast to vancomycin, combines cell wall inhibition and interference with the bacterial membrane integrity for potent antimicrobial activity.  相似文献   

4.
The activity of antimicrobial peptides has been shown to depend on the composition of the target cell membrane. The bacterial selectivity of most antimicrobial peptides has been attributed to the presence of abundant acidic phospholipids and the absence of cholesterol in bacterial membranes. The high amount of cholesterol present in eukaryotic cell membranes is thought to prevent peptide-induced membrane disruption by increasing the cohesion and stiffness of the lipid bilayer membrane. While the role of cholesterol on an antimicrobial peptide-induced membrane disrupting activity has been reported for simple, homogeneous lipid bilayer systems, it is not well understood for complex, heterogeneous lipid bilayers exhibiting phase separation (or "lipid rafts"). In this study, we show that cholesterol does not inhibit the disruption of raft-containing 1,2-dioleoyl-sn-glycero-3-phosphocholine:1,2-dipalmitoyol-sn-glycero-3-phosphocholine model membranes by four different cationic antimicrobial peptides, MSI-78, MSI-594, MSI-367 and MSI-843 which permeabilize membranes. Conversely, the presence of cholesterol effectively inhibits the disruption of non-raft containing 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyol-sn-glycero-3-phosphocholine lipid bilayers, even for antimicrobial peptides that do not show a clear preference between the ordered gel and disordered liquid-crystalline phases. Our results show that the peptide selectivity is not only dependent on the lipid phase but also on the presence of phase separation in heterogeneous lipid systems.  相似文献   

5.
We analyzed the mode of action of the lantibiotic plantaricin C (PlnC), produced by Lactobacillus plantarum LL441. Compared to the well-characterized type A lantibiotic nisin and type B lantibiotic mersacidin, which are both able to interact with the cell wall precursor lipid II, PlnC displays structural features of both prototypes. In this regard, we found that lipid II plays a key role in the antimicrobial activity of PlnC besides that of pore formation. The pore forming activity of PlnC in whole cells was prevented by shielding lipid II on the cell surface. However, in contrast to nisin, PlnC was not able to permeabilize Lactococcus lactis cells or to form pores in 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes supplemented with 0.1 mol% purified lipid II. This emphasized the different requirements of these lantibiotics for pore formation. Using cell wall synthesis assays, we identified PlnC as a potent inhibitor of (i) lipid II synthesis and (ii) the FemX reaction, i.e., the addition of the first Gly to the pentapeptide side chain of lipid II. As revealed by thin-layer chromatography, both reactions were clearly blocked by the formation of a PlnC-lipid I and/or PlnC-lipid II complex. On the basis of the in vivo and in vitro activities of PlnC shown in this study and the structural lipid II binding motifs described for other lantibiotics, the specific interaction of PlnC with lipid II is discussed.  相似文献   

6.
Nisin, a peptide antibiotic, efficiently kills bacteria through a unique mechanism which includes inhibition of cell wall biosynthesis and pore formation in cytoplasmic membranes. Both mechanisms are based on interaction with the cell wall precursor lipid II which is simultaneously used as target and pore constituent. We combined two biosensor techniques to investigate the nisin activity with respect to membrane binding and pore formation in real time. Quartz crystal microbalance (QCM) allows the detection of nisin binding kinetics. The presence of 0.1 mol% lipid II strongly increased nisin binding affinity to DOPC (kD 2.68 × 10− 7 M vs. 1.03 × 10− 6 M) by a higher association rate. Differences were less pronounced while using negatively charged DOPG membranes. However, lipid II does not influence the absolute amount of bound nisin. Cyclic voltammetry (CV) data confirmed that in presence of 0.1 mol% lipid II, nanomolar nisin concentrations were sufficient to form pores, while micromolar concentrations were necessary in absence of lipid II. Both techniques suggested unspecific destruction of pure DOPG membranes by micromolar nisin concentrations which were prevented by lipid II. This model membrane stabilization by lipid II was confirmed by atomic force microscopy. Combined CV and QCM are valuable to interpret the role of lipid II in nisin activity.  相似文献   

