首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The mean final weight of juvenile greenback flounder Rhombosolea tapirina fed a single daily meal during the scotophase was lower than that of groups fed continuously or fed twelve, six, three or one meal during the photophase. Final weight did not differ among the latter five groups. Size variation in all groups of fish decreased during the course of the trial over 120 days. Groups assigned to a higher frequency (and hence a longer total daily meal duration) of daily meals were less active during mealtime. A distinct food anticipatory effect was observed in the groups of fish receiving a single daily meal during either photophase or scotophase, and also developed before at least one meal in the group of fish fed three meals per day.  相似文献   

2.
Latency of food anticipatory activity (FAA) in greenback flounder Rhombosolea tapirina was about 21 days. Fish fed at meal sizes of 0·25 and 0·5% W day−1 exhibited FAA under meal durations of 1, 3 and 7 h. Fish fed at 1·5% W day−1 showed FAA only at a meal duration of 1 h. At each meal size, FAA was shorter and lower the longer the duration of the meal. The mean durations of FAA and post-feeding activity were correlated positively ( r =0·87; P <0·01; n =7). FAA persisted for <3 days during food deprivation. It is suggested that greenback flounder was capable of evaluating the energetic and temporal impacts of a single daily meal.  相似文献   

3.
The effect of feeding time (dawn or midnight) on nitrogen excretion and energy expenditure was studied in immature rainbow trout using measurements of respiratory gas exchange. Fish (mean individual weight 70 g) were maintained indoors under natural photoperiod and fed by hand (commercial food pellets) at a rate of 1% weight/day−1. Rates of ammonia and CO2 excretion and O2 uptake were measured every hour. Ammonia excretion increased immediately after feeding in fish fed at midnight, and 2h after feeding in fish fed at dawn. Ammonia excretion and energy supply from protein catabolism, were higher in trout fed at midnight than in those fed at dawn, while total energy expenditure was the same in both groups. The results suggested that trout fed in phase with their natural feeding rhythm use dietary protein more efficiently for growth than do trout fed out of phase with the natural rhythm.  相似文献   

4.
For optimal plant growth and development, cellular nitrogen (N) metabolism must be closely coordinated with other metabolic pathways, and mitochondria are thought to play a central role in this process. Recent studies using genetically modified plants have provided insight into the role of mitochondria in N metabolism. Mitochondrial metabolism is linked with N assimilation by amino acid, carbon (C) and redox metabolism. Mitochondria are not only an important source of C skeletons for N incorporation, they also produce other necessary metabolites and energy used in N remobilization processes. Nitric oxide of mitochondrial origin regulates respiration and influences primary N metabolism. Here, we discuss the changes in mitochondrial metabolism during ammonium or nitrate nutrition and under low N conditions. We also describe the involvement of mitochondria in the redistribution of N during senescence. The aim of this review was to demonstrate the role of mitochondria as an integration point of N cellular metabolism.  相似文献   

5.
African catfish Clarias gariepinus (=119.9&30.6 g) were exposed to periods of emersion (5, 30, 60, 90 and 180 min) and the ammonia and nitrogen excretion rates measured following re-immersion. Immediately following re-immersion (0–30 min), the ammonia excretion and relative ammonia excretion was greatest for the 5-min emersion gro up. Exposure to extended periods of emersion resulted in a decrease in total nitrogen excretion, notably ammonia excretion, although no significant changes were observed in the non-ammonia component of C. gariepinus .  相似文献   

6.
Penaeus monodon (12.13+/-1.14 g) exposed individually to six different nitrite and nitrate regimes (0.002, 0.36 and 1.46 mM nitrite combined with 0.005 and 7.32 mM nitrate), at a salinity of 25 ppt, were examined for hemolymph nitrogenous compounds and whole shrimp's nitrogen excretions after 24 h. Nitrogen excretion increased directly with ambient nitrite and nitrate. Hemolymph nitrite, nitrate, urea and uric acid levels increased, while hemolymph ammonia, oxyhemocyanin and protein were inversely related to ambient nitrite. Exposure of P. monodon to elevated nitrite in the presence of 7.32 mM nitrate did not alter hemolymph nitrite, ammonia, uric acid, oxyhemocyanin and protein levels, but caused an increase in hemolymph nitrate and a decrease in hemolymph urea as compared to exposure to elevated nitrite only. Following exposure to elevated nitrite, nitrite was oxidized to nitrate and P. monodon showed uricogenesis and uricolysis. The shrimp also used strategies to avoid joint toxicities of nitrite and metabolic ammonia by removing ammonia or reducing ammonia production under the stress of elevated nitrite.  相似文献   

