首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the structural similarities between cholesterol oxidase from Streptomyces and that from Brevibacterium, both enzymes exhibit different characteristics, such as catalytic activity, optimum pH and temperature. In attempts to define the molecular basis of differences in catalytic activity or stability, substitutions at six amino acid residues were introduced into cholesterol oxidase using site-directed mutagenesis of its gene. The amino acid substitutions chosen were based on structural comparisons of cholesterol oxidases from Streptomyces and BREVIBACTERIUM: Seven mutant enzymes were constructed with the following amino acid substitutions: L117P, L119A, L119F, V145Q, Q286R, P357N and S379T. All the mutant enzymes exhibited activity with the exception of that with the L117P mutation. The resulting V145Q mutant enzyme has low activities for all substrates examined and the S379T mutant enzyme showed markedly altered substrate specificity compared with the wild-type enzyme. To evaluate the role of V145 and S379 residues in the reaction, mutants with two additional substitutions in V145 and four in S379 were constructed. The mutant enzymes created by the replacement of V145 by Asp and Glu had much lower catalytic efficiency for cholesterol and pregnenolone as substrates than the wild-type enzyme. From previous studies and this study, the V145 residue seems to be important for the stability and substrate binding of the cholesterol oxidase. In contrast, the catalytic efficiencies (k(cat)/K(m)) of the S379T mutant enzyme for cholesterol and pregnenolone were 1.8- and 6.0-fold higher, respectively, than those of the wild-type enzyme. The enhanced catalytic efficiency of the S379T mutant enzyme for pregnenolone was due to a slightly high k(cat) value and a low K(m) value. These findings will provide several ideas for the design of more powerful enzymes that can be applied to clinical determination of serum cholesterol levels and as sterol probes.  相似文献   

2.
A cluster of conserved histidines and arginines (His-62, His-167, Arg-21, Arg-38, and Arg-168) in 3-phosphoglycerate kinase (PGK) has been implicated as possibly involved in the binding of 3-phosphoglycerate (3-PG) and/or stabilization of the negatively charged transition state. The role of these residues in the catalytic function of yeast PGK and in the substrate- and sulfate-dependent activation was investigated by site-directed mutagenesis. The following substitutions, R21A, R21Q, H62Q, H167S, and R168Q, produced functional enzymes. In contrast, the R38A and R38Q mutations resulted in a complete loss of catalytic activity. These results demonstrate that of the basic residues studied, only arginine 38 is essential for the catalytic function of PGK. A moderate decrease in the catalytic efficiency as the result of the R21A, H167S, and R168Q mutations and an increased catalytic efficiency of the H62Q mutant rule out a possible role of a positive charge at these positions in the mechanism of phosphoryl transfer reaction. In contrast to the wild type PGK and the H62Q mutant, both of which are activated at low and inhibited at high sulfate concentration, the H167S, R168Q, and R21A mutants exhibited a progressive inhibition with increased concentration of sulfate. The activation observed at high concentration of either ATP or 3-PG as a variable substrate in the steady-state kinetics of wild type PGK was abolished as the result of the latter three mutations. The results of this work support the hypothesis that PGK has two binding sites for anionic ligands, the catalytic and regulatory sites for each substrate and the activatory and inhibitory sites for sulfate, and suggest that arginine 21, arginine 168, and histidine 167 are located in the activatory anion binding site, common for sulfate, 3-PG, and ATP. The increased Km values for both substrates and decreased specific activities of the mutants suggest that this regulatory site is close to the catalytic site.  相似文献   

3.
Q103R subtilisin E was isolated following random mutagenesis and screening for improved activity in the presence of dimethylformamide (DMF). Our goal is to identify the mechanism(s) by which amino acid substitutions can enhance enzyme activity in polar organic solvents. A quantitative framework for comparing substrate binding and catalytic activities of mutant and wild-type enzymes in the presence and absence of DMF is outlined. Kinetic experiments performed at high salt concentration (1M KCl) reveal that the mechanism behind the Q103R variant's enhanced activity toward succinyl-Ala-Ala-Pro-Phe-p-nitroanilide is both electrostatic and nonelectrostatic in origin. Favorable electrostatic interactions between the negatively charged succinyl group of the substrate and the positive charge on Arg 103 are responsible for tighter substrate binding. This conclusion is supported by kinetic experiments performed on the related substrate Ala-Ala-Pro-Phe-p-nitroanilide and the hydrolysis kinetics of the Q103E, Q103K, and Q103S variants constructed by site-directed mutagenesis. These results highlight the importance of the choice of the substrate used to screen for improvements in catalytic activity.  相似文献   

