首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Gap size and gap shape are two important properties of forest gaps that can influence microsite conditions in a forest stand and determine the recruitment and establishment of trees. There is no universally adopted method for measuring the gap size, although several options are available. In addition, few methods have been proposed for measuring the gap shape. This paper proposes a photographic method of estimating canopy gap size and gap shape. The proposed method is based on a vertical hemispherical photograph of the gap and is thus named the hemispherical photograph method (HPM). We tested the accuracy of the HPM measure of gap size by two ground-based methods and compared the HPM with other methods. Our results indicate that the HPM measurement of the canopy gap size is accurate, but is significantly influenced by the location of the camera. Compared with the ground-based methods, the HPM is more objective and repeatable. Compared with other photographic methods, HPM is more accurate due to the more actual assumptions, but is more labor-intensive because more field measurements are necessary. We conclude that the HPM is a powerful tool for comparative and long-term studies of forest gaps.  相似文献   

2.
Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition.  相似文献   

3.
林窗作为森林群落中一种重要的干扰方式, 对林下物种构成有着重要的影响。开展林窗空间格局及其特征指数与林下植物多样性关系研究对于探讨林窗对林下生物多样性的影响有重要意义, 有助于进一步了解群落动态, 在物种多样性保护方面也具有指导作用。本研究在西双版纳热带雨林地区随机选取3块大小为1 ha的热带雨林为研究样地, 采用轻小型六旋翼无人机搭载Sony ILCE-A7r可见光传感器, 分别获取各个样地的高清数字影像, 结合数字表面高程模型以及各个样地的地形数据用以确定各样区的林窗分布格局, 并进一步提取出各林窗的景观格局指数。结合地面样方基础调查数据, 对各样地各林窗下植物多样性情况进行统计, 旨在分析热带雨林林窗空间分布格局以及林窗下植物多样性对各林窗空间格局特征的响应情况。研究表明, 西双版纳州热带雨林林窗呈大而分散的空间分布, 林窗空间格局特征指数如林窗形状复杂性指数、林窗面积都与林下植物多样性呈显著正相关关系。在面积小的林窗下, 较之林窗形状复杂性因子, 林窗面积大小对林下植物多样性影响更显著; 在面积达到一定程度后, 相对于面积因子, 林窗形状复杂性指数对林下植物多样性影响更显著, 各样地林窗皆趋于向各自所处样地顶极群落发展。  相似文献   

4.
Drone-based remote sensing is a promising new technology that combines the benefits of ground-based and satellite-derived forest monitoring by collecting fine-scale data over relatively large areas in a cost-effective manner. Here, we explore the potential of the GatorEye drone-lidar system to monitor tropical forest succession by canopy structural attributes including canopy height, spatial heterogeneity, gap fraction, leaf area density (LAD) vertical distribution, canopy Shannon index (an index of LAD), leaf area index (LAI), and understory LAI. We focus on these variables’ relationship to aboveground biomass (AGB) stocks and species diversity. In the Caribbean lowlands of northeastern Costa Rica, we analyze nine tropical forests stands (seven second-growth and two old-growth). Stands were relatively homogenous in terms of canopy height and spatial heterogeneity, but not in their gap fraction. Neither species density nor tree community Shannon diversity index was significantly correlated with the canopy Shannon index. Canopy height, LAI, and AGB did not show a clear pattern as a function of forest age. However, gap fraction and spatial heterogeneity increased with forest age, whereas understory LAI decreased with forest age. Canopy height was strongly correlated with AGB. The heterogeneous mosaic created by successional forest patches across human-managed tropical landscapes can now be better characterized. Drone-lidar systems offer the opportunity to improve assessment of forest recovery and develop general mechanistic carbon sequestration models that can be rapidly deployed to specific sites, an essential step for monitoring progress within the UN Decade on Ecosystem Restoration.  相似文献   