7.
Lactococcin 972 (Lcn972) is a nonlantibiotic bacteriocin that inhibits septum biosynthesis in Lactococcus lactis rather than forming pores in the cytoplasmic membrane. In this study, a deeper analysis of the molecular basis of the mode of action of Lcn972 was performed. Of several lipid cell wall precursors, only lipid II antagonized Lcn972 inhibitory activity in vivo. Likewise, Lcn972 only coprecipitated with lipid II micelles. This bacteriocin inhibited the in vitro polymerization of lipid II by the recombinant S. aureus PBP2 and the addition to lipid II of the first glycine catalyzed by FemX. These experiments demonstrate that Lcn972 specifically interacts with lipid II, the substrate of both enzymes. In the presence of Lcn972, nisin pore formation was partially hindered in whole cells. However, binding of Lcn972 to lipid II could not compete with nisin in lipid II-doped 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes, possibly indicating a distinct binding site. The existence of a putative cotarget for Lcn972 activity is discussed in the context of its narrow inhibitory spectrum and the localized action at the division septum. To our knowledge, this is the first unmodified bacteriocin that binds to the cell wall precursor lipid II.  相似文献   

8.
We analyzed the mode of action of the lantibiotic plantaricin C (PlnC), produced by Lactobacillus plantarum LL441. Compared to the well-characterized type A lantibiotic nisin and type B lantibiotic mersacidin, which are both able to interact with the cell wall precursor lipid II, PlnC displays structural features of both prototypes. In this regard, we found that lipid II plays a key role in the antimicrobial activity of PlnC besides that of pore formation. The pore forming activity of PlnC in whole cells was prevented by shielding lipid II on the cell surface. However, in contrast to nisin, PlnC was not able to permeabilize Lactococcus lactis cells or to form pores in 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes supplemented with 0.1 mol% purified lipid II. This emphasized the different requirements of these lantibiotics for pore formation. Using cell wall synthesis assays, we identified PlnC as a potent inhibitor of (i) lipid II synthesis and (ii) the FemX reaction, i.e., the addition of the first Gly to the pentapeptide side chain of lipid II. As revealed by thin-layer chromatography, both reactions were clearly blocked by the formation of a PlnC-lipid I and/or PlnC-lipid II complex. On the basis of the in vivo and in vitro activities of PlnC shown in this study and the structural lipid II binding motifs described for other lantibiotics, the specific interaction of PlnC with lipid II is discussed.  相似文献   

9.
10.
The antibiotic peptide nisin is the first known lantibiotic that uses a docking molecule within the bacterial cytoplasmic membrane for pore formation. Through specific interaction with the cell wall precursor lipid II, nisin forms defined pores which are stable for seconds and have pore diameters of 2 to 2.5 nm.  相似文献   

11.
Hasper HE  de Kruijff B  Breukink E 《Biochemistry》2004,43(36):11567-11575
The peptide antibiotic nisin was the first reported example of an antibiotic that kills bacteria via targeted pore formation. The specific target of nisin is Lipid II, an essential intermediate in the bacterial cell-wall synthesis. High-affinity binding of the antibiotic to Lipid II is followed by rapid permeabilization of the membrane. Here, we investigated the assembly and stability of nisin-Lipid II pore complexes by means of pyrene fluorescence and circular dichroism. We demonstrated that nisin uses all available Lipid II molecules in the membrane to form pore complexes. The pore complexes have a uniform structure and consist of 8 nisin and 4 Lipid II molecules. Moreover, the pores displayed a remarkable stability, because they were able to resist the solubilization of the membrane environment by mild detergents. Similar experiments with [N20P/M21P]nisin showed that the hinge region is essential for the assembly into stable pore complexes. The new insights were used to propose a refined model for nisin pore formation.  相似文献   

