首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in vegetation from 1990 to 2000 were examined at 10 high country localities, representing four grassland types: fescue tussock (Festuca novae-zelandiae), snow tussock (Chionochloa rigida), red tussock (C. rubra), and silver tussock (Poa cita). At each locality, three treatments were established: ambient sheep+rabbit grazing, rabbit grazing only, and no grazing. The mutivariate methods of classification and ordination were used on individual-quadrat cover data to define vegetation states and to examine transitions between them over time. Vegetation states in quadrats already dominated by Hieracium pilosella(> 50% cover) in 1990 showed little change in species composition regardless of grassland type and grazing treatment. In fescue tussock grassland, H. pilosellaincreased regardless of grazing treatment in states with low initial H. pilosellacover (< 5%), while the cover of Carex colensoi, Aira caryophyllea and Rumex acetosella decreased. In the single silver tussock locality, Poa citadecreased markedly in the ungrazed treatment as adventive species such as Dactylis glomerataand Echium vulgare increased. However, Poa citaalso decreased, probably due to drought, in the grazed treatment. Snow tussock and red tussock grassland states were more stable than those in short tussock grasslands, but there was also a general trend towards increasing H. pilosellacover in intertussock vegetation regardless of treatment. However, at one snow tussock locality, transitions from H. piloselladominated to C. rigida-dominated states occurred in ungrazed quadrats, while the reverse occurred in grazed vegetation. Implications for the management of tussock grasslands for conservation are discussed.  相似文献   

2.
Herbivores influence spatial heterogeneity in soil resources and vegetation in ecosystems. Despite increasing recognition that spatial heterogeneity can drive species richness at different spatial scales, few studies have quantified the effect of grazing on spatial heterogeneity and species richness simultaneously. Here we document both these variables in a rabbit-grazed grassland. We measured mean values and spatial patterns of grazing intensity, rabbit droppings, plant height, plant biomass, soil water content, ammonia and nitrate in sites grazed by rabbits and in matched, ungrazed exclosures in a grassland in southern England. Plant species richness was recorded at spatial scales ranging between 0.0001 and 150 m(2). Grazing reduced plant height and plant biomass but increased levels of ammonia and nitrate in the soil. Spatial statistics revealed that rabbit-grazed sites consisted of a mixture of heavily grazed patches with low vegetation and nutrient-rich soils (lawns) surrounded by patches of high vegetation with nutrient-poor soils (tussocks). The mean patch size (range) in the grazed controls was 2.1 +/- 0.3 m for vegetation height, 3.8 +/- 1.8 m for soil water content and 2.8 +/- 0.9 m for ammonia. This is in line with the patch sizes of grazing (2.4 +/- 0.5 m) and dropping deposition (3.7 +/- 0.6 m) by rabbits. In contrast, patchiness in the ungrazed exclosures had a larger patch size and was not present for all variables. Rabbit grazing increased plant species richness at all spatial scales. Species richness was negatively correlated with plant height, but positively correlated to the coefficient of variation of plant height at all plot sizes. Species richness in large plots (<25 m(2)) was also correlated to patch size. This study indicates that the abundance of strong competitors and the nutrient availability in the soil, as well as the heterogeneity and spatial pattern of these factors may influence species richness, but the importance of these factors can differ across spatial scales.  相似文献   

3.
Large vertebrate herbivores, as well as plant–soil feedback interactions are important drivers of plant performance, plant community composition and vegetation dynamics in terrestrial ecosystems. However, it is poorly understood whether and how large vertebrate herbivores and plant–soil feedback effects interact. Here, we study the response of grassland plant species to grazing‐induced legacy effects in the soil and we explore whether these plant responses can help us to understand long‐term vegetation dynamics in the field. In a greenhouse experiment we tested the response of four grassland plant species, Agrostis capillaris, Festuca rubra, Holcus lanatus and Rumex acetosa, to field‐conditioned soils from grazed and ungrazed grassland. We relate these responses to long‐term vegetation data from a grassland exclosure experiment in the field. In the greenhouse experiment, we found that total biomass production and biomass allocation to roots was higher in soils from grazed than from ungrazed plots. There were only few relationships between plant production in the greenhouse and the abundance of conspecifics in the field. Spatiotemporal patterns in plant community composition were more stable in grazed than ungrazed grassland plots, but were not related to plant–soil feedbacks effects and biomass allocation patterns. We conclude that grazing‐induced soil legacy effects mainly influenced plant biomass allocation patterns, but could not explain altered vegetation dynamics in grazed grasslands. Consequently, the direct effects of grazing on plant community composition (e.g. through modifying light competition or differences in grazing tolerance) appear to overrule indirect effects through changes in plant–soil feedback.  相似文献   

