首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A simulation model for radiation absorption and photosynthesis was used to test the hypothesis that observed nonuniform distributions of nitrogen concentrations in young Eucalyptus grandis trees result in greater amounts of daily assimilation than in hypothetical trees with uniform N distributions. Simulations were performed for trees aged 6, 9, 12 and 16 months which had been grown in plantations under a factorial combination of two levels of fertilization and irrigation. Observed leaf N distribution patterns yielded daily assimilation rates which were only marginally greater (<5%) than for hypothetical trees with uniform distributions. Patterns of assimilation distribution in individual tree crowns closely resembled those for absorbed radiation, rather than for N. These conclusions were unaffected by three choices of alternative leaf area density distributions. The simulation model was also used to calculate hourly and daily rates of canopy assimilation to investigate the relative importance of radiation absorption and total canopy nitrogen on assimilation. Simulated hourly rates of carbon assimilation were often lightsaturated, whereas daily carbon gain was directly proportional to radiation absorbed by the tree crown and to total mass of N in the leaves. Leaf nitrogen concentrations determined photosynthetic capacity, whereas total leaf area determined the amount of radiation absorbed and thus the degree to which capacity was realized. Observed total leaf area and total crown N were closely correlated. The model predicted that nitrogen use efficiences (NUE, mol CO2 mol–1 N) were 60% higher for unfertilized than for fertilized trees at low levels of absorbed photosynthetically active radiation (PAR). Nitrogen use efficiency was dependent on fertilizer treatment and on the amount of absorbed PAR; NUE declined with increasing absorbed PAR, but decreased more rapidly for unfertilized than for fertilized trees. Annual primary productivity was linearly related to both radiation absorbed and to mass of N in the canopy.  相似文献   

2.
Photosynthesis and water efflux were measured in different PAR and stomatal conductance in members of Avicenniaceae and Rhizophoraceae. Trend of leaf temperature with irradiance and its effect on photosynthesis were also estimated. In most of the studied species, photosynthesis and stomatal conductance followed similar trends with increase in irradiance. The rate of net photosynthesis and stomatal conductance were higher in members of Avicenniaceae than in Rhizophoraceae. In Avicenniaceae, the optimum PAR for maximum photosynthesis ranged between 1340–1685 (μmol m-2s-1, which was also higher than that of Rhizophoraceae (840-1557 μmol m-2s-1). Almost in all the studied taxa, transpiration and stomatal conductance followed similar trends and reached the maximal peaks at the same PAR value. The range of breakeven leaf temperature was almost the same in both the families (34-36°C in Avicenniaceae and 33.5-36.3°C in Rhizophoraceae), beyond which assimilation rate declined.  相似文献   

3.
Photosynthesis–irradiance relationships of macroalgal communities and thalli of dominant species in shallow coastal Danish waters were measured over a full year to test how well community production can be predicted from environmental (incident irradiance and temperature) and community variables (canopy absorptance, species number and thallus metabolism). Detached thalli of dominant species performed optimally at different times of the year, but showed no general seasonal changes in photosynthetic features. Production capacity of communities at high light varied only 1.8-fold over the year and was unrelated to incident irradiance, temperature and mean thallus photosynthesis, while community absorptance was a highly significant predictor. Actual rates of community photosynthesis were closely related to incident and absorbed irradiance alone. Community absorptance in turn was correlated to canopy height and species richness. The close relationship of community photosynthesis to irradiance is due to the fact that (1) large differences in thallus photosynthesis of individual species are averaged out in communities composed of several species, (2) seasonal replacement of species keeps communities metabolically active, and (3) maximum possible absorptance at 100% constrains the total photosynthesis of all species. Our results imply that the photosynthetic production of macroalgal communities is more predictable than their complex and dynamic nature suggest and that predictions are possible over wide spatial scales in coastal waters by measurements of vegetation cover, incoming irradiance and canopy absorptance.  相似文献   

4.
冠层绿色叶片(光合组分)的光合有效辐射分量(绿色FPAR)真实地反映了植被与外界进行物质和能量交换的能力,获取冠层光合组分吸收的太阳光合有效辐射,对生态系统生产力的遥感估算精度的提高具有重要的意义。研究以落叶阔叶林为例,基于SAIL模型模拟森林冠层光合组分和非光合组分吸收的光合有效辐射,研究冠层FPAR变化规律以及与植被指数的相关关系。结果表明,冠层结构的改变会影响冠层对PAR的吸收能力,冠层绿色FPAR的大小与植被面积指数及光合组分面积比相关;在高覆盖度植被区,冠层绿色FPAR占冠层总FPAR的80%以上,非光合组分的贡献较小,但在低植被覆盖区,当光合组分和非光合组分面积相同时,绿色FPAR不及冠层总FPAR的50%;相比于NDVI,北方落叶阔叶林冠层EVI与绿色FPAR存在更为显著的线性相关关系(R~20.99)。  相似文献   