7.
This study aimed to measure protein synthesis using a stable isotope method, investigate protein-nitrogen flux in a flatfish Pleuronectes flesus , and use the data to test the hypothesis that individual differences in growth efficiency were related to individual differences in protein-nitrogen flux mediated through differences in protein synthesis and degradation. Three measurements of protein-nitrogen flux via consumption, protein synthesis and nitrogenous excretion were made for individual flounder during a 212-day period and fractional rates of protein-nitrogen flux were scaled for a 50–g flounder to provide mean values for protein consumption (2·11 ± 0·21% day−1), protein synthesis (2·08±0·23% day−1), protein growth (0·71±0·06% day−1) and protein degradation (1·37±0·24% day−1). Mean rates of nitrogenous excretion were 0·142 mg N g−1 day−1 and 0·047 mg N g−1 day−1 for ammonia and urea, respectively. Individual flounder had different protein growth efficiencies and this was correlated negatively and significantly with mean rates of protein synthesis ( r - 0·70; P <0·05) and degradation ( r - 0·67; P < 0·05) and correlated positively and significantly with the efficiency of retaining synthesized protein ( r +0·63, P <0·05). This supported the proposed hypothesis that flounder which grow more efficiently achieve this through adopting a low protein turnover strategy.  相似文献   

8.
臭氧和氮添加对杨树叶片氮代谢的影响臭氧(O3)污染和氮(N)沉降/施肥都能同时影响植物的生长。然而,几乎没有研究探究O3和N添加对植物叶片N代谢过程的复合影响。本研究在开顶式气室(OTC)中对杨树进行了为期95 d的熏蒸实验,包括两个O3水平(NF,环境O3水平;NF60,NF + 60 ppb O3)和4个N处理(N0,没有N添加;N50,N0 + 50 kg N ha−1 yr−1;N100,N0 + 100 kg N ha−1 yr−1;N200,N0 + 200 kg N ha−1 yr−1)。测定了与叶片N代谢相关的一些指标,包括叶片N代谢酶的活性、总叶片N浓度、NO3-N浓度、NH4+-N浓度、总氨基酸浓度(TAA)、总可溶性糖的浓度(TSP)。研究结果表明,相对于NF,在8月份NF60处理显著刺激了硝酸还原酶(NR)的活性,使其升高了47.2%。当平均所有的N处理和两次取样时间时,NF60处理下谷氨酰胺酶(GS)的活性比NF处理下的高57.3%。但是O3处理并没有显著影响TSP浓度,并且在8月也没有降低TAA的浓度。相对N0,高的N添加处理(N200)显著增加了杨树叶片的饱和光合速率(Asat) 24%,并且分 别在8和9月增加了总叶片N浓度70.3%和43.3%。但是在8月份,N200处理下光合N利用效率比N0的低26.1%。这表明N添加导致的Asat和叶片总的N浓度的升高是不匹配的,高N处理下,叶片中一些剩余的N没有被用于优化植物碳的同化。同时,也发现高N添加显著刺激了叶片N代谢过程,叶片中的NO3-N浓度、NH4+-N浓度、TAA浓度、NR和GS活性都显著升高。然而,O3和N添加对杨树叶片所有N代谢相关的指标都没有交互影响。这些结果将有助于更好地了解在高O3污染和N沉降/施肥下植物的N代谢过程以及生物地球化学循环过程。  相似文献   

9.
10.
植物内生菌促进宿主氮吸收与代谢研究进展   总被引:6,自引:0,他引:6  
杨波  陈晏  李霞  任承钢  戴传超 《生态学报》2013,33(9):2656-2664
内生菌与植物共生能够提高宿主的氮吸收与氮代谢水平,这可能是由于内生菌在植物体内引发的多种效应的综合结果.植物内生菌能够通过促进植物根系发育和固氮作用为宿主植物提供更多的无机氮素;能够通过分泌多种胞外酶系如漆酶、蛋白水解酶等使宿主植物更好地利用有机氮素;能够提高宿主氮代谢关键酶如硝酸还原酶(NR)、谷氨酰胺合成酶(GS)等酶的活性;能够提高宿主植物激素水平和维生素含量从而促进宿主氮代谢;能够通过影响宿主植物氮代谢促进宿主植物分蘖、提高宿主植物叶绿素含量和光合速率等等.综述了国内外关于植物内生菌促进宿主氮代谢的相关报道,归纳了植物内生菌影响宿主氮素吸收与代谢的可能机制,并展望了关于植物内生菌促进宿主氮代谢机制方面的研究方向.  相似文献   