4.
Question: What are the changes in vegetation structure, soil attributes and mesofauna associated with grazing in mesic grasslands? Location: Southern Campos of the Río de la Plata grasslands, in south‐central Uruguay. Methods: We surveyed seven continuously grazed and ungrazed paired plots. Plant and litter cover were recorded on three 5‐m interception lines placed parallel to the fence in each plot. We extracted soil fauna from a 10 cm deep composite sample and analysed the oribatids. Soil attributes included bulk density, water content, organic carbon (in particulate and mineral associated organic matter) and nitrogen content and root biomass at different depths. Changes in floristic, Plant Functional Types and mesofauna composition were analysed by Non‐metric Multidimensional Scaling. Results: Species number was lower in ungrazed than in grazed plots. Of 105 species in grazed plots only three were exotics. Shrub and litter cover were significantly higher inside the exclosures, while the cover of Cyperaceae‐Juncaceae was lower. Grazing treatments differed significantly in plant and oribatid species composition. Grazing exclusion significantly reduced soil bulk density and increased soil water content. Carbon content in particulate organic matter was lower in the upper soil of ungrazed sites, but deeper in the profile, grazing exclosures had 8% more carbon in the mineral associated organic matter. Conclusions Our results generally agree with previous studies but deviate from the results of previous analyses in (1) the increase of shrub cover in ungrazed sites; (2) the redistribution of the soil organic carbon in the profile and (3) the low invasibility of the prairies regardless of grazing regime.  相似文献   

5.
《新西兰生态学杂志》2011,31(2):232-244
Species abundance, species richness, and ground cover were measured over 10 years on nine paired grazed and exclosure plots in short-tussock grassland in the early stages of invasion by Hieracium species. With and without grazing, H. pilosella and H. caespitosum increased markedly and H. lepidulum increased locally. In contrast, 50% of all other common species and species groups, and total, native, and exotic species richness declined significantly. Exclusion increased or had no effect on rates of increase in Hieracium species and rates of decline in short tussocks, and did not reduce rates of decline in other species. Exclusion had no effect on decline in native species richness, but mainly accelerated declines in total and exotic richness. Declines in 13 key vegetation variables were significantly predicted by increase in Hieracium abundance, suggesting competitive exclusion. With or without grazing, Hieracium species will become more dominant and other species will continue to decline. The effects of large herbivores on plant species diversity can often be predicted from site productivity. Our results indicate the need also to account for species origin, spatial scale, time, and exotic invasion.  相似文献   

6.
Isbell FI  Wilsey BJ 《Oecologia》2011,165(3):771-781
Species-rich native grasslands are frequently converted to species-poor exotic grasslands or pastures; however, the consequences of these changes for ecosystem functioning remain unclear. Cattle grazing (ungrazed or intensely grazed once), plant species origin (native or exotic), and species richness (4-species mixture or monoculture) treatments were fully crossed and randomly assigned to plots of grassland plants. We tested whether (1) native and exotic plots exhibited different responses to grazing for six ecosystem functions (i.e., aboveground productivity, light interception, fine root biomass, tracer nitrogen uptake, biomass consumption, and aboveground biomass recovery), and (2) biodiversity-ecosystem functioning relationships depended on grazing or species origin. We found that native and exotic species exhibited different responses to grazing for three of the ecosystem functions we considered. Intense grazing decreased fine root biomass by 53% in exotic plots, but had no effect on fine root biomass in native plots. The proportion of standing biomass consumed by cattle was 16% less in exotic than in native grazed plots. Aboveground biomass recovery was 30% less in native than in exotic plots. Intense grazing decreased aboveground productivity by 25%, light interception by 14%, and tracer nitrogen uptake by 54%, and these effects were similar in native and exotic plots. Increasing species richness from one to four species increased aboveground productivity by 42%, and light interception by 44%, in both ungrazed and intensely grazed native plots. In contrast, increasing species richness did not influence biomass production or resource uptake in ungrazed or intensely grazed exotic plots. These results suggest that converting native grasslands to exotic grasslands or pastures changes ecosystem structure and processes, and the relationship between biodiversity and ecosystem functioning.  相似文献   

