首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract We investigated whether the New Zealand pigeon Hemiphaga novaeseelandiae (Columbidae) exhibits size‐based preferences for fruits. We tested the hypothesis that in small‐fruited species, pigeons would prefer larger fruits, but in larger‐fruited species, this preference would reverse as the pigeons become increasingly limited by their gape size. We collected undispersed fruits and bird‐dispersed seeds of 10 plant species, some over several sites or years (13 datasets in total). We estimated the fruit size of dispersed seeds by fitting regressions of fruit diameter to seed diameter in intact fruits. We were able to predict fruit diameter from seed diameter in 12 of the 13 populations, although the relationship was stronger in single‐seeded species than in multi‐seeded species. Seven of the 12 populations tested showed a significant difference in seed diameter among undispersed and dispersed seeds. However, our results showed no consistent pattern in fruit size preference by the New Zealand pigeon and did not support our hypothesis. The large‐bodied New Zealand pigeon is generally not gape limited and fruit size preferences appear to be independent of mean fruit size.  相似文献   

2.
《新西兰生态学杂志》2011,33(2):114-124
The diet and food preferences of the kererū (Hemiphaga novaeseelandiae) were studied in Whirinaki Forest Park, central North Island, New Zealand, during February 2000 ? March 2001. The study was carried out in two areas of podocarp?hardwood forest, Oriuwaka (1750?ha) and Otupaka (1830?ha). Fruit dominated in the diet at both sites (65% in Oriuwaka, 87% in Otupaka), but there were seasonal changes. Foliage and flowers were more important in the diet in winter and spring, but the timing of the switch from fruit to foliage differed between the areas. The main fruit eaten also changed seasonally from tawa (Beilschmiedia tawa) in early summer to miro (Prumnopitys ferruginea) in late summer and autumn. Variation in diet partly reflected seasonal phenology of the plants and differences in vegetation between the two areas, but when food-type availability is considered, kererū showed selective preference for some food types at some times. Miro and tawa fruits were highly preferred food types in both areas. This study highlights the likely need of kererū to have access to various vegetation types in order to meet their seasonally changing nutritional requirements in a podocarp?hardwood forest where the availability of food, especially fruits, can differ markedly both in time and space. Thus, large forest blocks that contain a variety of habitat types, or landscapes containing patches of various habitat types, are needed for the long-term conservation of kererū populations.  相似文献   

3.
Animals may disperse cultivated trees outside the agricultural land, favoring the naturalization or, even, the invasiveness of domestic plants. However, the ecological and conservation implications of new or unexplored mutualisms between cultivated trees and wild animals are still far from clear. Here, we examine the possible role of an expanding and, locally, overabundant pigeon species (Columba palumbus) as an effective disperser of domestic olive trees (Olea europaea), a widespread cultivated tree, considered a naturalized and invasive species in many areas of the world. By analyzing crop and gizzard content we found that olive fruits were an important food item for pigeons in late winter and spring. A proportion of 40.3% pigeons consumed olive seeds, with an average consumption of 7.8 seeds per pigeon and day. Additionally, most seed sizes (up to 0.7 g) passed undamaged through the gut and were dispersed from cultivated olive orchards to areas covered by protected Mediterranean vegetation, recording minimal dispersal distances of 1.8–7.4 km. Greenhouse experiments showed that seeds dispersed by pigeons significantly favored the germination and establishment in comparison to non-ingested seeds. The ability of pigeons to effectively disperse domestic olive seeds may facilitate the introduction of cultivated olive trees into natural systems, including highly-protected wild olive woodlands. We recommend harvesting ornamental olive trees to reduce both pigeon overpopulation and the spread of artificially selected trees into the natural environment.  相似文献   

