首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plantation forests are of increasing importance worldwide for wood and fibre production, and in some areas they are the only forest cover. Here we investigate the potential role of exotic plantations in supporting native forest-dwelling carabid beetles in regions that have experienced extensive deforestation. On the Canterbury Plains of New Zealand, more than 99% of the previous native forest cover has been lost, and today exotic pine (Pinus radiata) plantations are the only forest habitat of substantial area. Carabids were caught with pitfall traps in native kanuka (Kunzea ericoides) forest remnants and in a neighbouring pine plantation, grassland and gorse (Ulex europaeus) shrubland. A total of 2,700 individuals were caught, with significantly greater abundance in traps in young pine, grassland and gorse habitats than in kanuka and older pine. Rarefied species richness was greatest in kanuka, a habitat that supported two forest specialist species not present in other habitat types. A critically endangered species was found only in the exotic plantation forest, which also acts as a surrogate habitat for most carabids associated with kanuka forest. The few remaining native forest patches are of critical importance to conservation on the Canterbury Plains, but in the absence of larger native forest areas plantation forests are more valuable for carabid conservation than the exotic grassland that dominates the region.  相似文献   

2.
Native kanuka (Kunzea ericoides) and adventive gorse (Ulex europaeus) stands aged 10-14 years, and not grazed by domestic stock, were studied near Nelson, New Zealand. The aim was to determine their use by introduced small mammals, and native and adventive birds, and the effects of these animals on seed rain and seedling dynamics as factors influencing vegetation succession. Seed traps were established where they could catch only bird-dispersed or wind-blown seed, and seedling emergence and growth were monitored. Bird abundance was estimated by five-minute bird counts, and small mammal abundance by trapping. The summed frequencies of all birds, and those likely to disperse seeds, were similar in kanuka and gorse. The endemic native bird species, bellbirds (Anthornis melanura) which are omnivorous, brown creepers (Mohoua novaeseelandiae) and grey warblers (Gerygone igata) which are insectivorous, were more frequent in kanuka than in gorse, while fantails (Rhipidura fuliginosa) were equally frequent in both stands. Non-endemic silvereyes (Zosterops lateralis) which are omnivorous were the most abundant seed-dispersing species, and they were significantly more frequent in gorse, as were adventive California quail (Callipepla californica) which are granivorous. Other small adventive granivores and omnivores were either more frequent in kanuka or gorse, or equally common in both stands. Ship rats (Rattus rattus) and possums (Trichosurus vulpecula) were in low numbers throughout. Mice (Mus domesticus) were more frequent in the gorse, probably because of the shelter offered by the dry gorse litter, and food supply, e.g. gorse seed. More seeds of native, fleshy-fruited shrubs fell in the kanuka, largely those of Coprosma spp. and Cyathodes juniperina, which grow in the kanuka. Seed species richness was similar in kanuka and gorse. In both cases, the seed rain appeared more influenced by the local seed source than by the different bird communities. In both kanuka and gorse, the relationship between seed rain and seedling numbers was close only for the most common fleshy-fruited species. Seedling emergence and survival was greater in gorse because of openings in the canopy, and the lower density of the introduced hares and rabbits. Overall, the different morphology and structure of the adventive gorse probably have the greatest influence in seedling dynamics, and ultimately on vegetation succession.  相似文献   

3.
Bone-seed, Chrysanthemoides monilifera ssp. monilifera (L.), is an environmental weed of coastal vegetation communities scattered throughout New Zealand. To assess the long-term implications for native forest regeneration in sites where bone-seed is present, we selected four study sites around Wellington, New Zealand, where bone-seed was abundant. We compared seed bank composition in bone-seed-invaded sites with nearby native forest patches, and monitored bone-seed and native seedling recruitment with and without control of mature bone-seed plants. We also tested the potential effects of fire on bone-seed recruitment in these communities by heating seeds prior to germination. Bone-seed, gorse (Ulex europaeus), and native species emerged from seed bank samples taken from bone-seed-invaded sites, but only native species and (less) gorse emerged from seed bank samples taken from native forest patches. Gorse germination was strongly promoted by heat but bone-seed germination was less affected by heat. Bone-seed seedling abundance increased dramatically following canopy removal, whereas native seedling abundance decreased dramatically. This suggests that disturbance of any form is likely to favour recruitment of bone-seed (and gorse) over native species, although in the long term, native seedlings can establish beneath the canopy of mature bone-seed plants. It is not yet known if, in the absence of further disturbance, regenerating native vegetation will eventually replace bone-seed in New Zealand.  相似文献   