11.
温度和摄食对溪红点鲑幼鱼呼吸代谢的影响   总被引:4,自引:0,他引:4  
在不同水温[(5.5±0.5) ℃、(8.5±0.5) ℃、(11.5±0.5) ℃、(14.5±0.5) ℃、(17.5±0.) ℃]条件下,分别测定了饱食和空腹状态下溪红点鲑幼鱼的耗氧率和排 氨率,分析了温度和摄食对溪红点鲑幼鱼呼吸代谢的影响.结果表明:饱食后,5个温度梯度组溪红点鲑幼鱼的耗氧率和排氨率均迅速上升,达最大值后缓慢下降,并逐渐恢复到初始水平;饱食状态下,溪红点鲑幼鱼耗氧率(OR)和排氨率(NR)与温度(t)的回归方程分别为OR=-0.0601t4+2.5542t3-39.256t2+276.26t-598.75(n=650,R2=1,4.5 ℃4+0.0826t3-1.2318t2+8.6186t-18.838(n=650,R2=1,4.5 ℃0.9738(n=650,R2=0.9974,4.5 ℃1.0896( n=650,R2=0.9977,4.5 ℃相似文献   

12.
The objectives of the study were to determine the effect of the partial replacement of soyabean meal and rapeseed meal with feed grade urea or a slow-release urea on the performance, metabolism and whole-tract digestibility in mid-lactation dairy cows. Forty-two Holstein–Friesian dairy cows were allocated to one of three dietary treatments in each of three periods of 5 weeks duration in a Latin square design. Control (C) cows were offered a total mixed ration based on grass and maize silages and straight feeds that included 93 g/kg dry matter (DM) soyabean meal and 61 g/kg DM rapeseed meal. Cows that received either of the other two treatments were offered the same basal ration with the replacement of 28 g/kg DM soyabean and 19 g/kg DM rapeseed meal with either 5 g/kg DM feed grade urea (U) or 5.5 g/kg DM of the slow-release urea (S; OptigenR; Alltech Inc., Kentucky, USA), with the content of maize silage increasing. There was no effect (P > 0.05) of dietary treatment on DM intake, which averaged 22.5 kg/day. Similarly, there was no effect (P > 0.05) of treatment on daily milk or milk fat yield but there was a trend (P = 0.09) for cows offered either of the diets containing urea to have a higher milk fat content (average of 40.1 g/kg for U and S v. 38.9 g/kg for C). Milk true protein concentration and yield were not affected by treatment (P > 0.05). Milk yield from forage and N efficiency (g milk N output/g N intake) were highest (P < 0.01) in cows when offered S and lowest in C, with cows receiving U having intermediate values. Cows offered S also tended to have the highest live weight gain (0.38 kg/day) followed by U (0.23 kg/day) and C (0.01 kg/day; P = 0.07). Plasma urea concentrations were higher (P < 0.05) at 2 and 4 h post feeding in cows when offered U and lowest in C, with animals receiving S having intermediate values. There was no effect (P > 0.05) of treatment on whole-tract digestibility. In conclusion, the partial replacement of soyabean meal and rapeseed meal with feed grade urea or a slow-release urea can be achieved without affecting milk performance or diet digestibility, with the efficiency of conversion of dietary N into milk being improved when the slow-release urea was fed.  相似文献   

13.
以有机质含量仅为0.65%的低碳冲积沙土为栽培基质,以当年生山定子幼苗为试材,分别添加与土壤本体微生物生物量碳(MBC)等量的碳量(2 g·kg-1)、5倍MBC碳量(10g·kg-1)的葡萄糖,以不添加葡萄糖为对照,处理后0~30 d内定期采集根系样品,研究外源葡萄糖对低碳土壤中山定子幼苗生长、根系构型及氮素代谢的影响.结果表明:5倍MBC碳源处理后山定子幼苗的株高、总生物量、总根长和根表面积分别显著增加12.3%、26.4%、23.2%和14.6%,而茎粗、根体积和平均直径无显著变化.等量及5倍MBC碳源处理均显著提高了山定子的根系活力,分别在第3和15天达到峰值,高于对照119.1%和75.7%.在整个处理期间,等量及5倍MBC碳源处理显著增加了根中NO_3^-、NO_2^-和NH_4^+含量;整体上,等量及5倍MBC碳源处理均显著增强根系中硝酸还原酶、谷氨酰胺合酶、谷氨酸脱氢酶、谷氨酸合酶、谷草转氨酶和谷丙转氨酶的活性,其中5倍MBC处理的作用最显著.5倍MBC的外源葡萄糖浓度更有利于促进低碳土壤中山定子根系中氮素的吸收代谢过程,诱导植株生长、干物质积累和根系构型改变.  相似文献   