5.
基于机载激光雷达的中亚热带常绿阔叶林林窗特征   总被引:1,自引:0,他引:1  
刘峰  谭畅  王红  张江  万颖  龙江平  刘芮希 《生态学杂志》2015,26(12):3611-3618
机载激光雷达(LiDAR)是一种新型主动式遥感技术,能直接获取多尺度高精度的冠层三维结构信息,将其推广到森林干扰生态学领域,可为林窗研究提供应用支撑.以湖南中亚热带常绿阔叶林为研究对象,利用小光斑LiDAR数据进行林窗识别和几何特征估测.选择合适的分辨率和内插方法生成冠层高程模型,采用计算机图形学方法估测林窗面积、边界木高度和形状指数,并进行野外观测验证.结果表明: 林窗识别率为94.8%,主要影响因素是林窗面积和林窗形成木类型;估测的林窗面积和边界木高与野外观测值呈较强线性相关,R2值分别为0.962和0.878,其中估测的林窗面积平均比野外观测值高19.9%,估测的林窗边界木高度平均比野外观测值低9.9%;区域内林窗密度为12.8个·hm-2,占森林面积13.3%;林窗面积、边界木高和形状指数的平均值分别为85.06 m2、15.33 m和1.71,区域内多为较小面积、边缘效应不太显著的林窗.
  相似文献   

6.
Forest canopy structure analyzed by using aerial photographs   总被引:5,自引:0,他引:5  
A method was developed using aerial photographs to analyze forest canopy structure. Digital elevation models of both the land and canopy surface in a mesh of 5 m intervals were made from aerial photographs taken in winter (without tree leaves) and summer (with leaves), respectively, in a 60 ha area of temperate deciduous forest. The difference between the two elevation values at each point was regarded as the canopy height, and a canopy height profile was constructed. The estimated canopy structure was compared with that obtained by ground observations in a 6 ha part of the study area. Large gaps (>100 m2) were adequately detected by the method, and the gap size distribution obtained was similar to the one observed on the ground. The method was found to be effective in analyzing the forest canopy structure of large areas, but it is not suitable for the detection of small gaps.  相似文献   

7.
The rates of treefall and canopy opening in the evergreen oak forest in southwestern Japan were determined by studying the number and size distribution of overstory trees, wind damaged trees, and canopy gaps in a belt transect in the Kasugayama Forest Reserve in Nara City. Thirty three percent of the overstory trees wereCastanopsis cuspidata. The total area of canopy gaps was about 20% of the total land area in the study area. The ages of the gaps were determined by counting the annual rings of various kinds of trees growing in gaps. By comparing gap ages with meteorological data, it became evident that gap formation was mainly caused by strong typhoons. The mean time interval between strong typhoons visiting the forest reserve, 6.57 years, was determined by applying the MNY method to the meteorological data. The treefall rate and the mean area of canopy openings per year were 0.84 overstory trees/ha·year and 55.6 m2/ha·year, respectively. The mean residence time of the forest canopy was about 180 years.  相似文献   

8.
Fujita  T.  Itaya  A.  Miura  M.  Manabe  T.  Yamamoto  S. 《Plant Ecology》2003,168(1):23-29
We used aerial photographs to create a digital elevation model of the canopy surface of a 10-ha study area in a temperate old-growth evergreen forest. A topographic map of the ground surface in a 4-ha permanent plot within the study area was also drawn from ground measurements. The difference between the two elevation values (i.e., canopy surface – ground surface) at each point in a 5-m grid was considered to be the canopy height, and a canopy height profile was constructed from these data. The canopy structure in the 4-ha plot that was estimated in this way was compared with that obtained by two ground observation methods, i.e., the canopy (vegetation) height profile method and the canopy coverage census method. Large gaps were adequately detected by the aerial photograph method, but small gaps were less often detected. Gap size distribution obtained by the aerial photograph method was similar to that observed on the ground, and was a function of gap depth. This study indicates that if a detailed topographic map can be made, the canopy height profile derived from aerial photography can be effective in analyzing the canopy structure of evergreen forests, such as tropical rain forests, over large areas.  相似文献   