12.
Many lantibiotics use the membrane bound cell wall precursor Lipid II as a specific target for killing Gram-positive bacteria. Binding of Lipid II usually impedes cell wall biosynthesis, however, some elongated lantibiotics such as nisin, use Lipid II also as a docking molecule for pore formation in bacterial membranes. Although the unique nisin pore formation can be analyzed in Lipid II-doped vesicles, mechanistic details remain elusive. We used optical sectioning microscopy to directly visualize the interaction of fluorescently labeled nisin with membranes of giant unilamellar vesicles containing Lipid II and its various bactoprenol precursors. We quantitatively analyzed the binding and permeation capacity of nisin when applied at nanomolar concentrations. Specific interactions with Lipid I, Lipid II and bactoprenol-diphosphate (C55-PP), but not bactoprenol-phosphate (C55-P), resulted in the formation of large molecular aggregates. For Lipid II, we demonstrated the presence of both nisin and Lipid II in these aggregates. Membrane permeation induced by nisin was observed in the presence of Lipid I and Lipid II, but not in the presence of C55-PP. Notably, the size of the C55-PP–nisin aggregates was significantly smaller than that of the aggregates formed with Lipid I and Lipid II. We conclude that the membrane permeation capacity of nisin is determined by the size of the bactoprenol-containing aggregates in the membrane. Notably, transmitted light images indicated that the formation of large aggregates led to a pinch-off of small vesicles, a mechanism, which probably limits the growth of aggregates and induces membrane leakage.  相似文献   

13.
Nisin interacts with target membranes in four sequential steps: binding, insertion, aggregation, and pore formation. Alterations in membrane composition might influence any of these steps. We hypothesized that cold temperatures (10 degrees C) and surfactant (0.1% Tween 20) in the growth medium would influence Listeria monocytogenes membrane lipid composition, membrane fluidity, and, as a result, sensitivity to nisin. Compared to the membranes of cells grown at 30 degrees C, those of L. monocytogenes grown at 10 degrees C had increased amounts of shorter, branched-chain fatty acids, increased fluidity (as measured by fluorescence anisotropy), and increased nisin sensitivity. When 0.1% Tween 20 was included in the medium and the cells were cultured at 30 degrees C, there were complex changes in lipid composition. They did not influence membrane fluidity but nonetheless increased nisin sensitivity. Further investigation found that these cells had an increased ability to bind radioactively labeled nisin. This suggests that the modification of the surfactant-adapted cell membrane increased nisin sensitivity at the binding step and demonstrates that each of the four steps can contribute to nisin sensitivity.  相似文献   

14.
Magic angle spinning (MAS) NMR has been used to investigate the location and orientation of five serotonin receptor 1a agonists (serotonin, buspirone, quipazine, 8-OH-DPAT, and LY-163,165) in single component model lipid and brain lipid membranes. The agonist locations are probed by monitoring changes in the lipid proton chemical shifts and by MAS-assisted nuclear Overhauser enhancement spectroscopy, which indicates the orientation of the agonists with respect to the 1,2-dioleoyl-sn-glycero-3-phosphocholine lipids. In the single component bilayer, the membrane agonists are found predominantly in the top of the hydrophobic chain or in the glycerol region of the membrane. Most of the agonists orient approximately parallel to the membrane plane, with the exception of quipazine, whose piperazine ring is found in the glycerol region, whereas its benzene ring is located within the lipid hydrophobic chain. The location of the agonist in brain lipid membranes is similar to the 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid bilayers; however, many of the agonists appear to locate close to the cholesterol in the membrane in preference to the phospholipids.  相似文献   