7.
Grasslands in northern China and the Qinghai-Tibetan plateau are particularly important to both ecosystem functioning and pastoral livelihoods. Although there are numerous degradation studies on the effect of livestock grazing across the region, they are largely only published in Chinese, and most focus on single sites. Based on case studies from 100 sites, covering a mean annual precipitation gradient of 95–744 mm, we present a comprehensive, internationally accessible review on the impact of livestock grazing on vegetation and soils. We compared ungrazed or slightly grazed sites with moderately and heavily grazed sites by evaluating changes in two indicator groups: vegetation (plant species richness, vegetation cover, aboveground biomass, belowground biomass and root/shoot ratio) and soil (pH, bulk density, organic C, total N, total P and available P). Most indicators declined with intensified grazing, while soil pH, bulk density and belowground biomass increased. Available P showed no clear response. Variables within indicator groups were mostly linearly correlated at a given grazing intensity. Relative grazing effects on different indicators varied along specific abiotic gradients. Grazing responses of plant species richness, aboveground biomass, soil bulk density, total N and available P interacted with precipitation patterns, while grazing effects on belowground biomass were influenced by temperature. Elevation had impact on grazing responses of aboveground biomass and soil organic carbon. Complex grazing effects reflect both methodological inconsistency and ecological complexity. Further assessments should consider specific characteristics of different indicators in the context of the local environment.  相似文献   

8.
Intensive reindeer grazing has been hypothesized to drive vegetation shifts in the arctic tundra from a low-productive lichen dominated state to a more productive moss dominated state. Although the more productive state can potentially host more herbivores, it may still be less suitable as winter grazing grounds for reindeer, if lichens, the most preferred winter forage, are less abundant. Therefore, such a shift towards mosses may have severe consequences for reindeer husbandry if ground-growing lichens have difficulties to recover. We tested if reindeer cause this type of vegetation state shifts in boreal forest floor vegetation, by comparing plant species composition and major soil processes inside and outside of more than 40-year-old exclosures. Lichen biomass was more than twice as high inside exclosures than in grazed controls and almost 5 times higher than in heavily grazed patches. Contrary to our predictions, net N mineralization and plant production were higher in the exclosures than in the grazed controls. The lack of response of phytometer plants in a common garden bioassay indicated that changed soil moisture may drive effects of reindeer on plant productivity in these dry Pine forest ecosystems.  相似文献   

9.
Abstract. A regional vegetation survey of the temperate grassy woodlands (temperate savanna) in Australia was designed to assess the effects of clearing and grazing on the composition of vegetation remnants and the adjacent pasture matrix. Vegetation was sampled across a range of habitats using 77 0.1024‐ha quadrats; the relative abundance of species was recorded. Classification analysis clustered the sites into three main groups that corresponded to intensity of grazing/clearing followed by groups based on underlying lithology (basalt, metasediment, granites). Using Canonical Correspondence Analysis, exogenous disturbance and environmental variables were related to the relative abundance of species; grazing intensity had the highest eigenvalue (0.27) followed by tree canopy cover (0.25), lithology (0.18), altitude (0.17) and slope (0.10). Based on two‐dimensional ordination scores, six species response groups were defined relating to intensity of pastoralism and nutrient status of the landscape. Abundance and dominance of native shrubs, sub‐shrubs, twiners and geophytes were strongly associated with areas of less‐intense pastoralism on low‐nutrient soils. The strongest effects on species richness were grazing followed by canopy cover. Continuously grazed sites had lower native species richness across all growth forms except native grasses. There was no indication that intermediate grazing intensities enhanced forb richness as a result of competitive release. Species richness for all native plants was lowest where trees were absent especially under grazed conditions. Canopy cover in ungrazed sites appeared to promote the co‐existence of shrubs with the herbaceous layer. Predicted declines in forb richness in treeless, ungrazed, sites were not detected. The lack of a disturbance‐mediated enhancement of the herbaceous layer was attributed to habitat heterogeneity at 0.1 ha sampling scale.  相似文献   