14.
The objective of this study was to investigate the relationship between nitrogen (N) partitioning and isotopic fractionation in lactating goats consuming diets with a constant high concentration of N and increasing levels of water soluble carbohydrate (WSC). Eight lactating goats were offered four different ratios of WSC : N in the diet. A two-period incomplete cross-over design was used, with two goats assigned to each treatment in each period. N balance measurements were conducted, with measurement of feed N intake and total output of N in milk, faeces and urine. Treatment, period and infusion effects were tested using general ANOVA; the relationships between variables were analysed by linear regression. Dietary treatment and period had significant effects on dry matter (DM) intake (g/day). DM digestibility (g/kg DM) and N digestibility (g/kg N) increased as the ratio of WSC : N increased in the diet. No treatment effect was observed on milk urea N concentration (g/l) or urinary excretion of purine derivatives (mM/day). Although dietary treatment and period had significant effects on N intake, the change of N intake was small; no effect was observed for N partitioning among faeces, milk and urine. Milk, plasma and faeces were enriched in 15N compared with feed, whilst urine was depleted in 15N relative to feed. No significant relationship was established between N partitioning and isotopic fractionation. This study failed to confirm the potential to use N isotopic fractionation as an indicator of N partitioning in dairy goats when diets provided N in excess to requirements, most likely because the range of milk N output/N intake and urinary N output/N intake were narrow.  相似文献   

15.
谷岩  胡文河  徐百军  王思远  吴春胜 《生态学报》2013,33(23):7399-7407
本文以先玉420为试验材料,研究在大垄双行膜下滴灌种植模式下,氮素水平对玉米穗位叶光合特征及氮代谢关键酶活性的影响。结果表明:1)玉米穗位叶氮素含量、光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和水分利用效率(WUE),均以N3(300 kg/hm2)水平最高,其平均Pn达35.1μmol m-2 s-1,Tr达7.57 m mol m-2 s-1,Gs 为0.58 mol m-2 s-1,WUE为 4.64μmol mmol-1。2) 最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSⅡ)和光化学猝灭(qP),以N3水平最高,Fv/Fm均在0.75以上,ΦPSⅡ和qP均在0.45以上。3) PEP羧化酶对氮肥的响应较RUBP羧化酶敏感。氮肥少于100 kg/hm2才显著降低RUBP羧化酶活性;而PEP羧化酶则仅在N3处理时活性最高。4) 施用氮肥均增加穗位叶硝酸还原酶(NR)和谷氨酰胺合成酶(GS)活性,以N3处理增幅最大,平均比不施氮肥分别增加22.4%(NR)和64.8%(GS),蛋白水解酶活性则相反,平均比不施氮肥分别降低51.6%(内肽酶)和76.9%(氨肽酶)。5)相关分析表明:穗位叶氮含量与与内肽酶和氨肽酶呈现负相关,与其他各项指标均呈现正相关,差异显著性因花后不同时期而不同。6)在供试试验区,在氮肥施用总量为300 kg/hm2时,玉米穗位叶保持较高的光合特性和相关酶活性,为玉米籽粒产量的形成奠定了基础。  相似文献   

16.
For both nitrogen and carbon metabolism there exist specific regulatory mechanisms to enable cells to assimilate a wide variety of nitrogen and carbon sources. Superimposed are regulatory circuits, the so called nitrogen and carbon catabolite regulation, to allow for selective use of “rich” sources first and “poor” sources later. Evidence points to the importance of specific regulatory mechanisms for short term adaptations, while generalized control circuits are used for long term modulation of nitrogen and carbon metabolism. Similarly a variety of regulatory mechanisms operate in amino acid metabolism. Modulation of enzyme activity and modulation of enzyme levels are the outstanding regulatory mechanisms. In prokaryotes, attenuation and repressor/operator control are predominant, besides a so called “metabolic control” which integrates amino acid metabolism into the overall nutritional status of the cells. In eukaryotic cells compartmentation of amino acid metabolites as well as of part of the pathways becomes an additional regulatory factor; pathway specific controls seem to be rare, but a complex regulatory network, the “general control of amino acid biosynthesis”, coordinates the synthesis of enzymes of a number of amino acid biosynthetic pathways.  相似文献   