15.
The lantibiotic nisin, a special case or not?   总被引:13,自引:0,他引:13  
Nisin is a 34-residue-long peptide belonging to the group A lantibiotics with antimicrobial activity against Gram-positive bacteria. The presence of dehydrated residues and lanthionine rings (thioether bonds) in nisin, imposing structural restrains on the peptide, make it an interesting case for studying the mode of action. In addition, the relatively high activity (nM range) of nisin against Gram-positive bacteria indicates that nisin may be a special case in the large family of pore-forming peptides antibiotics. In this review, we attempted to dissect the mode of action of nisin concentrating on studies that used model membranes or biological membranes. The picture that emerges suggests that in model membrane systems, composed of only phospholipids, nisin behaves similar to the antimicrobial peptide magainin, albeit with an activity that is much lower as compared to its activity towards biological membranes. This difference can be contributed to a missing factor which nisin needs for its high activity. Novel results have identified the factor as Lipid II, a precursor in the bacterial cell wall synthesis. The special high affinity interaction of nisin with Lipid II resulting in high activity and the active role of Lipid II in the pore-formation process make nisin a special case.  相似文献   

16.
Nisin is an antimicrobial peptide produced by Lactococcus lactis and used as a food preservative in dairy products. The peptide kills Gram-positive bacteria via the permeabilization of the membrane, most probably via pore formation using the cell wall precursor Lipid II as its docking molecule. In this study, site-directed tryptophan spectroscopy was used to determine the topology of nisin in the Lipid II containing membrane, as a start to elucidate the mechanism of targeted pore formation. Three single tryptophan mutants were used, which are viable representatives of the wild-type peptide. The emission spectra of tryptophans located at the N-terminus, the center, and the C-terminus as well as quenching by acrylamide and spin-labeled lipids were investigated using model membrane vesicles composed of DOPC containing 1 mol % Lipid II. Nisin was shown to adopt an orientation where the most probable position of the N-terminus was found to be near the Lipid II headgroup at the bilayer surface, the position of the center of nisin was in the middle of the phospholipid bilayer, and the C-terminus was located near the interface between the headgroups and acyl chain region. These results were used to propose a model for the orientation of nisin in Lipid II containing membranes. Our findings demonstrated that Lipid II changes the overall orientation of nisin in membranes from parallel to perpendicular with respect to the membrane surface. The stable transmembrane orientation of nisin in the presence of Lipid II might allow us to determine the structure of the nisin-Lipid II pores in the lipid bilayer.  相似文献   

17.
The peptidoglycan layers surrounding bacterial membranes are essential for bacterial cell survival and provide an important target for antibiotics. Many antibiotics have mechanisms of action that involve binding to Lipid II, the prenyl chain-linked donor of the peptidoglycan building blocks. One of these antibiotics, the pore-forming peptide nisin uses Lipid II as a receptor molecule to increase its antimicrobial efficacy dramatically. Nisin is the first example of a targeted membrane-permeabilizing peptide antibiotic. However, it was not known whether Lipid II functions only as a receptor to recruit nisin to bacterial membranes, thus increasing its specificity for bacterial cells, or whether it also plays a role in pore formation. We have developed a new method to produce large amounts of Lipid II and variants thereof so that we can address the role of the lipid-linked disaccharide in the activity of nisin. We show here that Lipid II is not only the receptor for nisin but an intrinsic component of the pore formed by nisin, and we present a new model for the pore complex that includes Lipid II.  相似文献   

18.
Mechanism of lantibiotic-induced pore-formation   总被引:4,自引:0,他引:4  
Nisin and other lantibiotics have a bacteriocidal effect against Gram-positive bacteria, and also inhibit the outgrowth of bacterial spores. The bacteriocidal effect appears to be due to the formation of pores in the bacterial membrane. In the absence of anionic membrane phospholipids, the lantibiotic nisin acts as an anion selective carrier. In the presence of anionic phospholipids, nisin forms nonselective, transient, multi-state pores in cells, proteoliposomes, liposomes and black lipid membranes. Pore formation involves distinct steps. First, nisin associates tightly with the anionic membrane surface leading to a high local concentration. This results in a disturbance of the lipid dynamics near the phospholipid polar head group-water interface, and an immobilization of lipids. In the presence of a transmembrane electrical potential above the threshold level, the molecules reorient, presumably as an aggregate, from a surface-bound into a membrane-inserted configuration. Co-insertion of bound, anionic phospholipids results in bending of the lipid surface giving rise to a wedge-like, nonspecific, water-filled pore.Abbreviations transmembrane electrical potential - p proton motive force  相似文献   