4.
The dominant native woody species forming early-successional vegetation on formerly forested sites in lowland New Zealand were kānuka (Kunzea ericoides) and mānuka (Leptospermum scoparium) (Myrtaceae). These have been replaced extensively by gorse (Ulex europaeus, Fabaceae), a naturalised species in New Zealand. Because gorse typically gives way to native broadleaved (angiosperm) forest in about 30 years, it is often considered desirable for facilitating native forest restoration. We tested three hypotheses, derived from the New Zealand literature, on gorse and kānuka: (1) kānuka stands have a different species composition and greater species richness than gorse stands at comparable successional stages; (2) differences between gorse and kānuka stands do not lessen over time; and (3) several native plant taxa are absent from or less common in gorse than in kānuka stands. We sampled 48 scrub or low-forest sites in two regions, Wellington and Nelson. Sites were classified into one of four predefined categories – young gorse, young kānuka, old gorse, old kānuka – based on canopy height of the succession and the dominant early-successional woody species. Few characteristics of the sites and surrounding landscapes differed significantly among site categories, and none consistently across regions. The vegetation composition of gorse and kānuka and their immediate successors differed in both regions, mainly in native woody species. Species richness was often lower in gorse and there were fewer smallleaved shrubs and orchids in gorse. Persistent differences at the older sites suggest the successional trajectories will not converge in the immediate future; gorse leads to different forest from that developed through kānuka. Gorse-dominated succession is therefore not a direct substitute for native successions. We suggest areas of early native succession should be preserved, and initiated in landscapes where successions are dominated by gorse or other naturalised shrubs.  相似文献   

5.
Lord  Wilson  Steel  & Anderson 《Ecology letters》2000,3(3):213-218
To examine community reassembly, we sampled grasslands on calcareous soil (4%–24% CaCO3) in New Zealand that were largely composed of species introduced from Britain. We tested whether the British species had reassembled on New Zealand limestone into the same communities as they form on limestone in Britain. The vegetation of six New Zealand sites was sampled, each with ten 2 × 2 m quadrats that followed the standard methodology of the British National Vegetation Classification (NVC). Analysing species presence and cover using program TableFit with the full database of British species, the New Zealand species assemblages gave poor to moderate fits (40%–72%) to the communities of the NVC, and even then not to calcareous grassland, though one site did fit to a calcareous spring community. The poor fits can be partly attributed to the absence from New Zealand of many British calcareous-specialist species. On omitting from the NVC database all species not present in New Zealand, the fits increased somewhat to 48%–77%. Using this modified database, two sites fitted British calcareous grassland communities. These two sites are on thinner soil (<10 cm depth), under lower rainfall. Where fits were obtained to calcareous communities, the environment of the community in Britain matched very well that of the New Zealand site. It is concluded that environmental and perhaps biotic filtering has been strong enough in some sites to assort alien species into the same species assemblages as they form in their native range, indicating the Deterministic model of community structure. However, the absence of some species has prevented full reassembly.  相似文献   