4.
The roles of particular amino acids in substrate and coenzyme binding and catalysis of glucose-6-phosphate dehydrogenase of Leuconostoc mesenteroides have been investigated by site-directed mutagenesis, kinetic analysis, and determination of binding constants. The enzyme from this species has functional dual NADP(+)/NAD(+) specificity. Previous investigations in our laboratories determined the three-dimensional structure. Kinetic studies showed an ordered mechanism for the NADP-linked reaction while the NAD-linked reaction is random. His-240 was identified as the catalytic base, and Arg-46 was identified as important for NADP(+) but not NAD(+) binding. Mutations have been selected on the basis of the three-dimensional structure. Kinetic studies of 14 mutant enzymes are reported and kinetic mechanisms are reported for 5 mutant enzymes. Fourteen substrate or coenzyme dissociation constants have been measured for 11 mutant enzymes. Roles of particular residues are inferred from k(cat), K(m), k(cat)/K(m), K(d), and changes in kinetic mechanism. Results for enzymes K182R, K182Q, K343R, and K343Q establish Lys-182 and Lys-343 as important in binding substrate both to free enzyme and during catalysis. Studies of mutant enzymes Y415F and Y179F showed no significant contribution for Tyr-415 to substrate binding and only a small contribution for Tyr-179. Changes in kinetics for T14A, Q47E, and R46A enzymes implicate these residues, to differing extents, in coenzyme binding and discrimination between NADP(+) and NAD(+). By the same measure, Lys-343 is also involved in defining coenzyme specificity. Decrease in k(cat) and k(cat)/K(m) for the D374Q mutant enzyme defines the way Asp-374, unique to L. mesenteroides G6PD, modulates stabilization of the enzyme during catalysis by its interaction with Lys-182. The greatly reduced k(cat) values of enzymes P149V and P149G indicate the importance of the cis conformation of Pro-149 in accessing the correct transition state.  相似文献   

5.
CYP152A1 is an unusual, peroxygenase enzyme that catalyzes the beta- or alpha-hydroxylation of fatty acids by efficiently introducing an oxygen atom from H2O2 to the fatty acid. To clarify the mechanistic roles of amino acid residues in this enzyme, we have used site-directed mutagenesis of residues in the putative distal helix and measured the spectroscopic and enzymatic properties of the mutant proteins. Initially, we carried out Lys-scanning mutagenesis of amino acids in this region to determine residues of CYP152A1 that might have a mechanistic role. Among the Lys mutants, only P243K gave an absorption spectrum characteristic of a nitrogenous ligand-bound form of a ferric P450. Further investigation of the Pro243 site revealed that a P243H mutant also exhibited a nitrogen-bound form, but that the mutants P243A or P243S did not. On the hydroxylation of myristic acid by the Lys mutants, we observed a large decrease in activity for R242K and A246K. We therefore examined other mutants at amino acid positions 242 and 246. At position 246, an A246K mutant showed a roughly 19-fold lower affinity for myristic acid than the wild type. Replacing Ala246 with Ser decreased the catalytic activity, but did not affect affinity for the substrate. An A246V mutant showed slightly reduced activity and moderately reduced affinity. At position 242, an R242A showed about a fivefold lower affinity than the wild type for myristic acid. The Km values for H2O2 increased and Vmax values decreased in the order of wild type, R242K, and R242A when H2O2 was used; furthermore, Vmax/Km was greatly reduced in R242A compared with the wild type. If cumene hydroperoxide was used instead of H2O2, however, the Km values were not affected much by these substitutions. Together, our results suggest that in CYP152A1 the side chain of Pro243 is located close to the iron at the distal side of a heme molecule; the fatty acid substrate may be positioned near to Ala246 in the catalytic pocket, although Ala246 does not participate in hydrophobic interactions with the substrate; and that Arg242 is a critical residue for substrate binding and H2O2-specific catalysis.  相似文献   

