首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Research on the New Zealand short-tailed bat is reviewed from published and unpublished studies. The monotypic family Mystacinidae, at present assigned with the Vespertilionidae and Molossidae to the Vespertilionoidea, is considered to be best re-associated with the Emballonuridae and Noctilionidae in the Emballonuroidea. The two subspecies of Mystacina tuberculata Gray are retained pending elevation to specific status. The dichotomy of Mystacina stock probably occurred in the Pliocene, with the lesser short-tailed bat (M. t. tuberculata) and the greater short-tailed bat (M. t. robusta) evolving north and south respectively of the Pliocene Manawatu Strait at the onset of Pleistocene cooling. Mystacina has no known fossil record, and its origin and phylogeny are uncertain. The possibilities of an early to mid Tertiary origin in Antarctica, Australia, or South America and of an earlier Cretaceous origin in Gondwanaland are discussed.

Mystacina feeds seasonally on forest fruits, pollen, and nectar, and probably the year round on flying and resting arthropods. The Mystacinidae thus join the tropical Phyllostomatidae and Pteropodidae as the only families among 19 at present recognised in the Chiroptera with representatives feeding wholly or partially on plants. The partially extensile tongue of Mystacina has a brush of fine papillae on the tip suggesting modification and specialisation for this diet.

Several adaptations of Mystacina for terrestrial behaviour, such as the manner of folding and protecting the wings, and the basal talons on the claws of the robust feet, are unique among the Chiroptera. These assist the bat while feeding as well as roosting. Colonies reside usually in hollow trees or caves, but occur also in other terrestrial sites such as abandoned seabird burrows, holes in cliffs of volcanic pumice, and bat-excavated tunnels in the decayed floors and sides of fallen, hollow kauri trees. The short, erect, velvet-like fur of this bat, and its talons, are probably adaptations for this crevice-dwelling and tunnel-digging behaviour. The absence of mammalian predators and the lack of competition from other mammals throughout the Tertiary are thought to have significantly influenced the evolution of its terrestrial and arboreal adaptations.

Mystacina is a relatively small bat. Adult male and female lesser short-tailed bats weigh about 12–15 g and have forearm lengths of 40–43 mm. A female bat with full-term foetus weighed 20 g, and a juvenile soon after birth weighed 3.2 g. Greater short-tailed bats have forearm lengths of 44–49 mm, and probably weigh 25–35 g. Lesser short-tailed bats at latitude 35°S are monoestrous and monotocous. Copulation probably occurs in autumn and parturition in summer (December-January). Reproductive data for greater short-tailed bats at latitude 47°S suggest that they may be polyoestrous and monotocous, parturition occurring between spring and autumn.

Parasites and associated fauna of Mystacina include a recently described family, genus, and species of bat-fly (Mystacinobia zelandica) which, unlike all other bat-flies, feeds on the guano in the roosts and not on bat blood. Mystacina also has an undescribed tick (Argas (Carios) sp.), about six undescribed species of fur mite, and a recently described subfamily, genus, and species of sarcoptic wing mite (Chirophagoides mystacops). This bat appears to have no streblids, nycteribiids, fleas, or parasitic bugs, nor have any demodicid hair follicle mites, cestodes, nematodes, or blood parasites been found.  相似文献   