4.
Harvesting, consumption and trade of forest meat are key causes of biodiversity loss. Successful mitigation programs are proving difficult to design, in part because anthropogenic pressures are treated as internationally uniform. Despite illegal hunting being a key conservation issue in the Pacific Islands, there is a paucity of research. Here, we examine the dynamics of hunting of birds and determine how these contribute to biodiversity loss on the islands of Samoa. We focus on the interactive effects of hunting on two key seed dispersing bird species: the Pacific pigeon (Ducula pacifica) and the critically endangered Manumea or tooth-billed pigeon (Didunculus strigiristris). We interviewed hunters, vendors and consumers and analyzed household consumption. Results suggest that over 22,000 pigeons were consumed per year and this is by primarily the richest people across the country. Indeed, the wealthiest 10% of households consumed 43% of all wild pigeon meat, and the wealthiest 40% of households consumed 80% of all pigeons. The Manumea was shot by 33% (n = 30) of the surveyed hunters while pursuing the Pacific pigeon. Results raise serious conservation concerns, as pigeon hunting is likely to be a key factor contributing to the decline of the Manumea and critical forest seed dispersers in general. Our results show that wild meat consumption can lead to non-targeted pressure on bycatch species. Wild meat harvesting and consumption is a key issue leading to species declines and extinctions in the tropics. It is critical that this issue receives the appropriate attention and is addressed in the Pacific if species and forests are to be maintained.  相似文献   

5.
Indigenous peoples? knowledge on changes in wildlife populations and explanations for these changes can inform current conservation and wildlife management systems. In this study, Tūhoe Tuawhenua interviewees provided mātauranga (traditional knowledge) about a repertoire of visual (e.g. decreasing flock size), audible (e.g. less noise from kererū in the forest canopy), and harvest-related (e.g. steep decline in harvests since the 1950) indicators used to assess kererū (New Zealand pigeon; Hemiphaga novaeseelandiae novaeseelandiae) abundance and condition in Te Urewera, New Zealand over the last 100 years. Metaphorical explanations for the decline in kererū included the loss of mana (authority and prestige) by the iwi (tribe) over the kererū and forest, and the retraction of the kererū?s mauri (life force) by Tāne Mahuta (God of the Forest). Interviewees reported that predation and interspecific competition with introduced species, variability in food supply, and loss of habitat were the principal biophysical mechanisms to have caused declines in kererū abundance. Long-term qualitative monitoring by Tūhoe Tuawhenua has the potential to guide the restoration of kererū and wider environmental management in Te Urewera. Allowing iwi the self-determination to make management decisions according to their mātauranga (or science, if desired) is likely to lead to greater application of results and altered practices where required for sustainability.  相似文献   

6.
Aim Large‐bodied vertebrates often have a dramatic role in ecosystem function through herbivory, trampling, seed dispersal and nutrient cycling. The iconic Galápagos tortoises (Chelonoidis nigra) are the largest extant terrestrial ectotherms, yet their ecology is poorly known. Large body size should confer a generalist diet, benign digestive processes and long‐distance ranging ability, rendering giant tortoises adept seed dispersers. We sought to determine the extent of seed dispersal by Galápagos tortoises and their impact on seed germination for selected species, and to assess potential impacts of tortoise dispersal on the vegetation dynamics of the Galápagos. Location Galápagos, Ecuador. Methods To determine the number of seeds dispersed we identified and counted intact seeds from 120 fresh dung piles in both agricultural and national park land. To estimate the distance over which tortoises move seeds we used estimated digesta retention times from captive tortoises as a proxy for retention times of wild tortoises and tortoise movement data obtained from GPS telemetry. We conducted germination trials for five plant species to determine whether tortoise processing influenced germination success. Results In our dung sample, we found intact seeds from > 45 plant species, of which 11 were from introduced species. Tortoises defecated, on average, 464 (SE 95) seeds and 2.8 (SE 0.2) species per dung pile. Seed numbers were dominated by introduced species, particularly in agricultural land. Tortoises frequently moved seeds over long distances; during mean digesta retention times (12 days) tortoises moved an average of 394 m (SE 34) and a maximum of 4355 m over the longest recorded retention time (28 days). We did not find evidence that tortoise ingestion or the presence of dung influenced seed germination success. Main conclusions Galápagos tortoises are prodigious seed dispersers, regularly moving large quantities of seeds over long distances. This may confer important advantages to tortoise‐dispersed species, including transport of seeds away from the parent plants into sites favourable for germination. More extensive research is needed to quantify germination success, recruitment to adulthood and demography of plants under natural conditions, with and without tortoise dispersal, to determine the seed dispersal effectiveness of Galápagos tortoises.  相似文献   