6.
TaM-BMI is a genetically engineered chimeric protein consisting of the first 55 amino acids of cardiac troponin C (but with the normally inactive first Ca2+ binding domain reactivated by site- directed mutagenesis) ligated to the last three domains of chicken calmodulin (George, S.E., VanBerkum, M.F., Ono, T., Cook, R., Hanley, R.M., Putkey, J.A., and Means, A. R. (1990) J. Biol. Chem. 265, 9228-9235). This protein binds chicken smooth muscle myosin light chain kinase (smMLCK) but fails to activate the enzyme, thus functioning as a potent competitive inhibitor (Ki = 66 nM). We have created 29 mutants of calmodulin designed to identify the minimal number of alterations which must be introduced in the first domain to convert the protein to a competitive inhibitor of smMLCK. Alterations of three amino acids predicted to lie on the external surface of calmodulin (E14A, T34K, S38M) recapitulated the phenotype of TaM-BMI and exhibited a Ki of 38 nM. Both the triple mutant and TaM-BMI activated phosphodiesterase and bound a synthetic peptide analog of the calmodulin binding region of smMLCK with an affinity similar to that of native calmodulin (Kact and Kd values of approximately 2 and 3 nM respectively). When a synthetic peptide analog of the myosin light chain phosphorylation site was used as substrate rather than the 20-kDa light chains, TaM-BMI and the triple mutant were partial agonists: the Km for peptide substrate was increased 100- and 60-fold, and catalytic activity was 45 and 60%, respectively, relative to calmodulin. These data suggest TaM-BMI and E14A/T34K/S38M may interact with the calmodulin binding domain of smMLCK in a manner similar to calmodulin. However, alterations in electrostatic and hydrophobic interactions created by the three amino acid substitutions prevent the conformational change in the enzyme usually produced by calmodulin binding. Lack of such changes results in loss of catalytic activity and light chain binding. Additionally, our results show that altering only 3 amino acids residues converts calmodulin to an enzyme-selective antagonist, thus demonstrating the ability to separate calmodulin binding to smMLCK from calmodulin-induced activation of the enzyme.  相似文献   

7.
Fujimoto N  Tanaka K  Suzuki T 《FEBS letters》2005,579(7):1688-1692
The purpose of this study is to clarify the amino acid residues responsible for the synergism in substrate binding of arginine kinase (AK), a key enzyme in invertebrate energy metabolism. AKs contain a pair of highly conserved amino acids (D62 and R193) that form an ion pair, and replacement of these residues can cause a pronounced loss of activity. Interestingly, in the oyster Crassostrea AK, these residues are replaced by an N and a K, respectively. Despite this replacement, the enzyme retains high activity and moderate synergism in substrate binding (Kd/Km=2.3). We replaced the N62 by G or D and the K193 by G or R in Crassostrea AK, and also constructed the double mutants of N62G/K193G and N62D/K193R. All of the mutants retained 50-90% of the wild-type activity. In N62G and N62D mutants, the Kmarg for arginine binding was comparable to that of wild-type enzyme, but the Kdarg was increased 2-5-fold, resulting in a strong synergism (Kd/Km=4.9-11.3). On the other hand, in K193G and K193R mutants, the Kmarg was increased 4-fold, and synergism was lost almost completely (Kd/Km=1.0-1.4). The N62G/K193G double mutant showed similar characteristics to the K193G and K193R mutants. Another double mutant, N62D/K193R, similar to the amino acid pair in the wild-type enzyme, had characteristics similar to those of the wild-type enzyme. These results indicate that the amino acid residues 62 and 193 play the key role in mediating the synergism in substrate binding of oyster arginine kinase.  相似文献   