10.
11.
Grassland patches within a semi-arid savanna were evaluated over 45-years for (1) local temporal dynamics of basal area for five dominant grass species within long-term heavily grazed and ungrazed treatments, (2) the influence of soil depth (resource availability) on vegetation dynamics, and (3) the applicability of community-level grazing response groups over fine-scale patterns of soil heterogeneity. Temporal patterns in species composition and basal area were dependent upon soil depth. In the heavy grazed treatment, Hilaria belangeri dominated deep soils while Erioneuron pilosum and Bouteloua trifida were restricted to shallow soils. In the ungrazed treatment, removal of grazing resulted in successional changes that were significantly different across soil depths. After 45 years without grazing, Eriochloa sericea was most abundant on deep soils while Bouteloua curtipendula was more abundant on intermediate and shallow soils. Community-level functional groups that are based on grazing were not appropriate when multiple pattern-driving variables were considered across multiple scales indicating that functional groups should only be applied to certain processes at specific scales. Within the ungrazed treatments, variable soil depths have resulted in a shifting mosaic in time and space where early- and late-successional species co-exist continuously but spatially separated within the community. In the heavily grazed treatment, species are somewhat spatially arranged by soil depths, but much of the inherent heterogeneity is eliminated and species composition is dominated by the three grazing-resistant short-grasses. Broad scale successional changes may appear linear and predictable while at finer scales, the same changes may be described as non-linear and dependent upon soil depth resulting in thresholds that are partially explained by weather patterns, seed bank limitations and competitive inhibitions.  相似文献   

12.
1. In an experimental flume, we examined the effects of a biomass reduction and alteration of taxonomic composition, because of grazing by the fish Plecoglossus altivelis, on the net biomass accumulation of periphyton. 2. Grazed and ungrazed assemblages with different biomass and taxonomic composition were first prepared in fish enclosures and exclosures, respectively. These assemblages were then set out in the flume and incubated for 2 days under grazing‐free conditions to examine (i) the relationship between biomass and biomass accumulation rate and (ii) the effect of taxonomic composition on the relationship between these two. 3. The grazed and ungrazed assemblages were dominated by upright filamentous cyanobacteria and diatoms, respectively. The rate of biomass accumulation decreased with increasing periphyton biomass in both the grazed and ungrazed assemblages, and was lower in the grazed than the ungrazed assemblages at any biomass level. 4. The results showed that the reduction in biomass and the alteration of taxonomic composition due to fish grazing have opposite effects on biomass‐specific productivity. Biomass accumulation rate increased in response to biomass reduction, although a shift in dominance from diatoms to upright filamentous cyanobacteria decreased the overall productivity of the periphyton.  相似文献   

13.
Anemone coronaria, an attractive Mediterranean geophyte, seems to disappear from grazing-protected areas in Israel. We experimentally examined the ecological mechanism driving the decline of this geophyte. Ten plot-pairs were established, half we fenced as grazing exclosures and half were grazed by beef cattle. Grazing clearly reduced herbaceous biomass, increased relative solar photosynthetic active radiation (PAR) at ground level, but had almost no effect on soil properties. Grazing did not affect the number of flowers and young fruits produced by A. coronaria, nor the percentage fruit-set at the plot scale, indicating no effect on flowering, pollination, or on resource allocation to reproduction. Five years after grazing exclusion, Anemone seedling and adult plant densities were higher in grazed than in ungrazed plots. We propose a model explaining our results that can be applied also to other similar ecosystems: excluding grazing increased biomass and height of the herbaceous community and reduced relative PAR at ground level. Consequently, seedling, adult plant and flowering Anemone plant densities were lower in ungrazed plots. We recommend adding seasonal grazing as a management tool when vegetation outcompete light demanding geophytes that we wish to conserve.  相似文献   

14.
We examined the effect of native large herbivores on aboveground primary production of nonforested habitat in Yellowstone National Park, Wyoming. Productivity of vegetation grazed by elk (Cervus elaphus) and bison (Bison bison) was compared with that of ungrazed (permanently fenced) vegetation at four sites. Two methods were used that, we believed, would provide the most accurate measurements under the different grazing regimes encountered in the study. Production of ungrazed vegetation in permanent exclosures (10×10 m or 15×15 m, 3 per site) and that of vegetation that was grazed only in the winter was taken as peak standing crop. Production of vegetation grazed during the growing season was the sum of significant increments (P<0.05) in standing crop inside temporary exclosures (1.5×1.5 m, 6 per site) moved every four weeks to account for herbivory.Aboveground productivity of grazed vegetation was .47% higher than that of ungrazed vegetation across sites (P<0.0003). This result could be explained by either a methodological or grazer effect. We believe it was the latter. Results from a computer simulation showed that sequential sampling with temporary exclosures resulted in a slight underestimation of production, suggesting that the reported differences between treatments were conservative. We suggest that stimulation of aboveground production by ungulates may be, in part, due to the migratory behavior of native ungulates that track young, high quality forage as it shifts spatially across the Yellowstone ecosystem.  相似文献   