2.
We studied the roosting ecology of the long-tailed bat (Chalinolobus tuberculatus) during the springautumn months from 1998–2002 at Hanging Rock in the highly fragmented landscape of South Canterbury, South Island, New Zealand. We compared the structural characteristics and microclimates of roost sites used by communally and solitary roosting bats with those of randomly available sites, and roosts of C. tuberculatus occupying unmodified Nothofagus forest in the Eglinton Valley, Fiordland. Roosting group sizes and roost residency times were also compared. We followed forty radio-tagged bats to 94 roosts (20% in limestone crevices, 80% in trees) at Hanging Rock. Roosts were occupied for an average of 1 day and 86% were only used once during the study period. Colony size averaged 9.8 ± 1.1 bats (range 2–38) and colonies were dominated by breeding females and young. Indigenous forest, shrubland remnants and riparian zones were preferred roosting habitats. Communally roosting bats selected roosts in split trunks of some of the largest trees available. Selection of the largest available trees as roost sites is similar to behaviour of bat species occupying unmodified forested habitats. Temperatures inside 12 maternity roosts measured during the lactation period were variable. Five roosts were well insulated from ambient conditions and internal temperatures were stable, whereas the temperatures inside seven roosts fluctuated in parallel with ambient temperature. Tree cavities used by bats at Hanging Rock were significantly nearer ground level, had larger entrance dimensions, were less well insulated, and were occupied by fewer bats than roosts in the Eglinton Valley. These characteristics appear to expose their occupants to unstable microclimates and to a higher risk of threats such as predation. We suggest that roosts at Hanging Rock are of a lower quality than those in the Eglinton Valley, and that roost quality may be one of the contributory factors in the differential reproductive fitness observed in the two bat populations. The value of introduced willows (especially Salix fragilis) as bat roosts should be acknowledged. We recommend six conservation measures to mitigate negative effects of deterioration of roosting habitat: protection and enhancement of the quality of existing roosts, replanting within roosting habitat, provision of high quality artificial roosts, predator control, and education of landowners and statutory bodies.  相似文献   

3.
Social dynamics are an important but poorly understood aspect of bat ecology. Herein we use a combination of graph theoretic and spatial approaches to describe the roost and social network characteristics and foraging associations of an Indiana bat (Myotis sodalis) maternity colony in an agricultural landscape in Ohio, USA. We tracked 46 bats to 50 roosts (423 total relocations) and collected 2,306 foraging locations for 40 bats during the summers of 2009 and 2010. We found the colony roosting network was highly centralized in both years and that roost and social networks differed significantly from random networks. Roost and social network structure also differed substantially between years. Social network structure appeared to be unrelated to segregation of roosts between age classes. For bats whose individual foraging ranges were calculated, many shared foraging space with at least one other bat. Compared across all possible bat dyads, 47% and 43% of the dyads showed more than expected overlap of foraging areas in 2009 and 2010 respectively. Colony roosting area differed between years, but the roosting area centroid shifted only 332 m. In contrast, whole colony foraging area use was similar between years. Random roost removal simulations suggest that Indiana bat colonies may be robust to loss of a limited number of roosts but may respond differently from year to year. Our study emphasizes the utility of graphic theoretic and spatial approaches for examining the sociality and roosting behavior of bats. Detailed knowledge of the relationships between social and spatial aspects of bat ecology could greatly increase conservation effectiveness by allowing more structured approaches to roost and habitat retention for tree-roosting, socially-aggregating bat species.  相似文献   

4.
Roost requirements of most North American forest bats are well-documented, but questions remain regarding the ultimate mechanisms underlying roost selection. Hypotheses regarding roost selection include provision of a stable microclimate, space for large colonies, protection from predators, and proximity to foraging habitat, among others. Although several hypotheses have been proposed, specific mechanisms likely vary by species and geographic region. Rafinesque's big-eared bat (Corynorhinus rafinesquii) commonly roosts in trees with large basal hollows in the Coastal Plain of the southeastern United States. Our objective was to weigh evidence for hypotheses regarding selection of diurnal summer roosts by Rafinesque's big-eared bat at 8 study sites across the Coastal Plain of Georgia, USA. We used transect searches and radiotelemetry to locate roosts and measured 22 characteristics of trees, tree cavities, and surrounding vegetation at all occupied roosts and for randomly selected unoccupied trees. We evaluated 10 hypotheses using single-season occupancy models and used Akaike's information criterion to select the most parsimonious models. We located 170 tree roosts containing approximately 870 bats for our analysis. The best supported model predicted bat presence from cavity size, interior wall texture, and number of entrances. Because large cavities allow bats to fly and smooth walls impede attacks by terrestrial predators, our results are consistent with the hypothesis that bats select roosts that allow them to evade predators. However, data on predation rates are needed for a conclusive determination. Because trees suitable as roosts for Rafinesque's big-eared bat are rare in the landscape, protection of suitable forested wetland habitat is essential to provide current and long-term roost tree availability. © 2012 The Wildlife Society.  相似文献   