6.
Gorse (Ulex europaeus L., Fabaceae) is an invasive species of worldwide concern. However, knowledge of its effects on ecosystem and community structure is still missing from most areas of its invasive range, including species-rich ecosystems such as the forest–grassland mosaics of southern Brazil. We studied the influence of landscape mosaic structure and land use on gorse distribution. At the community scale, we examined the effects of proximate gorse canopies on plant community abundance, diversity, and composition. Vulnerability to gorse invasions was highest in heavily grazed grasslands, where gorse canopy cover often reached 50 %. Gorse did not invade natural forests. However, gorse invaded tree plantations. Gorse cover in relatively undisturbed areas, such as ungrazed natural grasslands, was found to be variable, although the physiognomy and structure of mosaic ecosystems was still affected. Gorse canopies exerted significant effects on community structure and composition. Assemblages in the understory of gorse canopies were comparatively species-poor and more homogeneous than beside gorse canopies. Woody species were more abundant in the understory of gorse canopies than in areas beside gorse canopies, whereas the cover of grasses decreased under gorse canopies. We argue that invasions can differentially affect the components of natural forest–grassland mosaics, which could have long-term consequences. Selecting competitive species for restoring native assemblages can provide successful outcomes in managing risks associated to invasive species like gorse.  相似文献   

7.
The larvae of Agonopterix ulicetella (Stainton) (Lepidoptera: Oecophoridae) feed on the green foliage of gorse, Ulex europaeus L., and this insect is a potential biological control agent of this weed in New Zealand. The biology of the insect is described and its known parasitoids are listed. In experiments to measure oviposition preference, 46 plant species from 11 families were exposed to adult moths. Gorse was highly preferred over other plants, and there was no oviposition on 33 species tested. Eggs were found on Spartium junceum, Chamaecytisus palmensis, Lupinus arboreus, L. polyphyllus, Genista tinctoria and occasionally on eight other species. In experiments to measure the ability of first instar larvae to feed on 70 test plant species, 59 did not support development beyond the first instar and only seven species supported development to the pupal stage. These results show that under laboratory conditions this moth can lay its eggs and complete development on five members of the tribe Genisteae other than gorse. A. ulicetella was released in New Zealand in 1990 but has not yet established.  相似文献   

8.
Moyersoen B  Beever RE 《Mycologia》2004,96(6):1225-1232
Pisolithus is restricted in New Zealand to geothermal areas where it associates with Kunzea ericoides var. microflora (prostrate kanuka) and occasionally Leptospermum scoparium. Here we describe for the first time the ectomycorrhizal morphotypes of three New Zealand Pisolithus species and report the frequency and abundance of these morphotypes against other mycorrhizal fungi associated with these hosts in New Zealand geothermal areas. The three Pisolithus species form typical ectomycorrhizal associations with Kunzea ericoides var. microflora, and one also was observed forming typical ectomycorrhizal associations with Leptospermum scoparium. Although the morphotypes from the three Pisolithus species share many morphological and anatomical characteristics, they vary with regard to the abundance of rhizomorphs. The common occurrence of Pisolithus fruiting bodies at the geothermal sites was matched by frequent and abundant Pisolithus ectomycorrhizas. Pisolithus ectomycorrhizas were frequent (100% of soil cores) and abundant (between 55 and 88% of ectomycorrhizal tips) associates of prostrate kanuka in hot (50 C at 8 cm depth), highly acidic and N depleted soils. The levels of arbuscular mycorrhizal colonization of prostrate kanuka were lower than on K. ericoides and L. scoparium on cooler soils. The stressful conditions where prostrate kanuka dominates probably favor Pisolithus over the mycorrhizal fungi occurring in cooler geothermal areas. Questions about how several genetically similar Pisolithus species co-occur on prostrate kanuka in geothermal areas without mutual competitive exclusion are discussed.  相似文献   

9.
The host range ofTetranychus lintearius was examined experimentally to determine if the mite could be safely introduced into New Zealand for the biological control of gorse,Ulex europaeus (Leguminosae: Genisteae). The rationale for choosing test plants was the same as that employed for testing insect species as biological control agents. Outdoors, mite colonies could be transferred successfully from gorse plant to gorse plant, but could not re-establish on any of 39 other plant species progeny to develop, was measured on 58 plant species other than gorse. Apart fromUlex europaeus andU. minor, development was completed only onPhaseolus vulgaris andGlycine max. Further experiments using 22 bean cultivars showed that mites could not complete a second generation on detached leaf cultures, could not form permanent colonies on potted plants in the glasshouse, and remanned only a short time when transferred to bean plants in the field. Tetranychus lintearius has never been recorded from any plant butUlex species. This fact, coupled with the results of host-range testing, suggests that the mite is sufficiently host-specific to be safely used as a biological control agent for gorse in New Zealand.  相似文献   