8.
In this study we examine for the first time the roles of the various domains of human RNase H1 by site-directed mutagenesis. The carboxyl terminus of human RNase H1 is highly conserved with Escherichia coli RNase H1 and contains the amino acid residues of the putative catalytic site and basic substrate-binding domain of the E. coli RNase enzyme. The amino terminus of human RNase H1 contains a structure consistent with a double-strand RNA (dsRNA) binding motif that is separated from the conserved E. coli RNase H1 region by a 62-amino acid sequence. These studies showed that although the conserved amino acid residues of the putative catalytic site and basic substrate-binding domain are required for RNase H activity, deletion of either the catalytic site or the basic substrate-binding domain did not ablate binding to the heteroduplex substrate. Deletion of the region between the dsRNA-binding domain and the conserved E. coli RNase H1 domain resulted in a significant loss in the RNase H activity. Furthermore, the binding affinity of this deletion mutant for the heteroduplex substrate was approximately 2-fold tighter than the wild-type enzyme suggesting that this central 62-amino acid region does not contribute to the binding affinity of the enzyme for the substrate. The dsRNA-binding domain was not required for RNase H activity, as the dsRNA-deletion mutants exhibited catalytic rates approximately 2-fold faster than the rate observed for wild-type enzyme. Comparison of the dissociation constant of human RNase H1 and the dsRNA-deletion mutant for the heteroduplex substrate indicates that the deletion of this region resulted in a 5-fold loss in binding affinity. Finally, comparison of the cleavage patterns exhibited by the mutant proteins with the cleavage pattern for the wild-type enzyme indicates that the dsRNA-binding domain is responsible for the observed strong positional preference for cleavage exhibited by human RNase H1.  相似文献   

9.
Three arginine residues (Arg-11, Arg-39, Arg-61) are found at the active site of 4-oxalocrotonate tautomerase in the X-ray structure of the affinity-labeled enzyme [Taylor, A. B., Czerwinski, R. M., Johnson, R. M., Jr., Whitman, C. P., and Hackert, M. L. (1998) Biochemistry 37, 14692-14700]. The catalytic roles of these arginines were examined by mutagenesis, kinetic, and heteronuclear NMR studies. With a 1,6-dicarboxylate substrate (2-hydroxymuconate), the R61A mutation showed no kinetic effects, while the R11A mutation decreased k(cat) 88-fold and increased K(m) 8.6-fold, suggesting both binding and catalytic roles for Arg-11. With a 1-monocarboxylate substrate (2-hydroxy-2,4-pentadienoate), no kinetic effects of the R11A mutation were found, indicating that Arg-11 interacts with the 6-carboxylate of the substrate. The stereoselectivity of the R11A-catalyzed protonation at C-5 of the dicarboxylate substrate decreased, while the stereoselectivity of protonation at C-3 of the monocarboxylate substrate increased in comparison with wild-type 4-OT, indicating the importance of Arg-11 in properly orienting the dicarboxylate substrate by interacting with the charged 6-carboxylate group. With 2-hydroxymuconate, the R39A and R39Q mutations decreased k(cat) by 125- and 389-fold and increased K(m) by 1.5- and 2.6-fold, respectively, suggesting a largely catalytic role for Arg-39. The activity of the R11A/R39A double mutant was at least 10(4)-fold lower than that of the wild-type enzyme, indicating approximate additivity of the effects of the two arginine mutants on k(cat). For both R11A and R39Q, 2D (1)H-(15)N HSQC and 3D (1)H-(15)N NOESY-HSQC spectra showed chemical shift changes mainly near the mutated residues, indicating otherwise intact protein structures. The changes in the R39Q mutant were mainly in the beta-hairpin from residues 50 to 57 which covers the active site. HSQC titration of R11A with the substrate analogue cis, cis-muconate yielded a K(d) of 22 mM, 37-fold greater than the K(d) found with wild-type 4-OT (0.6 mM). With the R39Q mutant, cis, cis-muconate showed negative cooperativity in active site binding with two K(d) values, 3.5 and 29 mM. This observation together with the low K(m) of 2-hydroxymuconate (0.47 mM) suggests that only the tight binding sites function catalytically in the R39Q mutant. The (15)Nepsilon resonances of all six Arg residues of 4-OT were assigned, and the assignments of Arg-11, -39, and -61 were confirmed by mutagenesis. The binding of cis,cis-muconate to wild-type 4-OT upshifts Arg-11 Nepsilon (by 0.05 ppm) and downshifts Arg-39 Nepsilon (by 1.19 ppm), indicating differing electronic delocalizations in the guanidinium groups. A mechanism is proposed in which Arg-11 interacts with the 6-carboxylate of the substrate to facilitate both substrate binding and catalysis and Arg-39 interacts with the 1-carboxylate and the 2-keto group of the substrate to promote carbonyl polarization and catalysis, while Pro-1 transfers protons from C-3 to C-5. This mechanism, together with the effects of mutations of catalytic residues on k(cat), provides a quantitative explanation of the 10(7)-fold catalytic power of 4-OT. Despite its presence in the active site in the crystal structure of the affinity-labeled enzyme, Arg-61 does not play a significant role in either substrate binding or catalysis.  相似文献   