5.
《新西兰生态学杂志》2011,30(2):267-272
We analysed pollen in short-tailed bat guano samples from Rangataua Forest and from guano and pollen found in bat holding bags used in the Kaimanawa Range, central North Island. Fifty seven percent of the pollen from Rangataua was from a previously unrecorded source and was tentatively identified as Trachycarpus fortunei (Chinese windmill palm). The significant remaining pollen was identified as Collospermum (15%) and Nothofagus (14%) from Rangataua, and Collospermum (90%) and Nothofagus (6%) from Kaimanawa. While the presence of Collospermum from both sites is consistent with previous work, pollen from T. fortunei, an exotic palm growing near Rangataua Forest, has not previously been found in association with short-tailed bats. Despite nocturnal surveillance with automated bat detectors and infra-red video cameras, we failed to confirm bat visitation to these palms. Nothofagus is wind-pollinated and pollen extracted from samples taken from both sites is probably wind-borne contamination. A collation of data from all available studies on the pollen found associated with short-tailed bats throughout New Zealand reveals that flowers from just four plant groups appear to be regularly used by bats: Collospermum spp., Knightia excelsa, Metrosideros spp. and, apparently, T. fortunei.  相似文献   

6.
Many aspects of animal behaviour are affected by real‐time changes in the risk of predation. This conclusion holds for virtually all taxa and ecological systems studied, but does it hold for bats? Bats are poorly represented in the literature on anti‐predator behaviour, which may reflect a lack of nocturnal predators specialized on bats. If bats actually experience a world with minimal anti‐predator concerns, then they will provide a unique contrast within the realm of vertebrate ecology. Alternatively, such predator‐driven behaviour in bats may not yet be fully understood, given the difficulties in working with these highly mobile and nocturnal animals. We provide a wide‐ranging exploration of these issues in bat behaviour. We first cover the basic predator‐prey information available on bats, both on potential predators and the ways in which bats might perceive predators and respond to attacks. We then cover work relevant to key aspects of bat behaviour, such as choice of daytime roosts, the nature of sleep and torpor, evening roost departures, moonlight avoidance, landscape‐related movement patterns, and habitat selection. Overall, the evidence in favour of a strong influence of predators on bat behaviour is equivocal, with the picture clouded by contradictory results and a lack of information on potential predators and the perception of risk by bats. It seems clear that day‐active bats run a considerable risk of being killed by diurnal raptors, which are able to capture bats with relative ease. Thus, bats taking advantage of a pulse of insects just prior to sunset are likely taking risks to gain much‐needed energy. Further, the choice of daytime roosts by bats is probably strongly influenced by roost safety. Few studies, however, have directly addressed either of these topics. As a group, insectivorous temperate‐zone bats show no clear tendency to avoid apparently risky situations, such as activity on moonlit nights. However, some observations are consistent with the idea that predation risk affects choice of movement paths and feeding areas by temperate‐zone bats, as well as the timing of roost departures. The behaviour of tropical bats, on the other hand, seems more generally influenced by predators; this is especially true for tropical nectarivores and frugivores, but also for insectivorous bats. Presumably there are more serious predators on bats in the tropics (e.g. specialized raptors or carnivorous bats), but the identity of these predators is unclear. More information is needed to assess fully the influence of predators on bat behaviour. There is much need for work on the ways in which bats perceive predators via auditory, visual, and olfactory cues, and whether bats have some knowledge of the risks posed by different predators. Also needed is information on how predators attack bats and how bats react to attacking predators. Difficult to obtain, but of critical value, will be information on the nature of the predation risk experienced by bats while away from roosts and during the full darkness of night.  相似文献   