7.
Feeding behaviour of Triatoma infestans, T. brasiliensis and T. pseudomaculata on pigeons and mice was compared by electronic monitoring of the cibarial pump. The methodology developed permits the study detailed of triatomine feeding behaviour using an artificial feeder as well as on live hosts. T. infestans was the species that fed most rapidly on the two hosts tested (28.03+/-1.6 mg/min for pigeon and 21.33+/-1.7 mg/min for mouse), followed by T. brasiliensis (17.09+/-1.4 mg/min and 13.1+/-1.5 mg/min for pigeon and mouse, respectively) and T. pseudomaculata, (5.23+/-0.6 mg/min and 4.09+/-0.4 mg/min for pigeon and mouse, respectively). The quantity of liquid ingested per stroke of the cibarial pump was 100.7+/-4.1 nl for T. infestans, 69.1+/-2.7 nl for T. brasiliensis and 26.8+/-1.5 nl for T. pseudomaculata. The rate of engorgement in pigeons tended to be greater than that obtained for mice in the three species studied. In the experiments carried out using mice, probing times tended to be longer and interruptions during the meal more prolonged. This reinforces the idea that feeding on mice is more difficult than on pigeons, requiring more contact time to obtain the similar quantity of blood.  相似文献   

8.
Plant species introduced to new regions can escape their natural enemies but may also lose important mutualists. While mutualistic interactions are often considered too diffuse to limit plant invasion, few studies have quantified the strength of interactions in both the native and introduced ranges, and assessed whether any differences are linked to invasion outcomes. For three Acacia species adapted for ant dispersal (myrmecochory), we quantified seed removal probabilities associated with dispersal and predation in both the native (Australian) and introduced (New Zealand) ranges, predicting lower removal attributable to dispersal in New Zealand due to a relatively depauperate ant fauna. We used the role of the elaiosome to infer myrmecochory, and included treatments to measure vertebrate seed removal, since this may become an important determinant of seed fate in the face of reduced dispersal. We then tested whether differences in seed removal patterns could explain differences in the invasion success of the three Acacia species in New Zealand.Overall seed removal by invertebrates was lower in New Zealand relative to Australia, but the difference in removal between seeds with an elaiosome compared to those without was similar in both countries. This implies that the probability of a removed seed being dispersed by invertebrates was comparable in New Zealand to Australia. The probability of seed removal by vertebrates was similar and low in both countries. Differences in the invasive success of the three Acacia species in New Zealand were not explained by differences in levels of seed predation or the strength of myrmecochorous interactions. These findings suggest that interactions with ground foraging seed predators and dispersers are unlikely to limit the ability of Acacia species to spread in New Zealand, and could not explain their variable invasion success.  相似文献   

9.
《新西兰生态学杂志》2011,16(2):119-126
Plant species preferences of birds were determined by comparing the proportional bird use of plant species during direct observations with the proportions of plant species present on point-height intercepts in lowland rimu (Dacrydium cupressinum) forest in North Okarito, Westland. Plant species and bird use of plant species were divided into 5 m height classes, and rimu trees were divided into four age classes (sapling, pole, mature, and old). The frugivorous New Zealand pigeon (Hemiphaga novaeseelandiae) used mature and old rimu more than expected from the proportion of these age classes present, and it preferred the upper tiers of the forest. The omnivorous tui (Prosthemadera novaeseelandiae) had similar preferences to the pigeon. Other omnivorous species, viz., the bellbird (Anthornis melanura) and silvereye (Zosterops lateralis), shared preferences with both the pigeon and insectivorous species. Most insectivorous species, viz., the brown creeper (Mohoua novaeseelandiae), grey warbler (Gerygone igata), New Zealand fantail (Rhipidura fuliginosa), New Zealand tomtit (Petroica macrocephala), and rifleman (Acanthisitta chloris), used pole rimu more than expected and preferred the middle and lowest tiers. The insectivorous New Zealand robin (Petroica australis) had no preference for any plant species but had a strong preference for deadwood and the lowest tier of the forest. Of the 10 species sufficiently abundant to be monitored, the pigeon, bellbird, and tui are most likely to be detrimentally affected by selective-logging of mature and old rimu.  相似文献   