17.
二氧化氮(NO2)是大气氮氧化物之一,是大气气溶胶颗粒形成的主要成分,降低大气NO2浓度可减轻空气中的雾霾.大气NO2通过干沉降和湿沉降两种方式降落到植物叶片.植物吸收NO2后主要通过两种代谢途径来降低空气中NO2浓度: 一是主要在细胞质和叶绿体中利用还原酶的氮代谢途径,二是在质外体和细胞质中的歧化反应.植物吸收NO2干扰了植物正常的生长和生理代谢,包括: 植物营养和生殖生长,植物体内硝酸还原酶(NaR)活性、亚硝酸还原酶(NiR)活性、氮素吸收、光合等生理代谢过程.对目前国内外有关大气NO2影响植物生长与代谢的研究进展进行了综述,并对植物吸收NO2的生理及分子机制的未来研究方向进行了展望.  相似文献   

18.
植物的光合作用与光合氮、碳代谢的耦联及调节   总被引:16,自引:0,他引:16  
概述了光合作用反应与CO2同化和NO^-3/NO^-2还原的耦联关系,提出了应该从氮,碳代谢整合角度讨论作动和光合作用,以便根据生产目的,调节作物的氮,碳代谢,实现农业生产的高产,优质。  相似文献   

19.
Nitrogenous excretion in two snails, Littorina saxatilis (high intertidal) and L. obtusata (low intertidal) was studied in relation to temperature acclimation (at 4° and 21°C), including total N excretion rates, the fraction of urea in N excretion, corresponding O:N ratios and the partitioning of deaminated protein between catabolic and anabolic processes at 4°, 11° and 21°C. Aggregate N excretion rates in both species showed no significant compensatory adjustments following acclimation. Total weight specific N excretion rates at 21°C were higher in standard 3 mg L. saxatilis (739 ng N mg−1 h−1) than standard 5 mg L. obtusata (257 ng N mg−1 h−1) for snails acclimated to 21°C. Comparisons of Q10 values of total weight specific N excretion to Q10 values for weight specific oxygen consumption ({xxV}O2) between 4° to 11 °C and 11° to 21°C indicated that, while total rates of catabolic metabolism ({xxV}O2) and protein deamination in L. obtusata were essentially parallel, the relationship between N excretion and {xxV}O2 in L. saxatilis revealed the partitioning of a larger share of deaminated protein carbon into anabolism at 4° and 21°C than at 11°C. Urea N accounted for a larger share of aggregate N excreted in L. saxatilis than in L. obtusata, but in both species urea N is a greater proportion of total N excreted when acclimated at 4°C (urea N: ammonia N ratio range: 1 to 2.15) than in snails acclimated to 21°C (urea N: ammonia N ratio range: 0.46 to 1.39). Molar O:N ratios indicate that the proportion of metabolism supported by protein catabolism is greater in L. saxatilis (O:N range: 2.5–8.4) than in L. obtusata (O:N range: 7.3–13.0). In both species, regardless of acclimation temperature, the O:N ratios are generally lowest (high protein catabolism) at 4°C and highest at 21°C.  相似文献   

20.
以郑单958为材料,在高产田和中产田两种地力水平下,利用15N标记法研究了施氮量对夏玉米氮素分配率、利用率和碳氮代谢的影响.结果表明:高产田适量施氮可以提高玉米产量,过量施氮没有表现出进一步增产效果,其氮肥利用率较低(29 04%).中产田随施氮量的增加产量提高,但氮素利用率却降低.各个器官15N积累量依次为籽粒>叶片>茎>根>叶鞘>穗轴.在高产田,当施氮量超过300kg·hm-2时,玉米籽粒和叶片中积累15N有所下降,而茎和根中积累15N的量随施N量的增加而增加;在中产田,随着施N量的增加,籽粒和穗轴积累15N量均相应增加.高产田叶片的硝酸还原酶活性、谷氨酰胺合成酶活性和蔗糖磷酸合成酶活性以及籽粒中蔗糖合成酶活性和酸性转化酶活性均是施氮300kg·hm-2时最大,施氮450 kg·hm-2则抑制了其活性的增强,而中产田的各个酶活性则随着施氮量的增加而增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号