7.
Assays for the toxin sodium monofluoroacetate (compound 1080) were undertaken on arthropods collected from toxic baits after a brushtail possum (Trichosorus vulpecula) control operation in Nothofagus forest in central North Island, New Zealand. The 1080 concentrations measured (mean 57 mu g per g, max 130 mu g per g) are considerably higher than those reported by other researchers who collected arthropods randomly after control operations. These data, together with published information on sensitivities to 1080, as well as diet and consumption rates, were used to calculate the median lethal doses of arthropods that have fed on 1080 baits for a number of vertebrate insectivores found in Nothofagus forest. The results indicate small insectivores that feed on, or close to, the ground (e.g., tomtit Petroica macrocephala, robin P. australis, hedge sparrow Prunella modularis, and the short-tailed bat Mystacina tuberculata) may be vulnerable to secondary poisoning. For instance, a tomtit will receive the median lethal dose of 1080 from 1.32 g (i.e., 14.7% of its daily food intake) of arthropods containing 57 mu g per g of 1080. Because of their greater sensitivity to 1080 poisoning, bats are at much greater risk; a short-tailed bat will receive the median lethal dose of 1080 from as little as 0.04 g (0.7% of its daily food intake) of arthropods containing 57 mu g per g of 1080.  相似文献   

8.
9.
The short-tailed fruit bat, Carollia perspicillata, lives in groups in tree hollows and caves. To investigate whether these roosts might serve as information centres, we tested whether individuals' preferences for novel foods could be enhanced through social learning at the roost. We also determined whether socially learned preferences for novel foods were reversed through interaction with other roost mates by simulating changes in available food resources such as those associated with variations in timing of fruit production in different plant species. Bats exhibited socially induced preferences that were readily reversible. We suggest that for frugivorous bats, roosts can serve as centres for information exchange about novel and familiar, ephemeral foods without requiring conspecific recruitment to these resources.  相似文献   

10.
Summary The insectivorous bat Myotis lucifugus typically apportions the night into two foraging periods separated by an interval of night roosting. During this interval, many bats occupy roosts that are used exclusively at night and are spatially separate from maternity roosts. The proportion of the night which bats spend roosting, and thus the proportion spent foraging, vary both daily and seasonally in relation to the reproductive condition of the bats, prey density, and ambient temperature. A single, continuous night roosting period is observed during pregnancy. During lactation, females return to maternity roosts between foraging bouts, and night roosts are used only briefly and sporadically. Maximum use of night roosts occurs in late summer after young become volant. Superimposed upon these seasonal trends is day-to-day variation in the bats' nightly time budget. Long night roosting periods and short foraging periods are associated with cool nights and low prey density. This behavioral response may minimize energetic losses during periods of food scarcity.  相似文献   

11.
Clear-fell harvest of forest concerns many wildlife biologists because of loss of vital resources such as roosts or nests, and effects on population viability. However, actual impact has not been quantified. Using New Zealand long-tailed bats (Chalinolobus tuberculatus) as a model species we investigated impacts of clear-fell logging on bats in plantation forest. C. tuberculatus roost within the oldest stands in plantation forest so it was likely roost availability would decrease as harvest operations occurred. We predicted that post-harvest: (1) roosting range sizes would be smaller, (2) fewer roosts would be used, and (3) colony size would be smaller. We captured and radiotracked C. tuberculatus to day-roosts in Kinleith Forest, an exotic plantation forest, over three southern hemisphere summers (Season 1 October 2006–March 2007; Season 2 November 2007–March 2008; and Season 3 November 2008–March 2009). Individual roosting ranges (100% MCPs) post harvest were smaller than those in areas that had not been harvested, and declined in area during the 3 years. Following harvest, bats used fewer roosts than those in areas that had not been harvested. Over 3 years 20.7% of known roosts were lost: 14.5% due to forestry operations and 6.2% due to natural tree fall. Median colony size was 4.0 bats (IQR = 2.0–8.0) and declined during the study, probably because of locally high levels of roost loss. Post harvest colonies were smaller than colonies in areas that had not been harvested. Together, these results suggest the impact of clear-fell harvest on long-tailed bat populations is negative.  相似文献   

12.