10.
Diversity was studied in 10 communities, including the understory of native oak woodland, planted woodlands (pine and eucalypt), and shrublands in the strict sense (heathlands, broom shrublands, gorse shrublands).In each community, species richness, diversity, dominance and evenness were analysed. Differences were observed among communities with regard to species composition, richness in annual herbs, perennial herbs and shrubs, dominant plant families (Ericaceae, Papilionaceae) and diversification of shrub species.The possible relations between environmental stress and/or human influences on differences in diversity are discussed.  相似文献   

11.
1. It is hypothesised that ecological restoration in grasslands can induce an alternative stable state shift in vegetation. The change in vegetation influences insect community assemblages and allows for greater functional redundancy in pollination and refuge for native insect species. 2. Insect community assemblages at eight coastal California grassland sites were evaluated. Half of these sites had undergone restoration through active revegetation of native grassland flora and half were non‐restored. Insects were collected from Lupinus bicolor (Fabaceae) within 2 × 2‐m2 plots in spring 2017. Lupinus bicolor is a common native species that is used in California restoration projects, and home and state landscaping projects. 3. Ordination demonstrated that insect community assemblages were different between restored and non‐restored sites. These differences were seen in insect functional groups as well as taxa‐specific differences and were found to be driven by environmental characteristics such as non‐native forb cover. 4. Functional redundancy of herbivores decreased at restored sites, while pollinators became more redundant compared with non‐restored sites. The assemblages of the common species found at restoration sites contained more native insects than those found at non‐restored sites, including species such as Bombus vosnesenskii. 5. Local grassland restoration has the potential to induce an alternative stable state change and affect insect community assemblages. Additionally, it was found that grassland restoration can be a potential conservation tool to provide refugia for bumblebees (Bombus), but additional studies are required to fully understand its broader applicability.  相似文献   

12.
The New Zealand native legume flora are represented by four genera, Sophora, Carmichaelia, Clianthus, and Montigena. The adventive flora of New Zealand contains several legume species introduced in the 19th century and now established as serious invasive weeds. Until now, nothing has been reported on the identification of the associated rhizobia of native or introduced legumes in New Zealand. The success of the introduced species may be due, at least in part, to the nature of their rhizobial symbioses. This study set out to address this issue by identifying rhizobial strains isolated from species of the four native legume genera and from the introduced weeds: Acacia spp. (wattles), Cytisus scoparius (broom), and Ulex europaeus (gorse). The identities of the isolates and their relationship to known rhizobia were established by comparative analysis of 16S ribosomal DNA, atpD, glnII, and recA gene sequences. Maximum-likelihood analysis of the resultant data partitioned the bacteria into three genera. Most isolates from native legumes aligned with the genus Mesorhizobium, either as members of named species or as putative novel species. The widespread distribution of strains from individual native legume genera across Mesorhizobium spp. contrasts with previous reports implying that bacterial species are specific to limited numbers of legume genera. In addition, four isolates were identified as Rhizobium leguminosarum. In contrast, all sequences from isolates from introduced weeds aligned with Bradyrhizobium species but formed clusters distinct from existing named species. These results show that native legume genera and these introduced legume genera do not have the same rhizobial populations.  相似文献   