5.
The objectives of the study were to characterize photosynthesis of temperate fallow C3herbaceous species and examine the performance of a simple photosynthesis model (based on the Farquhar’s equations) to simulate carbon fluxes at the leaf and canopy levels. The maximum rate of carboxylation at 25°C (V m0) was estimated for sunlit leaves using in situ gas exchange data under saturating irradiance. Throughout the seasons, leaf measurements indicate that values of V m0 were similar for the four major species of the fallow. The rate declined from March (100 μmol m−2 s−1) to July (50 μmol m−2 s−1) and remained almost constant until November. The maximum quantum yield estimated for Potentilla reptans L. (dominant species) was 0.082 mol(CO2) mol−1(photon absorbed), similar to values already published for C3 species. Leaf area index (LAI) increased from winter (less than 0.2 m2 m−2) to spring (up to 4 m2 m−2). Rates of canopy photosynthesis (measured with a canopy chamber) strongly depended on LAI and temperature, in addition to irradiance. They reached a maximum of 25 μmol m−2 s−1 and were intermediate between those published for C4 grassland or cultivated species, and on woody species. At leaf level, simulations gave realistic predictions. At canopy level, the model had the ability to reproduce the effects of environmental and seasonal conditions. However, simulations underestimated the photosynthetic activity of the fallow canopy.  相似文献   

6.
The development of vertical canopy gradients of leaf N has beenregarded as an adaptation to the light gradient that helps tomaximize canopy photosynthesis. In this study we report thedynamics of vertical leaf N distribution during vegetative growthof wheat in response to changes in N availability and sowingdensity. The question of to what extent the observed verticalleaf N distribution maximized canopy photosynthesis was addressedwith a leaf layer model of canopy photosynthesis that integratesN-dependent leaf photosynthesis according to the canopy lightand leaf N distribution. Plants were grown hydroponically attwo amounts of N, supplied in proportion to calculated growthrates. Photosynthesis at light saturation correlated with leafN. The vertical leaf N distribution was associated with thegradient of absorbed light. The leaf N profile changed duringcrop development and was responsive to N availability. At highN supply, the leaf N profiles were constant during crop development.At low N supply, the leaf N profiles fluctuated between moreuniform and steep distributions. These changes were associatedwith reduced leaf area expansion and increasing N remobilizationfrom lower leaf layers. The distribution of leaf N with respectto the gradient of absorbed irradiance was close to the theoreticaloptimum maximizing canopy photosynthesis. Sensitivity analysisof the photosynthesis model suggested that plants maintain anoptimal vertical leaf N distribution by balancing the capacityfor photosynthesis at high and low light. Copyright 2000 Annalsof Botany Company Canopy photosynthesis, leaf nitrogen distribution, nitrogen, Triticum aestivum L, wheat  相似文献   

7.
The maintenance in the long run of a positive carbon balance under very low irradiance is a prerequisite for survival of tree seedlings below the canopy or in small gaps in a tropical rainforest. To provide a quantitative basis for this assumption, experiments were carried out to determine whether construction cost (CC) and payback time for leaves and support structures, as well as leaf life span (i) differ among species and (ii) display an irradiance-elicited plasticity. Experiments were also conducted to determine whether leaf life span correlates to CC and payback time and is close to the optimal longevity derived from an optimization model. Saplings from 13 tropical tree species were grown under three levels of irradiance. Specific-CC was computed, as well as CC scaled to leaf area at the metamer level. Photosynthesis was recorded over the leaf life span. Payback time was derived from CC and a simple photosynthesis model. Specific-CC displayed only little interspecific variability and irradiance-elicited plasticity, in contrast to CC scaled to leaf area. Leaf life span ranged from 4 months to >26 months among species, and was longest in seedlings grown under lowest irradiance. It was always much longer than payback time, even under the lowest irradiance. Leaves were shed when their photosynthesis had reached very low values, in contrast to what was predicted by an optimality model. The species ranking for the different traits was stable across irradiance treatments. The two pioneer species always displayed the smallest CC, leaf life span, and payback time. All species displayed a similar large irradiance-elicited plasticity.  相似文献   