10.
Bartish G  Nygård O 《Biochimie》2008,90(5):736-748
Elongation factor 2 (eEF2) is a member of the G-protein super family. G-proteins undergo conformational changes associated with binding of the guanosine nucleotide and hydrolysis of the bound GTP. These structural rearrangements affects the Switch I region (also known as the Effector loop). We have studied the role of individual amino acids in the Switch I region (amino acids 25-73) of S. cerevisiae eEF2 using functional complementation in yeast. 21 point mutations in the Switch I region were created by site-directed mutagenesis. Mutants K49R, E52Q, A53G, F55Y, K60R, Q63A, T68S, I69M and A73G were functional while mutants R54H, F55N, D57A, D57E, D57S, R59K, R59M, Q63E, R65A, R65N, T68A and T68M were inactive. Expression of mutants K49R, A53G, Q63A, I69M and A73G was associated with markedly decreased growth rates and yeast cells expressing mutants A53G and I69M became temperature sensitive. The functional capacity of eEF2 in which the major part Switch I (amino acids T56 to I69) was converted into the homologous sequence found in EF-G from E. coli was also studied. This protein chimera could functionally replace yeast eEF2 in vivo. Yeast cells expressing this mutant grew extremely slowly, showed increased cell death and became temperature sensitive. The ability of the mutant to replace authentic eEF2 in vivo indicates that the structural rearrangement of Switch I necessary for eEF2 function is similar in eukaryotes and bacteria. The effect of two point mutations in the P-loop was also studied. Mutant A25G but not A25V could functionally replace yeast eEF2 even if cells expressing the mutant grew slowly. The A25G mutation converted the consensus sequences AXXXXGK[T/S] in eEF2 to the corresponding motif GXXXXGK[T/S] found in all other G-proteins, suggesting that the alanine found in the P-loop of peptidyltranslocases are not essential for function.  相似文献   

11.
Several functional domains, especially the active site regions, in aromatase cytochrome P450 were inferred by alignment of amino acid sequences of the enzyme from five species, human, rat, mouse, chicken, and trout, and that of Pseudomonas putida cytochrome P450cam, whose x-ray structure has been determined (Poulos, T.L., Finzel, B.C., and Howard, A.J. (1987) J. Mol. Biol. 195, 687-700). The predicted functions of these domains have been evaluated by site-directed mutagenesis. Eighteen mutants, including seven new mutants, have been generated in this laboratory. The seven newly prepared mutants are Q123E, Q123H, T310S, T310C, R365K, R365A, and N delta 20 (a mutant without the first 20 amino acids). The preparation and characterization of these new mutants are described. The structural model described in this paper should be very useful for future structure-function studies of aromatase by site-directed mutagenesis.  相似文献   