10.
A range of distinctive dispersal features have been recognised within the New Zealand flora, and a wide range of fauna are involved in the dispersal of seed in New Zealand, either by consuming fruit or seed, or as transporters of adhesive seed. In this study the composition of New Zealand’s zoochorous fauna (except insects) was examined using both trait matching within environmental, morphological and behavioural variables, and compared to the trait pattern of the groups of plant species they disperse. The importance of the different dispersal groups to the plant species they disperse varies with habitat, landform, region of New Zealand, foraging behaviour, and morphology. Over half of New Zealand’s vertebrate fauna are involved in fruit dispersal, though only 6% are considered frugivorous—the remainder include varying quantities of insects and other plant material in their diets. Flighted species are over-represented in wooded environments and higher strata and flightless species predominate in low alpine and grassland habitats. The frugivore-fruiting plant interaction group shows some indications of ecological generalism as frugivorous species consume a range of fruit sizes across all vegetation strata and fruit-bearing plants have lower species diversity and occupy a wide range of habitats. Granivores are over-represented in wetland habitats and the eastern South Island. The importance of species which unintentionally disperse adhesive seed depends on whether they are volant (higher importance in coastal environments) or flightless (higher importance dry grasslands and in low alpine areas). A subgroup of birds, such as the ratite Apteryx spp. and the now extinct Dinornithiform moa, with loose feathers (“velcro” species) are over-represented in lower vegetation strata and this matches the zone where many attachment-dispersed plant species present their seed.  相似文献   

11.
Fragments of kahikatea (Dacrycarpus dacrydioides) forest provide a major opportunity for conservation of indigenous biodiversity in the heavily deforested landscape of the Waikato Basin, New Zealand. However, there is little documented information on what indigenous fauna survives in these fragments. Using Malaise traps set 20 m and 50 m into fragments and 20 m and 50 m into the adjacent pasture, we analysed the beetle (Coleoptera) assemblages associated with two such kahikatea forest fragments in the south Waikato Basin in order to determine the scope of biotic invasion by adventive species and use of the surrounding pasture by indigenous species. A total of 3706 beetles were caught, encompassing 37 families and 206 recognisable taxonomic units. The forest fragments had a sharply defined edge, and were dominated by indigenous beetle species, with only a few adventive species present. Beetle assemblages sampled in the surrounding pasture were numerically dominated by adventive species. Despite no indigenous plant species being present in the pastures, 55 indigenous beetles species (61% of total species sampled in the pasture) were recorded in this habitat. Traps in the pasture of greatest floral diversity caught the most indigenous beetle species. Beetles of the detritivore guild dominated the samples from forest, but in samples from pasture, detritovores and predatores were co-dominant. Indigenous herbivore species were poorly represented in samples from pasture compared to other guilds. The kahikatea fragments have a rich indigenous beetle fauna and represent important refuges in the pastoral landscape of the Waikato. Many indigenous species are utilising the pasture to some degree, although their abundance and species richness declines with distance from the forest edge. This may have implications for successful dispersal to new patches. Species that could potentially be used as indicators of kahikatea forest fragment community structure and its resistance to invasion are suggested.  相似文献   

12.
The aquarium trade has a long history of transporting and introducing fish, plants and snails into regions where they are not native. However, other than snails, research on species carried “incidentally” rather than deliberately by this industry is lacking. I sampled invertebrates in the plankton, and from water among bottom stones, of 55 aquaria from 43 New Zealand households. I recorded 55 incidental invertebrate taxa, including copepods, ostracods, cladocerans, molluscs, mites, flatworms and nematodes. Six were known established non-indigenous species, and eight others were not previously recorded from New Zealand. Of the latter, two harpacticoid copepod species, Nitokra pietschmanni and Elaphoidella sewelli, are not native to or known from New Zealand, demonstrating the aquarium trade continues to pose an invasion risk for incidental fauna. The remaining six species were littoral/benthic rotifers with subtropical/tropical affinities; these may or may not be native, as research on this group is limited. A variety of behaviours associated with the set-up and keeping of home aquaria were recorded (e.g., fish and plants in any home were sourced from stores, wild caught, or both, and cleaning methods varied), which made prediction of “high risk” behaviours difficult. However, non-indigenous species had a greater probability of being recorded in aquaria containing aquatic plants and in those that were heated. Methods for disposal of aquarium wastes ranged from depositing washings on the lawn or garden (a low risk for invasion) to disposing of water into outdoor ponds or storm-water drains (a higher risk). It is recommended that aquarium owners be encouraged to pour aquarium wastes onto gardens or lawns—already a common method of disposal—as invasion risk will be minimised using this method.  相似文献   