8.
叶片气孔是植物进行水汽交换的通道, 影响着植物的蒸腾和光合作用。然而叶片气孔行为受环境条件和树种类型的影响, 不同树种冠层气孔导度对环境因子响应的差异性, 以及在生长季不同时期叶片气孔对冠层蒸腾的调节作用是否会发生改变, 仍不清楚。该研究目的是通过探究各环境因子对不同树种冠层气孔导度的相对贡献率以及叶片气孔对冠层蒸腾的调节作用, 为深入了解植物水分利用状况和山区森林经营提供参考依据。于2018年生长季以北京八达岭国家森林公园内的58年生油松(Pinus tabuliformis)和39年生元宝槭(Acer truncatum)为研究对象, 利用热扩散技术对其树干液流进行连续监测, 并同步监测环境因子。利用彭曼公式计算冠层气孔导度(Gs)。主要结果: (1)油松和元宝槭日间Gs在日、月时间尺度上存在明显差异。5-7月油松和元宝槭日动态Gs均随饱和水汽压差(VPD)和太阳辐射(GR)的增加呈上升趋势, 上升持续时间比8月和9月长; 在月尺度上, 随着VPDGR的降低和土壤湿度(VWC)的升高, Gs从5月到9月整体上升。(2)利用增强回归树法分析得到VWCVPDGs的贡献率最大, 其次是GR、气温和风速。VWCVPD对油松Gs的贡献率分别为66.4%和17.4%, 对元宝槭Gs的贡献率分别为54.8%和21.0%。(3)油松和元宝槭的dGs/dlnVPD值与参考冠层气孔导度之间的斜率均显著高于0.6, 气孔调节作用相对较强。综上所述, 气孔对环境因子的响应在树种以及生长季不同时期之间存在差异, 为防止水分过度散失, 两树种在不同土壤水分条件下均通过严格的气孔调节控制蒸腾量。  相似文献   

9.
 利用光合作用测定系统(Li-COR 6400和叶室荧光仪),测定了亚热带阔叶树种的光合速率和荧光参数,分析了38 ℃适度高温对叶片光合作用 和吸收光能分配的影响。测试树种包括华南亚热带地区常见的阳生性树种木荷(Schima superba)、耐荫树种黄果厚壳桂(Cryptocarya concinna)和中生性树种红锥(Castanopsis hystrix)。适度高温处理均引起 所有树种的光合能力下降,而且木荷和红锥下降的程度比黄果 厚壳桂明显。与25 ℃的对照温度相比,适度高温处理的木荷叶片用于光化学反应所消耗的光能下降,红锥和黄果厚壳桂也有相似的反应,表明 适度高温限制叶片用于光化学反应的吸收光能。无论哪个树种,38 ℃适度高温处理的植物,叶片总吸收光能中额外多余的那部分和处于非活化 状态PSⅡ所吸收的那部分光能都增加,而且黄果厚壳桂比木荷和红锥显著,因此,亚热带阔叶森林的树种对适度高温的响应因种类而异。研究 结果意味着将来气候变化导致温度的上升对演替后期树种黄果厚壳桂的光合过程的限制比演替早期的树种木荷和中生性树种红锥会更严重。  相似文献   

10.
A mechanistic analysis of light and carbon use efficiencies   总被引:12,自引:1,他引:12  
We explore the extent to which a simple mechanistic model of short-term plant carbon (C) dynamics can account for a number of generally observed plant phenomena. For an individual, fully expanded leaf, the model predicts that the fast-turnover labile C, starch and protein pools are driven into an approximate or moving steady state that is proportional to the average leaf absorbed irradiance on a time-scale of days to weeks, even under realistic variable light conditions, in qualitative agreement with general patterns of leaf acclimation to light observed both temporally within the growing season and spatially within plant canopies. When the fast-turnover pools throughout the whole plant (including stems and roots) also follow this moving steady state, the model predicts that the time-averaged whole-plant net primary productivity is proportional to the time-averaged canopy absorbed irradiance and to gross canopy photosynthesis, and thus suggests a mechanistic explanation of the observed approximate constancy of plant light-use efficiency (LUE) and carbon-use efficiency. Under variable light conditions, the fast-turnover pool sizes and the LUE are predicted to depend negatively on the coefficient of variation of irradiance. We also show that the LUE has a maximum with respect to the fraction of leaf labile C allocated to leaf protein synthesis ( alp ), reflecting a trade-off between leaf photosynthesis and leaf respiration. The optimal value of alp is predicted to decrease at elevated [CO2] a , suggesting an adaptive interpretation of leaf acclimation to CO2. The model therefore brings together a number of empirical observations within a common mechanistic framework.  相似文献   