12.
In order to identify amino acids involved in binding the co-substrate glutathione to the human glutathione S-transferase (GST) pi enzyme, we assembled three criteria to implicate amino acids whose role in binding and catalysis could be tested. Presence of a residue in the highly conserved exon 4 of the GST gene, positional conservation of a residue in 12 glutathione S-transferase amino acid sequences, and results from published chemical modification studies were used to implicate 14 residues. A bacterial expression vector (pUC120 pi), which enabled abundant production (2-26% of soluble Escherichia coli protein) of wild-type or mutant GST pi, was constructed, and, following nonconservative substitution mutation of the 14 implicated residues, five mutants (R13S, D57K, Q64R, I68Y, L72F) showed a greater than 95% decrease in specific activity. A quantitative assay was developed which rapidly measured the ability of wild-type or mutant glutathione S-transferase to bind to glutathione-agarose. Using this assay, each of the five loss of function mutants showed a greater than 20-fold decrease in binding glutathione, an observation consistent with a recent crystal structure analysis showing that several of these residues help to form the glutathione-binding cleft.  相似文献   

13.
Medlock AE  Dailey HA 《Biochemistry》2000,39(25):7461-7467
Insertion of ferrous iron into protoporphyrin IX is catalyzed by ferrochelatase (EC 4.99.1.1). Human and Schizosaccharomyces pombe forms of ferrochelatase contain a [2Fe-2S] cluster with three of the four coordinating cysteine ligands located within the 30 carboxyl-terminal residues. Saccharomyces cerevisiae ferrochelatase contains no cluster, but has comparable activity. Truncation mutants of S. cerevisiae lacking either the last 37 or 16 amino acids have no enzyme activity. Chimeric mutants of human, S. cerevisiae, and Sc. pombe ferrochelatase have been created by switching the terminal 10% of the carboxy end of the enzyme. Site-directed mutagenesis has been used to introduce the fourth cysteinyl ligand into chimeric mutants that are 90% S. cerevisiae. Activity was assessed by rescue of Deltahem H, a ferrochelatase deficient strain of Escherichia coli, and by enzyme assays. UV-visible and EPR spectroscopy were used to investigate the presence or absence of the [2Fe-2S] cluster. Only 2 of the 13 chimeric mutants that were constructed produced active enzymes. HYB, which is predominately human with the last 40 amino acids being that of S. cerevisiae, is an active protein which does not contain a [2Fe-2S] cluster. The other active chimeric mutant, HSp, is predominately human ferrochelatase with the last 38 amino acids being that of Sc. pombe ferrochelatase. This active mutant contains a [2Fe-2S] cluster, as verified by UV-visible and EPR spectroscopic techniques. No other chimeric proteins had detectable enzyme activity or a [2Fe-2S] cluster. The data are discussed in terms of structural requirements for cluster stability and the role that the cluster plays for ferrochelatase.  相似文献   

14.
Cytochrome-c reductase was isolated from Saccharomyces cerevisiae GM50-3C. A tenth subunit was detected with molecular mass 8.5 kDa on SDS/PAGE. Two yeast mutants selected for resistance to myxothiazol, an inhibitor of the Q0 center (Q, ubiquinone) of cytochrome-c reductase, were analysed. The single amino acid substitution in the cytochrome-b subunit, N256Y in the mutant Myx-119 and G137R in the mutant Myx-118, caused a general resistance to all methoxyacrylate inhibitors to about fivefold higher concentrations. The kinetic measurements with the substrate analogue nonylbenzohydroquinone revealed a decrease in the Km by fivefold and of the maximal turnover number by fourfold in the N256Y mutant. The Km of the G137R mutant was not affected and the Vmax was 50% higher. Cytochrome-c reductase was isolated from mutants to allow determination of the Kd values of methoxyacrylate-stilbene and myxothiazol by means of fluorescence-quench and red-shift titration. Changes in the structure of the multisubunit complex due to a single amino acid exchange became obvious during the purification procedure. SDS/PAGE of the purified enzyme revealed that the substitution N256Y in cytochrome b led to a loss of the iron-sulfur protein and the fifth small subunit with no change in the pattern of the remaining eight subunits. The subunit pattern of the G137R mutant was identical to the wild type. This is the first report of a single amino acid exchange in the catalytic subunit of cytochrome b, greatly affecting the iron-sulfur protein, the second important catalytic subunit of the Q0 center. This is a new approach to obtain structural information about the interaction of cytochrome b with the iron-sulfur subunit.  相似文献   