Mystacinobia zelandica n.sp. is described. It is the sole member of Mystacinobia new genus and of Mystacinobiidae new family, and belongs to the superfamily Drosophiloidea. The species lives in large communities in roosts of the New Zealand short‐tailed bat, Mystacina tuberculata, and requires temperatures around 30°c for development and survival. Adults are physogastric, apterous, and have reduced eyes. The claws are adapted for movement over bat fur, but the mouthparts are not modified for blood‐feeding. Adults and larvae feed on guano. Eggs are laid in clusters in roost wood, and have non‐functional respiratory horns. Larvae have elongate anterior spiracles, tubular posterior spiracles, and 5 pairs of anal papillae. The puparium has a reduced operculum. Dispersal to new roosts depends entirely on transport by Mystacina, and as many as 10 phoretic flies have been found embedded in fur of individual bats leaving a roost to feed at night. The species has reached a degree of sociality which includes group oviposition, partial overlapping of generations, clustering of all stages, mutual grooming, male polymorphism, and extension of the males’ life‐span beyond the reproductive phase to form a sound‐producing guard caste which probably prevents the bats from interfering with the bat‐fly community. Mystacinobia zelandica is part of the New Zealand Endemic (Archaic) Element, which also includes Mystacina tuberculata.  相似文献   

13.
Dusk to dawn observations, using a bat detector and occasionally an image intensifier, were made outside two nursery roosts of lesser horseshoe bats Rhinolophus hipposideros from late May to September. Emergence was correlated with sunset but delayed by extended twilight. Light intensity was important in triggering departure and cloud cover advanced it. Light-testing behaviour was invariably undertaken, in the form of brief flights out and back into the roosts. The exit from one roost was shaded by trees and exploratory flights were generally more extended there. Heavy rain inhibited emergence. There was almost always intermittent activity throughout the night, with many individuals returning and departing, and no indication of seasonal or overnight peaks. A bat detector inside a third roost confirmed overnight observations at the other two. Some bats often returned to the roost for the night before dawn. Dawn return was linked to sunrise, prolonged twilight in midsummer hastening it. Colony size varied appreciably over periods of a few days and even overnight. There is some limited evidence that increased colony size, perhaps through social interaction, may have influenced timing of departure at dusk and return at dawn.  相似文献   

14.
Ho YY  Lee LL 《Zoological science》2003,20(8):1017-1024
Patterns of roost use by Formosan leaf-nosed bats (Hipposideros armiger terasensis) were studied from November 1998 to April 2000. Structural characteristics, microclimates, and disturbance levels of 17 roosts used by H. a. terasensis and 15 roosts either used by other bat species (2) or not occupied by any bat species were compared. Roosts used by these bats were significantly larger in size and had greater areas covered by water compared to unused roosts. Entrances of active roosts were more likely to be east-west oriented. Hibernacula had lower entrances and ceilings than did roosts used only in summer. Higher temperatures were recorded in non-breeding roosts than in breeding roosts, but temperature gradients in these two types of roosts did not differ. In winter, hibernacula were warmer, and the temperature fluctuated less than in non-hibernacula. The relative humidities in summer roosts and hibernacula were nearly 100%. Disturbance levels were significantly higher in non-breeding roosts than in breeding roosts, and in non-hibernacula than in hibernacula. These results suggest that the Formosan leaf-nosed bats are selective of their roosts, but the pattern of their roost selection differs from those reported for bats of temperate regions. The reasons for such differences may be related to differences in body size, behavior, and reproductive strategy of the Formosan leaf-nosed bats living in a subtropical climate in Taiwan.  相似文献   