11.
BACKGROUND AND AIMS: Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. METHODS: Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. KEY RESULTS: Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6.3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on inner-canopy leaves, resulted in an estimated increase in modelled photosynthesis of the canopy (+9 % in both walnut and almond). The small loss in PRUE (per unit of incident PAR) resulted in an increase in radiation use efficiency per unit of absorbed PAR, which more than compensated for the minor (7 %) reduction in canopy PAR absorption. CONCLUSIONS: The results explain the apparently contradictory findings in the literature of positive or no effects of kaolin applications on canopy photosynthesis and yield, despite the decrease in photosynthesis by individual leaves when measured at the same PAR.  相似文献   

12.
Scaling CO2-photosynthesis relationships from the leaf to the canopy   总被引:11,自引:0,他引:11  
Responses of individual leaves to short-term changes in CO2 partial pressure have been relatively well studied. Whole-plant and plant community responses to elevated CO2 are less well understood and scaling up from leaves to canopies will be complicated if feedbacks at the small scale differ from feedbacks at the large scale. Mathematical models of leaf, canopy, and ecosystem processes are important tools in the study of effects on plants and ecosystems of global environmental change, and in particular increasing atmospheric CO2, and might be used to scale from leaves to canopies. Models are also important in assessing effects of the biosphere on the atmosphere. Presently, multilayer and big leaf models of canopy photosynthesis and energy exchange exist. Big leaf models — which are advocated here as being applicable to the evaluation of impacts of global change on the biosphere — simplify much of the underlying leaf-level physics, physiology, and biochemistry, yet can retain the important features of plant-environment interactions with respect to leaf CO2 exchange processes and are able to make useful, quantitative predictions of canopy and community responses to environmental change. The basis of some big leaf models of photosynthesis, including a new model described herein, is that photosynthetic capacity and activity are scaled vertically within a canopy (by plants themselves) to match approximately the vertical profile of PPFD. The new big leaf model combines physically based models of leaf and canopy level transport processes with a biochemically based model of CO2 assimilation. Predictions made by the model are consistent with canopy CO2 exchange measurements, although a need exists for further testing of this and other canopy physiology models with independent measurements of canopy mass and energy exchange at the time scale of 1 h or less.Abbreviations LAI leaf area index - NIR near infrared (700–3000 nm) radiation - PAR photosynthetically active (400–700 nm) radiation - PI photosynthetic irradiance (400–700 nm) - PPFD photosynthetic photon flux area density (400–700 nm) - PS I Photosystem I - PS II Photosystem II - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuP2 ribulose-1,5-bisphosphate  相似文献   

13.
In big-leaf models of canopy photosynthesis, the Rubisco activity per unit ground area is taken as the sum of activities per unit leaf area within the canopy, and electron transport capacity is similarly summed. Such models overestimate rates of photosynthesis and require empirical curvature factors in the response to irradiance. We show that, with any distribution of leaf nitrogen within the canopy (including optimal), the required curvature factors are not constant but vary with canopy leaf area index and leaf nitrogen content. We further show that the underlying reason is the difference between the time-averaged and instantaneous distributions of absorbed irradiance, caused by penetration of sunflecks and the range of leaf angles in canopies. These errors are avoided in models that treat the canopy in terms of a number of layers – the multi-layer models. We present an alternative to the multi-layer model: by separately integrating the sunlit and shaded leaf fractions of the canopy, a single layered sun/shade model is obtained, which is as accurate and simpler. The model is a scaled version of a leaf model as distinct from an integrative approach.  相似文献   

14.
Plant communities utilize available irradiance with different efficiency depending not only on their photosynthetic characteristics but also on the canopy structure and density. The importance of canopy structure are well studied in terrestrial plant communities but poorly studied in aquatic plant communities. The objective of this study was to evaluate macroalgal community photosynthesis in artificial constructed communities of one to four species with different morphologies along a range of leaf (i.e.=thallus) area densities. In a laboratory set-up we measured net photosynthesis and dark respiration in constructed assemblages of macroalgae, excluding effects other than photosynthesis of individual tissue and distribution of photons in the canopy from influencing metabolism. We hypothezised that 1) canopy structure determines the actual rates of photosynthesis relative to the optimal rates and 2) multi-species communities attain higher maximum photosynthetic rates than single species communities. We found that differences in canopy structure outweighed large differences in tissue photosynthesis resulting in relatively similar maximum community photosynthetic rates among the different single and multi-species assemblages (20.1–40.5 μmol O2 m−2 s−1). Canopy structure influenced community photosynthesis both at low and high leaf area densities because it determines the ability of macroalgae to use the photosynthetic potential of their individual tissues. Due to an averaging effect the photosynthetic rate at high leaf area density was more similar among multi-species community than among single-species communities. Multi-species communities had, on average, a slightly higher photosynthetic production than expected from photosynthesis of single species communities. Moreover multi-species communities were capable of exposing new tissue to irradiance up to high densities thereby avoiding a decrease in net photosynthesis. This finding suggests that multi-species communities may be able to maintain higher biomass per unit ground area than single-species communities.  相似文献   