19.
It is generally assumed that type A lantibiotics primarily kill bacteria by permeabilization of the cytoplasmic membrane. As previous studies had demonstrated that nisin interacts with the membrane-bound peptidoglycan precursors lipid I and lipid II, we presumed that this interaction could play a role in the pore formation process of lantibiotics. Using a thin-layer chromatography system, we found that only nisin and epidermin, but not Pep5, can form a complex with [14C]-lipid II. Lipid II was then purified from Micrococcus luteus and incorporated into carboxyfluorescein-loaded liposomes made of phosphatidylcholine and cholesterol (1:1). Liposomes supplemented with 0.05 or 0.1 mol% of lipid II did not release any marker when treated with Pep5 or epilancin K7 (peptide concentrations of up to 5 mol% were tested). In contrast, as little as 0.01 mol% of epidermin and 0.1 mol% of nisin were sufficient to induce rapid marker release; phosphatidylglycerol-containing liposomes were even more susceptible. Controls with moenomycin-, undecaprenol- or dodecaprenolphosphate-doped liposomes demonstrated the specificity of the lantibiotics for lipid II. These results were correlated with intact cells in an in vivo model. M. luteus and Staphylococcus simulans were depleted of lipid II by preincubation with the lipopeptide ramoplanin and then tested for pore formation. When applied in concentrations below the minimal inhibitory concentration (MIC) and up to 5–10 times the MIC, the pore formation by nisin and epidermin was blocked; at higher concentrations of the lantibiotics the protective effect of ramoplanin disappeared. These results demonstrate that, in vitro and in vivo , lipid II serves as a docking molecule for nisin and epidermin, but not for Pep5 and epilancin K7, and thereby facilitates the formation of pores in the cytoplasmic membrane.  相似文献   

20.
Exogenous polyunsaturated fatty acids (PUFAs) are readily incorporated into the synthesis pathways of A. baumannii membrane phospholipids, where they contribute to reduced bacterial fitness and increased antimicrobial susceptibility. Here we examine the impact of PUFA membrane modification on membrane organisation and biophysical properties using coarse grained MARTINI simulations of chemically representative membrane models developed from mass-spectrometry datasets of an untreated, arachidonic acid (AA) treated and docosahexaenoic acid (DHA) treated A. baumannii membranes. Enzymatic integration of AA or DHA into phospholipids of the A. baumannii membrane resulted in modulation of membrane biophysical properties. Membrane thickness decreased slightly following PUFA treatment, concomitant with changes in the lateral area per lipid of each lipid headgroup class. PUFA treatment resulted in a decrease in membrane ordering and an increase in lipid lateral diffusion. Changes in lateral membrane organisation were observed in the PUFA treated membranes, with a concurrent increase in ordered cardiolipin domains and disordered PUFA-containing domains. Notably, separation between ordered and disordered domains was enhanced and was more pronounced for DHA relative to AA, providing a possible mechanism for greater antimicrobial action of DHA relative to AA observed experimentally. Furthermore, the membrane active antimicrobial, pentamidine, preferentially adsorbs to cardiolipin domains of the A. baumannii model membranes. This interaction, and membrane penetration of pentamidine, was enhanced following PUFA treatment. Cumulatively, this work explores the wide-ranging effects of PUFA incorporation on the A. baumannii membrane and provides a molecular basis for bacterial inner membrane disruption by PUFAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号