9.
Selective logging is a dominant form of land use in the Amazon basin and throughout the humid tropics, yet little is known about the spatial variability of forest canopy gap formation and closure following timber harvests. We established chronosequences of large‐area (14–158 ha) selective logging sites spanning a 3.5‐year period of forest regeneration and two distinct harvest methods: conventional logging (CL) and reduced‐impact logging (RIL). Our goals were to: (1) determine the spatial characteristics of canopy gap fraction immediately following selective logging in the eastern Amazon; (2) determine the degree and rate of canopy closure in early years following harvest among the major landscape features associated with logging – tree falls, roads, skid trails and log decks; and (3) quantify spatial and temporal differences in canopy opening and closure in high‐ and low‐damage harvests (CL vs. RIL). Across a wide range of harvest intensities (2.6–6.4 felled trees ha?1), the majority of ground damage occurred as skid trails (4–12%), whereas log decks and roads were only a small contributor to the total ground damage (<2%). Despite similar timber harvest intensities, CL resulted in more ground damage than RIL. Neither the number of log decks nor their individual or total area was correlated with the number of trees removed or intensity of tree harvesting (trees ha?1). The area of skids was well correlated with the ground area damaged (m2) per tree felled. In recently logged forest (0.5 years postharvest), gap fractions were highest in log decks (mean RIL=0.83, CL=0.99) and lowest in tree‐fall areas (RIL: 0.26, CL: 0.41). However, the small surface area of log decks made their contribution to the total area‐integrated forest gap fraction minor. In contrast, tree falls accounted for more than two‐thirds of the area disturbed, but the canopy gaps associated with felled trees were much smaller than for log decks, roads and skids. Canopy openings decreased in size with distance from each felled tree crown. At 0.5 years postharvest, the area initially affected by the felling of each tree was approximately 100 m in radius for CL and 50 m for RIL. Initial decreases in gap fraction during the first 1.5 years of regrowth diminished in subsequent years. Throughout the 3.5‐year period of forest recovery, tree‐fall gap fractions remained higher in CL than in RIL treatments, but canopy gap closure rates were higher in CL than in RIL areas. During the observed recovery period, the canopy gap area affected by harvesting decreased in radius around each felled tree from 100 to 40 m in CL, and from 50 to 10 m in RIL. The results suggest that the full spatial and temporal dynamics of canopy gap fraction must be understood and monitored to predict the effects of selective logging on regional energy balance and climate regimes, biogeochemical processes including carbon cycling, and plant and faunal population dynamics. This paper also shows that remote sensing of log decks alone will not provide an accurate assessment of total forest area impacted by selective logging, nor will it be closely correlated to damage levels and canopy gap closure rates.  相似文献   

10.
探究全球生态系统动力学调查(GEDI)多波束激光雷达数据估测区域森林郁闭度(FCC)的潜力,对于评估森林生态系统状态和林分环境具有重要作用。选取滇西北典型生态脆弱区香格里拉为研究区,以GEDI波形数据为信息源,提取46245个有林地光斑参数,使用经验贝叶斯克里金法(EBK)获取光斑参数在研究区未知空间的连续分布,结合54块实测样地数据,采用支持向量机的递归特征消除法(SVM-RFE)、随机森林(RF)和Pearson分析分别优选特征变量,基于贝叶斯优化(BO)随机森林回归模型(BO-RFR)、贝叶斯优化梯度回归模型(BO-GBRT)和偏最小二乘法(PLSR)研建森林郁闭度最佳估测模型。结果表明:(1)EBK法预测精度高,估测结果可靠,R2:0.20-0.92,RMSE:0.004-2812.912,MAE:0.003-1996.258,MRE:0.007-4.423;(2)基于不同特征优选方法筛选的特征变量和数量略有差异,SVM-RFE 法优选出6个参数(cover、pai、sensitivity、rv_a1、rv_a4、rg_a4)的平均交叉验证精度达0.84,RF法以贡献度5%为阈值筛选出5个参数(cover、pai、pgap_theta_error、modis_treecover、modis_nonvegetated),Pearson法以相关性大于0.3且在0.01水平显著优选出5个参数(cover、pai、rv_a5、rg_a5、pgap_theta_error);(3)不同特征变量优选方法筛选的建模参数研建估测模型精度差异性较大,以SVM-RFE和RF方法优选参数构建估测模型的精度更佳,SVM-RFE方法优选参数研建估测模型精度变化相对稳定,以 RF方法中的BO-GBRT模型为最佳FCC估测模型(R2=0.85、RMSE=0.069,P=86.5%);(4)采用BO-GBRT模型估测研究区森林郁闭度和空间制图,与GEDI pai参数预测的FCC具有较高空间相关性达0.53,FCC均值分别为0.58、0.61,主要分布在0.4-0.7,分别占比65.45%、51.79%。研究区森林郁闭度主要处于中度郁闭,北部区域主要为高度郁闭区,与研究区植被覆盖度的空间分布具有一致性,说明使用GEDI数据估测森林郁闭度的方法具有可行性、结果具有可靠性。研究为使用GEDI数据高效、及时、低成本估测大空间尺度的森林水平结构参数的相关研究奠定了基础。  相似文献   