15.
Two published models of canopy photosynthesis, MAESTRO and BIOMASS, are simulated to examine the response of tree stands to increasing ambient concentrations of carbon dioxide (Ca) and temperatures. The models employ the same equations to described leaf gas exchange, but differ considerably in the level of detail employed to represent canopy structure and radiation environment. Daily rates of canopy photosynthesis simulated by the two models agree to within 10% across a range of CO2 concentrations and temperatures. A doubling of Ca leads to modest increases of simulated daily canopy photosynthesis at low temperatures (10% increase at 10°C), but larger increases at higher temperatures (60% increase at 30°C). The temperature and CO2 dependencies of canopy photosynthesis are interpreted in terms of simulated contributions by quantum-saturated and non-saturated foliage. Simulations are presented for periods ranging from a diurnal cycle to several years. Annual canopy photosynthesis simulated by BIOMASS for trees experiencing no water stress is linearly related to simulated annual absorbed photosynthetically active radiation, with light utilization coefficients for carbon of ?= 1.66 and 2.07g MJ?1 derived for Ca of 350 and 700 μmol mol?1, respectively.  相似文献   

16.
Far-red photons (701–750 nm) are abundant in sunlight but are considered inactive for photosynthesis and are thus excluded from the definition of photosynthetically active radiation (PAR; 400–700 nm). Several recent studies have shown that far-red photons synergistically interact with shorter wavelength photons to increase leaf photochemical efficiency. The value of far-red photons in canopy photosynthesis has not been studied. Here, we report the effects of far-red photons on single leaf and canopy photosynthesis in 14 diverse crop species. Adding far-red photons (up to 40%) to a background of shorter wavelength photons caused an increase in canopy photosynthesis equal to adding 400–700 nm photons. Far-red alone minimally increased photosynthesis. This indicates that far-red photons are equally efficient at driving canopy photosynthesis when acting synergistically with traditionally defined photosynthetic photons. Measurements made using LEDs with peak wavelength of 711, 723, or 746 nm showed that the magnitude of the effect was less at longer wavelengths. The consistent response among diverse species indicates that the mechanism is common in higher plants. These results suggest that far-red photons (701–750 nm) should be included in the definition of PAR.  相似文献   

17.
BACKGROUND AND AIMS: Photosynthetic radiation use efficiency (PhRUE) over the course of a day has been shown to be constant for leaves throughout a general canopy where nitrogen content (and thus photosynthetic properties) of leaves is distributed in relation to the light gradient. It has been suggested that this daily PhRUE can be calculated simply from the photosynthetic properties of a leaf at the top of the canopy and from the PAR incident on the canopy, which can be obtained from weather-station data. The objective of this study was to investigate whether this simple method allows estimation of PhRUE of different crops and with different daily incident PAR, and also during the growing season. METHODS: The PhRUE calculated with this simple method was compared with that calculated with a more detailed model, for different days in May, June and July in California, on almond (Prunus dulcis) and walnut (Juglans regia) trees. Daily net photosynthesis of 50 individual leaves was calculated as the daylight integral of the instantaneous photosynthesis. The latter was estimated for each leaf from its photosynthetic response to PAR and from the PAR incident on the leaf during the day. KEY RESULTS: Daily photosynthesis of individual leaves of both species was linearly related to the daily PAR incident on the leaves (which implies constant PhRUE throughout the canopy), but the slope (i.e. the PhRUE) differed between the species, over the growing season due to changes in photosynthetic properties of the leaves, and with differences in daily incident PAR. When PhRUE was estimated from the photosynthetic light response curve of a leaf at the top of the canopy and from the incident radiation above the canopy, obtained from weather-station data, the values were within 5 % of those calculated with the more detailed model, except in five out of 34 cases. CONCLUSIONS: The simple method of estimating PhRUE is valuable as it simplifies calculation of canopy photosynthesis to a multiplication between the PAR intercepted by the canopy, which can be obtained with remote sensing, and the PhRUE calculated from incident PAR, obtained from standard weather-station data, and from the photosynthetic properties of leaves at the top of the canopy. The latter properties are the sole crop parameters needed. While being simple, this method describes the differences in PhRUE related to crop, season, nutrient status and daily incident PAR.  相似文献   

