首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Myogenin and CMD1, the chicken homologue of MyoD, transactivate the promoter of the alpha-subunit of the acetylcholine receptor (AChR) in chicken fibroblasts. The expression of these three genes was followed by in situ hybridization. In two-day-old embryos the CMD1 gene is expressed shortly before the AChR alpha-subunit and the myogenin genes. At day 19 extrajunctional AChR mRNA clusters have disappeared and myogenin mRNAs are no longer detected in PLD muscle. Moreover, both myogenin and CMD1 mRNA levels increase after muscle denervation in chicks. These data are compatible with a role for myogenic factors in the induction and maintenance of extra-junctional expression of the AChR genes during early muscle development. Using digoxygenin labelled RNA probes, we also show that the mRNAs for the AChR alpha-subunit display a punctated, probably perinuclear distribution, whereas mRNAs for myogenic genes accumulate in the sarcoplasm around subsets of nuclei in the muscle fiber.  相似文献   

3.
4.
We have used transient transfections in MM14 skeletal muscle cells, newborn rat primary ventricular myocardiocytes, and nonmuscle cells to characterize regulatory elements of the mouse muscle creatine kinase (MCK) gene. Deletion analysis of MCK 5'-flanking sequence reveals a striated muscle-specific, positive regulatory region between -1256 and -1020. A 206-bp fragment from this region acts as a skeletal muscle enhancer and confers orientation-dependent activity in myocardiocytes. A 110-bp enhancer subfragment confers high-level expression in skeletal myocytes but is inactive in myocardiocytes, indicating that skeletal and cardiac muscle MCK regulatory sites are distinguishable. To further delineate muscle regulatory sequences, we tested six sites within the MCK enhancer for their functional importance. Mutations at five sites decrease expression in skeletal muscle, cardiac muscle, and nonmuscle cells. Mutations at two of these sites, Left E box and MEF2, cause similar decreases in all three cell types. Mutations at three sites have larger effects in muscle than nonmuscle cells; an A/T-rich site mutation has a pronounced effect in both striated muscle types, mutations at the MEF1 (Right E-box) site are relatively specific to expression in skeletal muscle, and mutations at the CArG site are relatively specific to expression in cardiac muscle. Changes at the AP2 site tend to increase expression in muscle cells but decrease it in nonmuscle cells. In contrast to reports involving cotransfection of 10T1/2 cells with plasmids expressing the myogenic determination factor MyoD, we show that the skeletal myocyte activity of multimerized MEF1 sites is 30-fold lower than that of the 206-bp enhancer. Thus, MyoD binding sites alone are not sufficient for high-level expression in skeletal myocytes containing endogenous levels of MyoD and other myogenic determination factors.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
The effect of different temperatures (4 degrees C and 12 degrees C) on myogenic regulatory factors (MyoD and myogenin) and myosin heavy chain (MyHC) expression was investigated in rainbow trout (Onchrhynchus mykiss) during early development. MyoD is first switched on at stage 14 [about 5 somites are formed (1/2 epiboly)] while myogenin mRNA is expressed at stage 15 [around 15 somites are visible (2/3 epiboly)] at both temperatures. Subsequently (up to at least stage 20), the most caudal somites exhibit less myogenin mRNA at 4 degrees C compared to 12 degrees C. At the eyed stage (stage 23-24), both myogenin mRNA and protein are present in greater amounts throughout all myotomes at the lower temperature, with mRNA levels in warmer (12 degrees C) embryos at 83% for MyoD and 72% for myogenin of the levels seen in 4 degrees C embryos. Conversely, however, at this same stage, fast-MyHC mRNA and protein are more abundant in 12 degrees C than in 4 degrees C embryos. This indicates relatively advanced muscle differentiation at the warmer temperature. At hatching, myogenin-positive cells are concentrated within the myosepta at both temperatures and they are also sparsely distributed in the myotome at 4 degrees C, but not at 12 degrees C. MyoD, myogenin, and MyHC levels provide an indication of differentiation of muscle cells. These findings suggest that myogenic regulatory factor expression is delayed but prolonged by the lowering of temperature.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号