15.
The decision where to live has far-reaching fitness consequences for animals. In contrast to most other mammals or birds that use sheltered nest sites, female Bechstein's bats frequently switch day roosts during one breeding season, and therefore must often decide where to spend the day. Selecting the right roost is important, because roost quality, e.g. microclimatic condition, influences survival and reproduction in bats. Although thermal factors are very important for the quality of roosts occupied by bats, whether bats base their day roost selection directly on roost temperature has not been tested in the field. Over one summer, we examined and tested the roost choice of 21 individually marked female Myotis bechsteinii living in one maternity colony. In a field experiment, we allowed the bats to choose between relatively warm versus cold bat boxes, while controlling for site preferences. We expected females to exhibit a preference for warm roosts during pregnancy and lactation to accelerate gestation and shorten the period of growth of their young. Roost occupancy over 160 census days reflected significant temperature differences among 89 surveyed roosts (14 tree holes and 75 bat boxes), and preferences changed with the season. Females significantly preferred cold roosts before parturition, whereas post-partum, they significantly favoured warm roosts. Temperature preferences were independent of the roost site, and thus roost selection was based directly on temperature. Boxes with significantly different daytime temperatures did not differ significantly at night. Consequently, bats would have to spend at least 1 day in a new roost to test it. Information transfer among colony members might facilitate knowledge of roost availability. Access to many roosts providing different microclimates is likely to be important for successful reproduction in the endangered Bechstein's bat.  相似文献   

16.
Reckardt K  Kerth G 《Oecologia》2007,154(3):581-588
Ectoparasites of vertebrates often spend part of their life cycle in their hosts’ home. Consequently, hosts should take into account the parasite infestation of a site when selecting where to live. In a field study, we investigated whether colonial female Bechstein’s bats (Myotis bechsteinii) adapt their roosting behaviour to the life cycle of the bat fly Basilia nana in order to decrease their contact with infective stages of this parasite. B. nana imagoes live permanently on the bat’s body but deposit puparia in the bat’s roosts. The flies metamorphose independently in the roosts, but after metamorphosis emerge only in the presence of a potential host. In a field experiment, the bats preferred non-contagious to contagious day-roosts and hence were able to detect either the parasite load of roosts or some correlate with infestation, such as bat droppings. In addition, 9 years of observational data on the natural roosting behaviour of female Bechstein’s bats indicate that the bats largely avoid re-occupying roosts when highly contagious puparia are likely to be present as a result of previous occupations of the roosts by the bat colony. Our results indicate that the females adapted their roosting behaviour to the age-dependent contagiousness (emergence probability) of the puparia. However, some infested roosts were re-occupied, which we assume was because these roosts provided advantages to the bats (e.g. a beneficial microclimate) that outweighed the negative effects associated with bat fly infestation. We suggest that roost selection in Bechstein’s bats is the outcome of a trade-off between the costs of parasite infestation and beneficial roost qualities.  相似文献   

17.
Domestic cats are suspected to have an impact on wild populations of birds and small mammals, but published reports of predation on bats are either rare or anecdotal. We based our study on 1012 records of bats admitted at four wildlife rescue centres in peninsular Italy in 2009–2011. We hypothesized that (1) cats prevalently prey on bats emerging from roosts, so newborns or non volant juveniles should be less exposed to predation; (2) because cats occur in human settlements, the bat species most frequently involved are house-roosting (3) predation is season-biased, most events being more likely to take place in summer when females congregate in roosts to reproduce; (4) predation events concentrate in sparse-urban and rural areas, where free-ranging cats occur more frequently; and (5) some individual cats may specialize in capturing bats. We found that predation by cats was the first cause of rescue for bats in the study area, accounting for 28.7% of records of adult bats admitted to rehabilitation centres. Although most bats caught by cats belonged to house-roosting species, at least 3 of the 11 species affected were tree- or cave-roosting. Predation affected more frequently adult females in summer and thus threatened reproductive colonies, which were often subjected to repeated predations. As predicted, predation events were associated with land cover, being more abundant in rural and sparse urban areas, where cats are more often allowed to stay outdoor, as confirmed by the results of a cat owner survey we carried out. Cats are explorative mammals, so they may be easily attracted at bat roosts by sensory cues involving sound, smell and vision. Our analysis covered a broad geographical area over a relatively long period and suggests that the threat posed to bats by cats may be significant and should be carefully considered in conservation plans. Strategies to mitigate this impact should encompass the control of feral cat populations and indoor restriction of owned cats at least where predation on bats is probable.  相似文献   