15.
Through alignment of amino acid sequences among different phytases, we found that the amino acid at residues 53 and 91 vary broadly. To prove that the amino acid at residues 53 and 91 were related to phytase specific activity, two single mutant phyI1s Q53R and K91D were obtained by site-directed mutagenesis strategy. None of the single amino acid residues in the two mutants was in a position reported to be important for catalysis or substrate binding. Kinetic analysis of the phytase activity of the two mutants (Q53R and K91D) indicated that the mutants were attributed to 2.2- and 1.5-fold increased specific activity, and a 1.47- and 1.16-fold increased affinity for sodium phytate. In addition, the overall catalytic efficiency (k cat/K m) of the two mutants was improved 4.08- and 2.84-fold compared to that of the wild type. Such mutants will be instrumental for the structure–function study of the enzyme and for industrial application.  相似文献   

16.
A cDNA for oxidosqualene:lanosterol cyclase (OSLC) was cloned and sequenced from the fungus Cephalosporium caerulens, that produces a steroidal antibiotic, helvolic acid. A 2280 bp open reading frame encoded an M(r) 87078 protein with 760 amino acids. The cDNA was functionally expressed in the OSLC-deficient mutant GIL77 strain of Saccharomyces cerevisiae. A truncated recombinant enzyme (Delta49N) starting from the second methionine (M50) residue was completely inactive, suggesting that ca. 30 additional hydrophilic amino acid residues at the N-terminal are essential for the folding of the enzyme. Furthermore, the active site residues, H234 and D456 (numbering in S. cerevisiae OSLC), were chosen for site-directed mutagenesis experiments; H234E, H234Y, H234F, D456E, D456N, and D456H mutants were inactive, while H234W and H234K mutants retained lanosterol-forming activity.  相似文献   

17.
Uracil residues are eliminated from cellular DNA by uracil-DNA glycosylase, which cleaves the N-glycosylic bond between the uracil base and deoxyribose to initiate the uracil-DNA base excision repair pathway. Co-crystal structures of the core catalytic domain of human uracil-DNA glycosylase in complex with uracil-containing DNA suggested that arginine 276 in the highly conserved leucine intercalation loop may be important to enzyme interactions with DNA. To investigate further the role of Arg(276) in enzyme-DNA interactions, PCR-based codon-specific random mutagenesis, and site-specific mutagenesis were performed to construct a library of 18 amino acid changes at Arg(276). All of the R276X mutant proteins formed a stable complex with the uracil-DNA glycosylase inhibitor protein in vitro, indicating that the active site structure of the mutant enzymes was not perturbed. The catalytic activity of the R276X preparations was reduced; the least active mutant, R276E, exhibited 0.6% of wildtype activity, whereas the most active mutant, R276H, exhibited 43%. Equilibrium binding studies utilizing a 2-aminopurine deoxypseudouridine DNA substrate showed that all R276X mutants displayed greatly reduced base flipping/DNA binding. However, the efficiency of UV-catalyzed cross-linking of the R276X mutants to single-stranded DNA was much less compromised. Using a concatemeric [(32)P]U.A DNA polynucleotide substrate to assess enzyme processivity, human uracil-DNA glycosylase was shown to use a processive search mechanism to locate successive uracil residues, and Arg(276) mutations did not alter this attribute.  相似文献   