13.
Displacement of native plant species by non‐indigenous congeners may affect associated faunal assemblages. In endangered salt marshes of south‐east Australia, the non‐indigenous rush Juncus acutus is currently displacing the native rush Juncus kraussii, which is a dominant habitat‐forming species along the upper border of coastal salt marshes. We sampled insect assemblages on multiple plants of these congeneric rushes in coastal salt marshes in Sydney, New South Wales, Australia, and compared the abundance, richness, diversity, composition and trophic structure between: (i) J. acutus and J. kraussii at invaded locations; and (ii) J. kraussii at locations either invaded or not invaded by J. acutus. Although J. acutus supported a diverse suite of insects, species richness and diversity were significantly greater on the native J. kraussii. Moreover, insect assemblages associated with J. kraussii at sites invaded by J. acutus were significantly different from, and more variable than, those on J. kraussii at non‐invaded sites. The trophic structure of the insect assemblages was also different, including the abundance and richness of predators and herbivores, suggesting that J. acutus may be altering consumer interactions, and may be spreading in part because of a reduction in herbivory. This strongly suggests that J. acutus is not playing a functionally similar role to J. kraussii with respect to the plant‐associated insect species assemblages. Consequently, at sites where this non‐indigenous species successfully displaces the native congener, this may have important ecological consequences for community composition and functioning of these endangered coastal salt marshes.  相似文献   

14.
The first example of pollination by fungus gnats in the eudicots is reported. The genus Mitella (Saxifragales) is characteristically produces minute, inconspicuous, mostly dull-coloured flowers with linear, sometimes pinnately branched, petals. To understand the function of these characteristic flowers, we studied the pollination biology of four Mitella species with different floral traits and different sexual expression: dioecious M. acerina , gynodioecious M. furusei var. subramosa , and hermaphroditic M. stylosa var. makinoi and M. integripetala. Flower-bagging experiments showed that wind pollination did not occur in the dioecious and gynodioecious species. Two years of observations of flower visitors at six study sites in Japan revealed that the principal pollinators of all four Mitella were specific species of fungus gnats (Mycetophilidae), which landed on the flowers with their long spiny legs settling on the petals. Characteristically, numerous pollen grains were attached to the fungus gnats in specific locations on the body. Although, on average, 1.3–2.6 fungus gnats visited each inflorescence per day, the fruit set of both bisexual and female flowers exceeded 63%. These results suggest that fungus gnats are highly efficient pollinators of Mitella spp., and that Mitella flowers are morphologically adapted to pollination by fungus gnats.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 144 , 449–460.  相似文献   

15.
The idea that naturalised invading plants have fewer phytophagous insects associated with them in their new environment relative to their native range is often assumed, but quantitative data are few and mostly refer to pests on crop species. In this study, the incidence of seed-eating insect larvae in flowerheads of naturalised Asteraceae in New Zealand is compared with that in Britain where the species are native. Similar surveys were carried out in both countries by sampling 200 flowerheads of three populations of the same thirteen species. In the New Zealand populations only one seed-eating insect larva was found in 7800 flowerheads (0.013% infected flowerheads, all species combined) in contrast with the British populations which had 487 (6.24%) flowerheads infested. Possible reasons for the low colonization level of the introduced Asteraceae by native insects in New Zealand are 1) the relatively recent introduction of the plants (100-200 years), 2) their phylogenetic distance from the native flora, and 3) the specialised nature of the bud-infesting habit of the insects.  相似文献   

16.
The development of the pathogenic fungus Fusarium tumidum on gorse ( Ulex europaeus ), a major weed of pastures and plantation forests in New Zealand, was studied under controlled conditions. F. tumidum , like most other foliar fungal pathogens, requires moisture to infect plants. Long, continuous dew periods ( 24 h) after inoculation of plants provided favourable conditions for infection. The fungus, however, also caused severe disease on young plants (2 months old) exposed to two or three 12-h dew periods interrupted by 12-h dry periods. A delay of 24 h before inoculated plants were exposed to dew did not affect the severity of the disease. F. tumidum infected plants over a wide range of temperatures (5-27IC), but more plants were killed as temperatures increased during the initial infection phase. All gorse plants tested (up to 4 months old) were susceptible to the fungus, but younger plants were more easily killed. Nevertheless, the biomass of older plants that were severely diseased but not killed by the fungus was significantly reduced. The effectiveness of F. tumidum in killing plants increased with the density of inoculum sprayed. The fungus applied at a density of 1 106 conidia/ml killed more than 95% of 1.5-month-old plants. This basic knowledge of the F. tumidum -gorse system will assist in the development of a pilot bioherbicide to control gorse and broom ( Cytisus scoparius ), another economically important weed in New Zealand which is also susceptible to the fungus.  相似文献   