13.
Two groups of underwater vocalizations were identified in a three-year study of two captive leopard seals, Hydurga leptonyx (one female and one male at Taronga Zoo, Sydney). This was supplemented by recordings over three months from a male at Marineland, New Zealand. The sexual state of the seals at Taronga was deduced from serum hormonal concentrations: the female was considered to be in estrus at specific times during the breeding season. The seal at Marineland, New Zealand was assumed to be sexually mature on the basis of size and age. Of 12 different underwater sound types recorded, six were produced by the seals at Taronga Zoo during agonistic interactions (local calls) and were heard through most of the year. The other six sound types were produced by lone seals. These broadcast calls were produced by the female only when sexually receptive, and by the mature male during December and January, months believed to be the breeding season of wild leopard seals. We propose that underwater acoustic behavior is important in the mating system of this species, and that broadcast calls are used by mature females to advertise their sexual receptivity, and possibly by mature males in search of mates.  相似文献   

14.
Abstract

High mortality and abnormal growth patterns commonly found in captive juvenile tuatara were hypothesised to be due in part to the effects of long‐term chronic stress of captivity. This study compared plasma concentrations of the reptilian adrenal steroid, corticosterone, in wild juvenile tuatara on Stephens Island, Cook Strait, and in captive juveniles of Stephens Island origin, held in New Zealand institutions, in February and August 1992. Seasonal variation in plasma concentration of corticosterone in wild juveniles in four seasons of the year was also examined. This is the first study of seasonal cycles in plasma corticosterone in a wild juvenile reptile. Plasma corticosterone concentrations were significantly higher in captive juvenile females (4.21 ± 0.27 ng/ml; mean ± SE) compared with wild juvenile females (2.44 ± 0.42 ng/ml) in February (P < 0.05), but not in August, and there was no difference in concentration between captive and wild juvenile males in either month. There was significant seasonal variation in plasma corticosterone in wild juvenile females (P < 0.05). However, there was no seasonal variation observed in wild juvenile males, and the magnitude of the variation in plasma corticosterone was low in both sexes (1.28 ± 0 ng/ml ‐4.65 ±3.41 ng/ml). Although mean plasma corticosterone was higher in captive juvenile females compared with wild juvenile females in February 1992, the value in captive females was within the range of mean plasma corticosterone concentrations observed in the seasonal study, and may be therefore due to asynchronicity of seasonal cycles, rather than stress. Further research is required; however, lack of correlation between plasma corticosterone concentrations and either growth rate or density indicate that captive juvenile tuatara in New Zealand are not suffering from pronounced chronic stress.  相似文献   

15.
Central in biology is the view that the commonly observed association between the phenotype and the ecology of organisms is the result of the process of natural selection. There are numerous examples where the current and/or past ecological pressures in which a trait presumably arose have been demonstrated. Less well documented, however, are cases where a species that has artificially been moved from its adaptive peak is seen to return to its ancestral state when exposed to the ancient selective regime. One of the few suggested cases is that of the feral pigeon ( Columba livia ), the free-living descends from domesticated, artificially selected rock pigeons. Contemporary feral pigeons are significantly closer in morphology to wild rock pigeons than to their more direct domestic ancestors, suggesting that natural selection has been reconstituting their wild phenotype. Because they still preserve some characters engendered through artificial selection during their ancestral period of domesticity, notably a tarsus that is disproportionally long for a terrestrial pigeon of its size, feral pigeons provide a rare opportunity to test whether natural selection is the process behind the reconstitution of the wild phenotype. In the present study, it is shown that feral pigeons with tarsi that depart the most from the wild phenotype appear to have limitations in the use of some food resources and, as a result, experience lower survival fitness. These findings support the view that natural selection is reconstituting the wild phenotype in feral pigeons. The possibility nonetheless remains that this process will never be fully completed.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 657–665.  相似文献   