11.
中亚热带常绿阔叶林林隙及其自然干扰特征的研究   总被引:12,自引:2,他引:12  
通过对福建万木林中亚热带常绿阔叶林中96个林隙的调查,研究了中亚热带常绿阔叶林的基本特征和自然干扰规律,结果表明,在中亚热带常绿阔叶林中,扩展林隙(EG)和冠空隙(CG)在中亚热带常绿阔叶林景观中的面积比例分别为50.86%和16.66%,每年干扰频率分别为0.85%·年^-1和0.28%·年^-1,林隙干扰的返回间隔期约为357年.林隙形成方式由树木折干形成的最为普遍,占形成木总数58.04%。其次是由于掘根风倒而形成的,占33.48%.林隙大多由两株树木形成,平均每个林隙拥有形成木2.33株.扩展林隙的大小多在100~300m^2之间,其中以200~300m^2者所占的面积比例最大,而以100~200m^2者所占的数量比例最大,冠空隙的大小多在100m^2以下,其中50m^2以下所占的数量比例和面积比例都是最大的.林隙形成木分布最多的径级在20~30cm之间。  相似文献   

12.
该研究集成高分辨率无人机(UAV)影像和激光雷达(LiDAR)点云数据估算亚热带天然次生林林分基本特征变量。首先, 基于LiDAR点云和反距离加权插值法构建林下高精度数字高程模型(DEM); 然后利用UAV影像对序列构建植被冠层上层三维点云, 并借助DEM进行高度信息归一化, 提取高度和冠层点云密度相关的特征变量; 最后, 构建预测模型并估算Lorey’s高、林分密度、胸高断面积、蓄积量。结果表明: 联合提取的特征变量与Lorey’s高的敏感性最高, 蓄积量次之, 林分密度和胸高断面积最低; 利用UAV灵活快速的手段获取森林冠层信息, 辅以高精度LiDAR数据获取的地形信息, 两者互补实现一种可重复的快速、廉价和灵活的林分特征的反演方式。  相似文献   

13.
丁圣彦  卢训令  李昊民 《生态学报》2005,25(11):2862-2867
常绿阔叶林是我国中亚热带东部典型植被类型,根据野外踏查和固定样地调查发现,天童国家森林公园内发育着常绿阔叶林一个完整的演替系列,包含着6个不同演替阶段。应用W inScanopy For C anopy A na lys is软件对研究区内不同演替阶段群落冠层进行分析,得到不同群落冠层和林下的光环境特征指标:PPFD(光合光量子通量密度)和相关的冠层结构形态学指标G ap fraction(空隙度)、LA I(叶面积指数)、M LA(平均叶倾角),通过对这些指标的分析比较,得到的基本规律大致是林冠层的光合有效光量子通量密度随演替逐渐降低,林冠下面的光合有效光量子通量密度随着群落演替的进展变化更为明显。马尾松林的林冠空隙度明显高于其他阶段的群落,总的趋势是随群落演替的进展而降低。叶面积指数随演替的进展而呈增加趋势。平均叶倾角随演替的进展先增大而后减小。这些结果反映了常绿阔叶林不同演替阶段群落由于不同树种树冠形态学结构的差异和微环境的不同,形成了特定群落内的特定光环境。  相似文献   