18.
To investigate the function of aspartic acid residue 101 and arginine residue 166 in the active site of Escherichia coli alkaline phosphatase (EAP), two single mutants D101S (Asp 101 &#77 Ser) and R166K (Arg 166 &#77 Lys) and a double mutant D101S/R166K of EAP were generated through site-directed mutagenesis based on over-lap PCR method. Their enzymatic kinetic properties, thermal stabilities and possible reaction mechanism were explored. In the presence of inorganic phosphate acceptor, 1 M diethanolamine buffer, the k cat for D101S mutant enzyme increased 10-fold compared to that of wild-type EAP. The mutant R166K has a 2-fold decrease of k cat relative to the wild-type EAP, but the double mutant D101S/R166K was in the middle of them, indicative of an additive effect of these two mutations. On the other hand, the catalytic efficiencies of mutant enzymes are all reduced because of a substantial increase of K m values. All three mutants were more resistant to phosphate inhibitor than the wild-type enzyme. The analysis of the kinetic data suggests that (1) the D101S mutant enzyme obtains a higher catalytic activity by allowing a faster release of the product; (2) the R166K mutant enzyme can reduce the binding of the substrate and phosphate competitive inhibitor; (3) the double mutant enzyme has characteristics of both quicker catalytic turnover number and decreased affinity for competitive inhibitor. Additionally, pre-steady-state kinetics of D101S and D101S/R166K mutants revealed a transient burst followed by a linear steady state phase, obviously different from that of wild-type EAP, suggesting that the rate-limiting step has partially change from the release of phosphate from non-covalent E-Pi complex to the hydrolysis of covalent E-Pi complex for these two mutants.  相似文献   

19.
To investigate the function of aspartic acid residue 101 and arginine residue 166 in the active site of Escherichia coli alkaline phosphatase (EAP), two single mutants D101S (Asp 101 →Ser) and R166K (Arg 166 →Lys) and a double mutant D101S/R166K of EAP were generated through site-directed mutagenesis based on over-lap PCR method. Their enzymatic kinetic properties, thermal stabilities and possible reaction mechanism were explored. In the presence of inorganic phosphate acceptor, 1 M diethanolamine buffer, the k cat for D101S mutant enzyme increased 10-fold compared to that of wild-type EAP. The mutant R166K has a 2-fold decrease of k cat relative to the wild-type EAP, but the double mutant D101S/R166K was in the middle of them, indicative of an additive effect of these two mutations. On the other hand, the catalytic efficiencies of mutant enzymes are all reduced because of a substantial increase of K m values. All three mutants were more resistant to phosphate inhibitor than the wild-type enzyme. The analysis of the kinetic data suggests that (1) the D101S mutant enzyme obtains a higher catalytic activity by allowing a faster release of the product; (2) the R166K mutant enzyme can reduce the binding of the substrate and phosphate competitive inhibitor; (3) the double mutant enzyme has characteristics of both quicker catalytic turnover number and decreased affinity for competitive inhibitor. Additionally, pre-steady-state kinetics of D101S and D101S/R166K mutants revealed a transient burst followed by a linear steady state phase, obviously different from that of wild-type EAP, suggesting that the rate-limiting step has partially change from the release of phosphate from non-covalent E-Pi complex to the hydrolysis of covalent E-Pi complex for these two mutants.  相似文献   

20.
The roles of selected amino acid residues of human 14-kDa beta-galactoside-binding lectin were studied by site-directed mutagenesis. Ten mutant lectin proteins were produced, in each of which one of the residues regarded as possibly related to the stability of the lectin (6 cysteine residues) or one of those highly conserved in the vertebrate beta-galactoside-binding lectin family (Asn46, Trp68, Glu71, and Arg73), was substituted. All the mutant lectins in which one of the cysteine residues had been substituted with serine (C2S, C16S, C42S, C60S, C88S, and C130S) proved to have sugar binding ability comparable with that of the wild-type lectin. In addition, one of the mutants in which Cys2 was substituted (C2S) was found to have become considerably more stable under non-reducing conditions. It retained asialofetuin binding activity for over a week in the absence of beta-mercaptoethanol, while the wild-type lectin lost it within a day. This suggests that oxidation of Cys2 could be a key process in the inactivation of human 14-kDa lectin. Substitution of highly conservative Trp68 to tyrosine (W68Y) slightly reduced lactose binding ability, but the mutant was still adsorbed strongly on asialofetuin-agarose. Other mutant lectins in which conservative hydrophilic amino acids were substituted (N46D, E71Q, and R73H) failed to bind to the asialofetuin agarose, with no sign of retardation. Thus, conservative hydrophilic residues proved to be more important in carbohydrate recognition than the cysteine and tryptophan residues, contrary to the widely accepted concept that these latter residues are essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号