18.
In Neotropical regions, fruit bats are among the most important components of the remaining fauna in disturbed landscapes. These relatively small-bodied bats are well-known dispersal agents for many small-seeded plant species, but are assumed to play a negligible role in the dispersal of large-seeded plants. We investigated the importance of the small tent-roosting bat Artibeus watsoni for dispersal of large seeds in the Sarapiquí Basin, Costa Rica. We registered at least 43 seed species > 8 mm beneath bat roosts, but a species accumulation curve suggests that this number would increase with further sampling. Samples collected beneath bat feeding roosts had, on average, 10 times more seeds and species than samples collected 5 m away from bat feeding roosts. This difference was generally smaller in small, disturbed forest patches. Species-specific abundance of seeds found beneath bat roosts was positively correlated with abundance of seedlings, suggesting that bat dispersal may influence seedling recruitment. Our study demonstrates a greater role of small frugivorous bats as dispersers of large seeds than previously thought, particularly in regions where populations of large-bodied seed dispersers have been reduced or extirpated by hunting.  相似文献   

19.
In the UK, four out of 18 bat species are listed on the EU Habitats Directive, including the lesser horseshoe bat (Rhinolophus hipposideros), and their population status is closely monitored by visiting known roosts. R. hipposideros predominantly form maternity roosts in buildings, but roosts are impermanent features in the landscape and their distribution changes as bats form new roosts and abandon others. Locating new roosts requires intensive surveys which are challenging and inefficient. In this study, we provide a novel model-based strategy to identify potential R. hipposideros maternity roost sites that can be used to monitor bat populations. First, we model potential maternity roost habitat using record centre data on roost locations across Wales, Great Britain. We then constrain the area identified from modelling using record centre data on locations of bats in areas with no known roosts. We used two variable selection methods and three pseudo-absence data sets (random background points, random points in buildings and target group selection of mammal records) to produce six habitat suitability models. The three pseudo-absence data sets produced different habitat suitability maps, demonstrating the influence of pseudo-absence selection on species distribution models. The six models were combined using weighted mean average to produce an ensemble model that performed better than individual models and that indicated high levels of congruence in areas predicted to have high habitat suitability for maternity roosts. Our model revealed an extensive area (6523 km2; 31% of the area of Wales) containing 18,051 buildings in suitable habitat. Using record centre data on bat activity outside commuting range from known roosts reduced the potential survey area to 133 km2 (0.6% of the area of Wales) and 207 buildings. Our modelling outputs can be used to direct volunteers and bat surveyors in more targeted and efficient searches.  相似文献   

20.
We studied roosting and foraging behavior of two Neotropical gleaning bats, ?Orbigny's round-eared bat, Tonatia silvicola, and the fringe-lipped bat, Trachops cirrhosus (Phyllostomidae). Techniques included radio-tracking in a tropical lowland forest in Panama and analysis of data from long-term studies in Panama and Venezuela. Day roosts of T. silvicola were in arboreal termite nests. T. cirrhosus roosted in a hollow tree. T. silvicola emerged late (ca 60 min after sunset), and foraged close to the roosts (maximum distance 200–500 m). T. cirrhosus emerged early (ca 30 min after local sunset), and foraged farther from its roost (>1.5 km). Both bats used small foraging areas (3–12 ha) in tall, open forest. They foraged in continuous flight (maximum 27–36 min) or in short sally flights (<1 minute) from perches (“hang-and-wait” strategy). The small foraging areas of these bats and their sedentary foraging mode most likely make them vulnerable to habitat fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号