16.
Tuatara (Sphenodon) are rare reptiles endemic to New Zealand. Wild tuatara on Stephens Island (study population) prey on insects as well as the eggs and chicks of a small nesting seabird, the fairy prion (Pachyptila turtur). Tuatara in captivity (zoos) are fed diets containing different insects and lacking seabirds. We compared the fatty acid composition of major dietary items and plasma of wild and captive tuatara. Fairy prions (eaten by tuatara in the wild) were rich in C20 and C22 polyunsaturated fatty acids (PUFA), especially the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In contrast, items from the diet of captive tuatara contained no C20 and C22 PUFA and were higher in medium-chain and less unsaturated fatty acids. Plasma from wild tuatara was higher in n-3 PUFA [including alpha-linoleic acid (C18:3n-3), EPA and DHA], and generally lower in oleic acid (C18:1) and palmitic acid (C16:0), than plasma from captive tuatara in the various fractions (phospholipid, triacylglycerol, cholesterol ester and free fatty acids). Plasma from wild adult tuatara showed strong seasonal variation in fatty acid composition, reflecting seasonal consumption of fairy prions. Differences in the composition of diets and plasma between wild and captive tuatara may have consequences for growth and reproduction in captivity. Accepted: 3 August 1998  相似文献   

17.
Aim The New Zealand avifauna includes lineages that lack close relatives elsewhere and have low diversity, characteristics sometimes ascribed to long geographic isolation. However, extinction at the population and species levels could yield the same pattern. A prominent example is the ecologically important pigeon genus Hemiphaga. In this study, we examined the population structure and phylogeography of Hemiphaga across islands in the region. Location New Zealand, Chatham Islands and Norfolk Island. Methods Mitochondrial DNA was sequenced for all species of the genus Hemiphaga. Sixty‐seven individuals from mainland New Zealand (Hemiphaga novaeseelandiae novaeseelandiae), six of the Chatham Islands sister species (Hemiphaga chathamensis), and three of the extinct Norfolk Island subspecies (Hemiphaga novaeseelandiae spadicea) were included in this study. Novel D‐loop and cytochrome b primers were designed to amplify DNA from museum samples. Additionally, five other mitochondrial genes were used to examine placement of the phylogenetic root. Results Analyses of mitochondrial DNA sequences revealed three Hemiphaga clades, consistent with the allopatric populations of recognized (sub)species on oceanic islands. Of the 23 D‐loop haplotypes among 67 New Zealand pigeons (Hemiphaga n. novaeseelandiae), 19 haplotypes were singletons and one haplotype was common and widespread. Population genetic diversity was shallow within and between New Zealand populations, indicating range expansion with high inter‐population exchange. Tentative rooting of the Hemiphaga clade with cyt b data indicates exchange between mainland New Zealand and the Chatham Islands prior to colonization of Norfolk Island. We found low genetic divergence between populations on New Zealand, the Chatham Islands and Norfolk Island, but deep phylogenetic divergence from the closest living relatives of Hemiphaga. Main conclusions The data are consistent with the hypothesis of population reduction during the Pleistocene and subsequent expansion from forest refugia. Observed mobility of Hemiphaga when feeding helps explain the shallow diversity among populations on islands separated by many hundreds of kilometres of ocean. Together with comparison of distribution patterns observed among birds of the New Zealand region, these data suggest that endemicity might represent not long occupancy of an area, but descent from geologically recent colonizations. We consider the role of lineage pruning in creating the impression of old endemicity.  相似文献   