15.
Abstract. N, P and K dynamics were investigated in grazed and ungrazed alpine forb and grassy meadows in the Garhwal Himalaya. The growth forms examined were dwarf shrubs, forbs and graminoides. N, P and K contents were determined for various plant components and soil. The contribution of plant parts to the total vegetation capital of N, P and K was 20–33% (live shoot), 6–8% (dead shoot), 2–3% (litter) and 56–71% (root) in ungrazed plots, and 16–27, 6–7, 1–2, and 64–76% respectively in grazed plots. Grazing removed between 41–69% of total uptake of nutrients from the grassland. In protected areas, however, 65 to 81% of all nutrients were retained by the vegetation. This retention of nutrients is due to translocation to roots and rhizomes and is considered beneficial during grazing as it aids resprouting of the vegetation.  相似文献   

16.
Summary The emergence and subsequent survival and growth of five opportunistic weeds were monitored after seed additions to long-term grazing treatments with or without current-year grazing, long-term ungrazed treatments, and removal treatments designed to eliminate plant competition from existing perennials while either leaving vegetation and soil structure unaltered or disturbed. The treatments were applied on both uplands and lowlands to assess the relative influence of macroabiotic environment versus plant competition. The long-term effects of large herbivores on the initial emergence of seedlings were greater than the effects of removing competition. Very few individuals emerged on the long-term grazed treatments that were either grazed or ungrazed during the experiment. Numbers of individuals emerging on the long-term ungrazed treatments were greater or equal to those emerging on the no-competition-undisturbed treatments, but numbers were greatest on no-competition-disturbed treatments. None of the seeded individuals on the long-term grazed, currently grazed treatments survived to the end of the growing season. There was a slightly greater end-of-season biomass of seeded species and percentage of the total population reaching reproductive status on the long-term ungrazed compared with grazed-nondefoliated treatments, and very high survival, biomass, and proportions of reproductives on both no-competition treatments. Cover types in the immediate vicinity of seedlings influenced both germination and survival, but the effects differed between species and treatments. Equal compensation to current-year herbivory occurred on long-term heavily grazed treatments even though above-ground production was much greater on long-term protected sites. Productivity varied with topography, but very few topographic main effects or interactions occurred with demographic variables of seeded species, suggesting that macroabiotic effects were of minor importance compared with grazing and plant competition.  相似文献   

17.
Abstract: Grazing is thought to be incompatible with nesting by dabbling ducks (Anas spp.), but this belief is based on little data. We therefore conducted a 2-year, replicated field experiment to determine whether the habitat requirements of nesting ducks could be met on uplands managed by rotational grazing (1 Jul-1 Nov) in the northern San Joaquin Valley, California, USA. Grazed fields had shorter vegetation than ungrazed fields throughout the winter, but vegetation height did not differ by the beginning of the nesting season in late March, and by the end of the nesting season in late May, previously grazed fields had taller vegetation than did ungrazed fields. In 1996, densities of duck nests were >3 times higher in grazed than in ungrazed fields (least-squares means [± 1 SE]: grazed = 2.18 [0.34] nests/ha, ungrazed = 0.59 [0.34] nests/ha), but nest densities were substantially lower in 1997 and did not differ between treatment groups (grazed = 0.65 [0.32] nests/ha, ungrazed = 0.39 [0.32] nests/ha). Mayfield nest success did not differ between grazed fields (5.3%) and ungrazed fields (2.9%). We conclude that rotational grazing was successful in providing summer nesting habitat for dabbling ducks, and we recommend that it be considered for other managed habitats within the Central Valley, California, USA.  相似文献   