18.
Seasonal variations in environmental conditions influence the functioning of the whole ecosystem of tropical rain forests, but as yet little is known about how such variations directly influence the leaf gas exchange and transpiration of individual canopy tree species. We examined the influence of seasonal variations in relative extractable water in the upper soil layers on predawn leaf water potential, saturated net photosynthesis, leaf dark respiration, stomatal conductance, and tree transpiration of 13 tropical rain forest canopy trees (eight species) over 2 yr in French Guiana. The canopies were accessed by climbing ropes attached to the trees and to a tower. Our results indicate that a small proportion of the studied trees were unaffected by soil water depletion during seasonal dry periods, probably thanks to efficient deep root systems. The trees showing decreased tree water status (i.e., predawn leaf water potential) displayed a wide range of leaf gas exchange responses. Some trees strongly regulated photosynthesis and transpiration when relative extractable water decreased drastically. In contrast, other trees showed little variation, thus indicating good adaptation to soil drought conditions. These results have important applications to modeling approaches: indeed, precise evaluation and grouping of these response patterns are required before any tree‐based functional models can efficiently describe the response of tropical rain forest ecosystems to future changes in environmental conditions.  相似文献   

19.
We measured stem CO2 efflux and leaf gas exchange in a tropical savanna ecosystem in northern Australia, and assessed the impact of fire on these processes. Gas exchange of mature leaves that flushed after a fire showed only slight differences from that of mature leaves on unburned trees. Expanding leaves typically showed net losses of CO2 to the atmosphere in both burned and unburned trees, even under saturating irradiance. Fire caused stem CO2 efflux to decline in overstory trees, when measured 8 weeks post-fire. This decline was thought to have resulted from reduced availability of C substrate for respiration, due to reduced canopy photosynthesis caused by leaf scorching, and to priority allocation of fixed C towards reconstruction of a new canopy. At the ecosystem scale, we estimated the annual above-ground woody-tissue CO2 efflux to be 275 g C m(-2) ground area year(-1) in a non-fire year, or approximately 13% of the annual gross primary production. We contrasted the canopy physiology of two co-dominant overstory tree species, one of which has a smooth bark on its branches capable of photosynthetic re-fixation (Eucalyptus miniata), and the other of which has a thick, rough bark incapable of re-fixation (Eucalyptus tetrodonta). Eucalyptus miniata supported a larger branch sapwood cross-sectional area in the crown per unit subtending leaf area, and had higher leaf stomatal conductance and photosynthesis than E. tetrodonta. Re-fixation by photosynthetic bark reduces the C cost of delivering water to evaporative sites in leaves, because it reduces the net C cost of constructing and maintaining sapwood. We suggest that re-fixation allowed leaves of E. miniata to photosynthesize at higher rates than those of E. tetrodonta, while the two invested similar amounts of C in the maintenance of branch sapwood.  相似文献   

20.
In the face of climate change and accompanying risks, forest management in Europe is becoming increasingly important. Model simulations can help to understand the reactions and feedbacks of a changing environment on tree growth. In order to simulate forest growth based on future climate change scenarios, we tested the basic processes underlying the growth model BALANCE, simulating stand climate (air temperature, photosynthetically active radiation (PAR) and precipitation), tree phenology, and photosynthesis. A mixed stand of 53- to 60-year-old Norway spruce (Picea abies) and European beech (Fagus sylvatica) in Southern Germany was used as a reference. The results show that BALANCE is able to realistically simulate air temperature gradients in a forest stand using air temperature measurements above the canopy and PAR regimes at different heights for single trees inside the canopy. Interception as a central variable for water balance of a forest stand was also estimated. Tree phenology, i.e. bud burst and leaf coloring, could be reproduced convincingly. Simulated photosynthesis rates were in accordance with measured values for beech both in the sun and the shade crown. For spruce, however, some discrepancies in the rates were obvious, probably due to changed environmental conditions after bud break. Overall, BALANCE has shown to respond to scenario simulations of a changing environment (e.g., climate change, change of forest stand structure).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号