18.
The potential for seed‐eating birds to spread viable seeds was investigated using captive‐feeding trials to determine seed preference, passage time through the gut, and viability of passed seeds for bronzewing pigeons (Phaps chalcoptera), peaceful doves (Geopelia striata), crested pigeons (Ocyphaps lophotes), Senegal doves (Streptopelia senegalensis), zebra finches (Taeniopygia guttata), black ducks (Anas superciliosa) and wood ducks (Chenonetta jubata). Test seeds were bladder clover (Trifolium spumosum), crimson clover (Trifolium incarnatum), gorse (Ulex europaeus), canola (Brassica napus) and red panicum (Setaria italica). Their consumption was compared with that of commercial seed mixes. Although all test seeds were recognizable foods, their consumption usually decreased in the presence of other foods, except for canola, where consumption rates were maintained. Hard‐seeded bladder clover was the only species where viable seeds were passed by obligate seedeaters. In contrast, viable seeds of canola and gorse were passed by seed‐eating omnivorous/herbivorous ducks, although the germination of passed seeds (42%) was reduced significantly compared with that of untreated control seed (67%). Field validation with wild, urban bronzewings and Australian magpies (Gymnorhina tibicen) offered canola and commercial seed yielded similar outcomes, with a range of viable seeds recovered from magpie soft pellets. Mean seed passage time in captive birds ranged from 0.5 to 4.3 h for all test seeds and commercial seed mixes, suggesting that these bird species may potentially disperse seed over moderate distances. Despite the low probability of individual birds spreading viable seed, the high number of birds feeding in the wild suggests that the potential for granivorous and seed‐eating omnivorous birds to disperse viable seeds cannot be discounted, particularly if exozoochorous dispersal is also considered.  相似文献   

19.
The key mimetic features of hoverflies through avian eyes   总被引:1,自引:0,他引:1  
Batesian mimicry occurs when a palatable species (the mimic) gains protection from predators by resembling an unpalatable or otherwise protected species (the model). While some mimetic species resemble their models closely, other species ('imperfect mimics') are thought to bear only a crude likeness. In an earlier study, pigeons (Columba livia) were trained to recognize wasp images in one experiment and non-mimetic (NM) fly images in another by rewarding the pigeons for pecking on the respective image types. These pigeons were subsequently presented with different images, including seemingly wasp-like hoverfly species, and the recorded peck rates on these images were used as a measure of the pigeons' perception of the hoverflies' mimetic similarity. To identify a candidate set of morphological features that the pigeons used when assessing this mimetic similarity, we first extracted a range of biometrical measurements from images originally presented to the pigeons. We then repeatedly optimized an empirical model in an attempt to match the recorded pigeon peck rates while using as few biometrical features as input as possible. Our models were able to fit the pigeon peck rates with considerable accuracy even while excluding many input features. Antennal length, a feature commonly used to discriminate between flies and wasps, was regularly retained as an input variable, but overall a different set of biometrical features was important for predicting the peck rates of pigeons rewarded for identifying wasps compared to those rewarded for identifying NM flies. In highlighting the importance of specific biometrical features in promoting mimicry and the irrelevance of others, our optimized models provide an explanation as to why certain species that appear to be poor mimics to humans are judged to be good mimics by birds.  相似文献   

20.
1. The activities of ecto- and cytosolic 5'-nucleotidase (EC 3.1.3.5), adenosine kinase (EC 2.7.1.20), adenosine deaminase (EC 3.5.4.4) and AMP deaminase (EC 3.5.4.6) were compared in ventricular myocardium from man, rats, rabbits, guinea pigs, pigeons and turtles. The most striking variation was in the activity of the ecto-5'-nucleotidase, which was 20 times less active in rabbit heart and 300 times less active in pigeon heart than in rat heart. The cytochemical distribution of ecto-5'-nucleotidase was also highly variable between species. 2. Adenosine formation was quantified in pigeon and rat ventricular myocardium in the presence of inhibitors of adenosine kinase and adenosine deaminase. 3. Both adenosine formation rates and the proportion of ATP catabolized to adenosine were greatest during the first 2 min of total ischaemia at 37 degrees C. Adenosine formation rates were 410 +/- 40 nmol/min per g wet wt. in pigeon hearts and 470 +/- 60 nmol/min per g wet wt. in rat hearts. Formation of adenosine accounted for 46% of ATP plus ADP broken down in pigeon hearts and 88% in rat hearts. 4. The data show that, in both pigeon and rat hearts, adenosine is the major catabolite of ATP in the early stages of normothermic myocardial ischaemia. The activity of ecto-5'-nucleotidase in pigeon ventricle (16 +/- 4 nmol/min per g wet wt.) was insufficient to account for adenosine formation, indicating the existence of an alternative catabolic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号