14.
In the Atlantic Montane Rain Forest of south-eastern Brazil, a field study was carried out to describe the forest disturbance regime, analyse canopy gap composition and evaluate the influence of habitat parameters on gap tree species composition. We characterized canopy gaps considering the group of variables as follows: area, type and number of tree/branch falls, topographic position, soil coverage and surrounding canopy trees. Gap composition was assessed at species level by measuring all individuals inside gaps higher than one meter. Mean gap area of the 42 canopy gaps analysed was 71.9 ± 9.0 m2 (mean ± SE). Out of the studied gaps, 35.7% were created by uprooted and by snapped trees, 16.7% by dead-standing trees and 11.9% by the fall of large branches. The disturbance regime was characterized by gap openings predominantly smaller than 150 m2 and by spatial patterning related to topography. Ridges had smaller gaps and higher proportions of gaps created by branch falls; slopes had bigger gaps generally created by uprooting events. The more abundant and frequent species were shade tolerant and the more species-rich families found inside gaps did not differ from the forest as a whole. Pioneer species were rare and restricted to medium and large size classes. The Indicator Species Analysis and the Canonical Correspondence Analysis indicated gap area, topography and the percentage of soil cover by the genera Calathea and Ctenanthe were the predominant variables correlated with woody species distribution. So, topography emerged as an important issue not only to the gap disturbance regime, but also to gap colonization. In respect to the influence of gap processes on the Atlantic Montane Rain Forest regeneration, our results support the view that canopy gap events may not be working as promoters of community wide floristic shifts.  相似文献   

15.
Abstract. Dynamics of a Sequoia sempervirens forest in northern California were studied with long‐term plot data (1.44 ha) and recent transect data. The study was conducted in an old stand (> 1100 yr) on alluvial flats. Over three decades (1972–2001), changes in the composition and structure of the tree stratum were minor. Sequoia maintained a broad distribution of stem diameters throughout the period. Annual rates of Sequoia mortality (0.0029) and ingrowth (0.0029) were low, reflecting the great longevity of Sequoia and the slow canopy turnover of the study forest. Transect data also indicated a low frequency of canopy gap disturbance (≤ 0.4% of total land area per yr), but gap size was potentially large (> 0.1 ha) and the fraction of area in gaps (ca. 20%) was similar to other temperate forests. Regeneration quadrats sampled along transects, in gap centers, and on logs revealed that Sequoia regeneration is elevated at gap edges. The longevity of Sequoia and its response to gap disturbances ensure that it will remain a dominant species in the study forest.  相似文献   

16.
In regenerating coastal dune forest, the canopy consists almost exclusively of a single species, Acacia karroo. When these trees die, they create large canopy gaps. If this promotes the persistence of pioneer species to the detriment of other forest species, then the end goal of a restored coastal dune forest may be unobtainable. We wished to ascertain whether tree species composition and richness differed significantly between canopy gaps and intact canopy, and across a gradient of gap sizes. In three known‐age regenerating coastal dune forest sites, we measured 146 gaps, the species responsible for gap creation, the species most likely to reach the canopy and the composition of adults, seedlings and saplings. We paired each gap with an adjacent plot of the same area that was entirely under intact canopy and sampled in the same way. Most species (15 of 23) had higher abundance in canopy gaps. The probability of self‐replacement was low for A. karroo even in the largest gaps. Despite this predominance of shade‐intolerant species, regenerating dune forest appears to be in the first phase of succession with ‘forest pioneers’ replacing the dominant canopy species. The nature of these species should lead to successful regeneration of dune forest.  相似文献   

17.
玉龙雪山自然保护区丽江云杉林林窗特征研究   总被引:14,自引:1,他引:14  
刘庆  吴彦  吴宁 《应用生态学报》2003,14(6):845-848
研究了玉龙雪山自然保护区云杉坪典型丽江云杉林林窗干扰的基本特征.结果表明,滇西北亚高山丽江云杉林林窗占林分面积比例冠层林窗和扩展林窗分别为28.8%和42.5%,干扰频率以林窗密度计算,林窗出现的平均密度为35个·hm^-2左右.林窗大小分布为面积大于100m^2的大林窗约占25%,面积为50~100m^2的中等林窗占41%,面积小于50m。的小林窗占34%.形成林窗最重要的方式是干基和干中折断,其次是枯立滇西北亚高山丽江云杉林林窗形成木80%以上是丽江云杉,通常直径为40~50cm、高度为15~25m.每个林窗形成木数量多为1~2株,约占68.8%,5株以上很少,最多为6株.随着林窗面积由大变小,林窗中更新苗木的密度逐渐变大,小林窗中更新木密度约为大林窗的5倍.  相似文献   