17.
In most studies about ant communities, species are grouped into competitive hierarchies where top dominants drive the majority of other species away from resources. Nevertheless, in some ecosystems high ground temperatures may disrupt this hierarchical organization. Other changes in community structure are caused by the arrival of invasive ant species, which rapidly disassemble local communities. We studied the effects of competition and temperature on ant community organization on Surprise Island (New Caledonia). Four different habitats were distinguished: a central plain, a sea shore Argusia shrubland, a dense Scaveola shrub, and an arboreal Pisonia strata. Eight ant species were identified from pitfall traps (seven introduced and only one native species, Pheidole oceanica). Ant assemblages in each habitat had a different ecologically dominant species, and a dominant species in one habitat could be non-dominant and less abundant in another. From interactions at baits, we built a competitive hierarchy where the top dominant species was the native Ph. oceanica. Daily foraging activity rhythms of the different species mostly overlapped. The relationship between bait occupation and ground temperature followed a negative linear pattern at all sites and for most species, except for the relatively thermophilous Monomorium floricola. Indices of co-occurrence in pitfall traps indicated that species co-occurred randomly with respect to one another. Conversely, species appeared to be segregated when we examined co-occurrence at baits at the sites where Ph. oceanica was abundant. Oceanic islands are very susceptible to alien species, but on Surprise Island it seems that the sole native species dominates in some habitats when confronted by invasive species.  相似文献   

18.
Patterns of bird invasion are consistent with environmental filtering   总被引:1,自引:0,他引:1  
Predicting invasion potential has global significance for managing ecosystems as well as important theoretical implications for understanding community assembly. Phylogenetic relationships of introduced species to the extant community may be predictive of establishment success because of the opposing forces of competition/shared enemies (which should limit invasions by close relatives) versus environmental filtering (which should allow invasions by close relatives). We examine here the association between establishment success of introduced birds and their phylogenetic relatedness to the extant avifauna within three highly invaded regions (Florida, New Zealand, and Hawaii). Published information on both successful and failed introductions, as well as native species, was compiled for all three regions. We created a phylogeny for each avifauna including all native and introduced bird species. From the estimated branch lengths on these phylogenies, we calculated multiple measurements of relatedness between each introduced species and the extant avifauna. We used generalized linear models to test for an association between relatedness and establishment success. We found that close relatedness to the extant avifauna was significantly associated with increased establishment success for exotic birds both at the regional (Florida, Hawaii, New Zealand) and sub‐regional (islands within Hawaii) levels. Our results suggest that habitat filtering may be more important than interspecific competition in avian communities assembled under high rates of anthropogenic species introductions. This work also supports the utility of community phylogenetic methods in the study of vertebrate invasions.  相似文献   

19.
Knowing the spatial variation of insect and arachnid assemblages and their relationship with habitat variables is critical to understand the structure and dynamics of these communities in arid environments. The aim of this paper was to analyze the variation in ground-dwelling arthropod assemblages across three representative vegetation units of the Área Natural Protegida Península Valdés (Patagonia, Argentina). We asked whether environmental differences among representative vegetation units were associated to distinct arthropod assemblages. We selected three plant communities: grass, dwarf-shrub, and shrub steppes, and established three sampling sites within each of them. We measured variables of vegetation structure and soil characteristics and collected the arthropods using 10 pitfall traps per site. We analyzed the structure of arthropod assemblages at both family and ant species taxonomic levels. Each plant community displayed a distinctive assemblage, with differences in diversity, taxa abundance, trophic structure and functional groups of ants. Vegetation variables explained a higher proportion of the variation in the structure of the ground-dwelling arthropod assemblages than the soil variables. This work highlights the importance of the different vegetation units for the conservation of ground-dwelling arthropod biodiversity in Península Valdés.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号