18.
Abstract. Data on floristic composition and environmental variables were collected in floristically homogeneous oligotrophic pine (Pinus sylvestris) forests with heath-like under- storey vegetation in eastern Fennoscandia, and ordinated by non-linear multidimensional scaling (NMDS) in order to study the effect of lichen grazing by reindeer on the understorey vegetation. The study sites included areas with varying grazing pressure, as well as 50-yr old grazing exclosures. Sites rich in respectively bryophytes and lichens were placed at opposite ends of the ordination axes, and heavily grazed sites were placed in between them. Reindeer grazing increased the abundance of bryophytes, especially Dicranum spp. and Pleurozium schreberi. Grazing changed the vegetation to the extent that it resembled more mesotrophic sites, but this did not show any relationship with tree volume or other site productivity indicators. This was observed both in the ordination and, in a more compelling way, when exclosures with adjacent grazed areas were compared. No such signs were evident at ungrazed sites, where especially Cladina spp. spatially replace Cladonia spp. and tiny bryophytes like Barbilophozia spp., Polytrichum spp. and Pohlia nutans during succession. Cladina stellaris had almost disappeared from the most intensively grazed sites. The soil at ungrazed sites was characterized by high Al and Fe concentrations and bryophyte-rich sites by high Mn concentrations. Shannon's diversity index, depth of humus layer and proportion of bare ground also increased in sites getting richer in bryophytes.  相似文献   

19.
Abstract Stock grazing has degraded many riparian ecosystems around the world. However, the potential for ecosystem recovery following the removal of grazing stock is poorly known. We developed a conceptual model to predict the responses of native and exotic herbaceous plants to grazing exclusion, based on site productivity and the degree of initial vegetation degradation. The effects of excluding grazing stock on richness, cover and composition of herbaceous plants were examined over 12 years in the degraded understorey of a riparian forest in Gulpa Island State Forest in south‐eastern Australia. We predicted that grazing exclusion would lead to limited changes in vegetation cover, richness and composition, owing to presumed low site productivity and the high degree of understorey degradation. Results showed that the cover, richness and composition of native and exotic species varied significantly among years. Over all plots, regions and years, total cover was slightly but significantly lower in grazed than in ungrazed plots (43.4% vs. 50.8%). While the cover of native plants increased over time in both treatments, the rate of increase was slightly greater in ungrazed plots. Grazing exclusion had no effect on the richness of native or exotic species, but had a significant but minor impact on plant composition, with different common species (mostly exotics) being promoted or diminished in ungrazed plots. The composition of grazed and ungrazed areas did not become more different over time. Overall, the effects that could be attributed to grazing exclusion were relatively minor and transient. Results are consistent with predictions based on site productivity and initial degradation, and should not be extrapolated to other more productive, or less degraded, riparian systems.  相似文献   

20.
Abstract. Spatial heterogeneity, an important characteristic in semi‐arid grassland vegetation, may be altered through grazing by large herbivores. We used Moran's I, a measure of autocorrelation, to test the effect of livestock grazing on the fine scale spatial heterogeneity of dominant plant species in the shortgrass steppe of northeastern Colorado. Autocorrelation in ungrazed plots was significantly higher than in grazed plots for the cover of the dominant species Bouteloua gracilis, litter cover and density of other bunchgrasses. No species had higher autocorrelation in grazed compared to ungrazed sites. B. gracilis cover was significantly auto‐correlated in seven of eight 60‐yr ungrazed exclosures, four of six 8‐yr exclosures, and only three of eight grazed sites. Autocorrelograms showed that B. gracilis cover in ungrazed sites was frequently and positively spatially correlated at lag distances less than 5 m. B. gracilis cover was rarely autocorrelated at any sampled lag distance in grazed sites. The greater spatial heterogeneity in ungrazed sites appeared linked to patches characterized by uniformly low cover of B. gracilis and high cover of C3 grasses. This interpretation was supported by simple simulations that modified data from grazed sites by reducing the cover of B. gracilis in patches of ca. 8 m diameter and produced patterns quite similar to those observed in ungrazed sites. In the one exclosure where we intensively sampled soil texture, autocorrelation coefficients for sand content and B. gracilis cover were similar at lag distances up to 12 m. We suggest that the negative effect of sand content on B. gracilis generates spatial heterogeneity, but only in the absence of grazing. An additional source of heterogeneity in ungrazed sites may be the negative interaction between livestock exclusion and B. gracilis recovery following patchy disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号