18.
瓦屋山中亚热带湿性常绿阔叶林的林窗形成特征   总被引:12,自引:0,他引:12  
调查了瓦屋山原生和次生的中亚热带性常绿阔叶林的林窗形成特征,并对林窗形成特征,林窗制造者的死亡方式和原因进行了探讨,结果表明,次生常绿阔叶林林窗面积均<10m^2,1hm^2仅9个,林下更新不明显,原生林林窗密度为1hm^215个,<40m^2的林窗占56%,>100m^2的林窗只有4个,林窗平均面积59m^2,扩展林窗平均面积105m^2,林窗和扩展林窗总面积占被调查林分的比例分别为11.1%和19.8%,林窗大小分布表现出负指数分布,即小林窗多,大林窗少,林窗形状的变异较大,大多数因边界木的多少而成不规则的多边形,大多数林窗是多个林木死亡事件的结果,因而大多数林窗有两个或两个以上的林窗制造者,各林窗年龄大多数在10a以上,最近形成的林窗极少,估计林窗表成率是0.01.a^-1,采用样地投影调查方法可提高测定精度,便于不同调查林分结果的有效比较,常绿阔叶林林窗形成原因较为复杂,小径木的死亡是竞争被压所致,而大径的较高冠层木的死亡则可能是树木生长发育以及与地形,风等自然因子相互作用的结果。  相似文献   

19.
A dominant hypothesis explaining tree species coexistence in tropical forest is that trade-offs in characters allow species to adapt to different light environments, but tests for this hypothesis are scarce. This study is the first that uses a theoretical plant growth model to link leaf trade-offs to whole-plant performances and to differential performances across species in different light environments. Using data of 50 sympatric tree species from a Bolivian rain forest, we observed that specific leaf area and photosynthetic capacity codetermined interspecific height growth variation in a forest gap; that leaf survival rate determined the variation in plant survival rate under a closed canopy; that predicted height growth and plant survival rate matched field observations; and that fast-growing species had low survival rates for both field and predicted values. These results show how leaf trade-offs influence differential tree performance and tree species' coexistence in a heterogeneous light environment.  相似文献   

20.
不同生境栓皮栎天然更新幼苗植冠构型分析   总被引:2,自引:0,他引:2  
栓皮栎存在于秦岭南坡的多种林分中,生活在不同生境中的个体往往形成不同的树冠形态和构型特征。为了说明不同生境条件下栓皮栎幼苗的植冠构型变化,采用典型抽样法,对秦岭南坡3种生境中(林冠下、林隙、林缘)的栓皮栎天然更新幼苗的侧枝、叶片特征及其空间分布进行了调查分析,结果表明:3种不同生境中栓皮栎幼苗植冠形态发生了明显的可塑性变化,(1)林冠下的幼苗明显为开阔型树冠,林隙和林缘处的幼苗树冠相对紧密;(2)幼苗的1级侧枝密度与分枝角度在3种生境下均差异显著(P0.05);从Ⅰ到Ⅳ层,林冠下幼苗的分枝角度在冠层内变化幅度不到5°,而林缘处幼苗的分枝角度变化高达40°;发生5个以上1级侧枝的概率以林冠下最大,为0.6;(3)从林缘、林隙到林冠下,幼苗的叶长、叶宽、单叶面积、叶面积指数逐渐降低,数量叶密度和比叶面积则逐渐增大,与其它两种生境相比,林冠下幼苗的叶片逐渐向树冠上层集中,且以更高序的侧枝为主要着生枝条;(4)林隙中栓皮栎幼苗的树高、地径明显优于林缘和林冠下,缩短了苗木进入主林层的时间,林隙对栓皮栎种群更新有利。在今后栓皮栎林的经营中,可以通过适当间伐来增加林隙数量,为森林更新和结构的优化的提供有利条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号