首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solute content of stomata from intact onion cotyledons grownunder either greenhouse or growth chamber conditions was followedover the course of a daily light cycle to determine patternsof osmoregulation. Initial opening of stomata was well correlatedwith guard cell potassium accumulation under both growth conditions.Subsequently, however, there was a consistent decrease in guardcell potassium content despite constant or increasing aperture.Although a secondary increase in potassium was sometimes observedduring the second half of the light cycle, guard cell potassiumcontent was poorly correlated with aperture. Sucrose levelsin guard cells increased 60% during the period of decliningpotassium content, suggesting its use as an alternate osmoticum.Guard cells are postulated to use multiple pathways for theproduction of osmotica over the course of a complete daily cycleof stomatal movements. (Received December 5, 1995; Accepted April 9, 1996)  相似文献   

2.
The dependence on Na+, K+, and Cl- of uptake and accumulation of [3H]noradrenaline was studied in plasma membrane vesicles isolated from PC-12 pheochromocytoma cells. Plasma membrane vesicles accumulated [3H]noradrenaline when an inward-directed gradient for Na+ and an outward-directed gradient for K+ were imposed across the vesicle membrane. Under these conditions, initial rates of uptake of [3H]noradrenaline were saturable (Km = 0.14 microM) and inhibited by a series of substrates and inhibitors of "uptake". The IC50 values were positively correlated with those for inhibition of uptake into intact PC-12 cells. Uptake and accumulation of [3H]noradrenaline in plasma membrane vesicles were absolutely dependent on external Na+ and Cl-; they were dependent on an inwardly directed gradient for Na+ but less dependent on an inwardly directed gradient for Cl-. Internal K+ strongly enhanced uptake and accumulation of [3H]noradrenaline. Rb+, but not Li+, had the capacity to replace internal K+. Two explanations are proposed for this effect of internal K+: (a) creation of a K+ diffusion potential (inside negative) provides a driving force for inward transport, and/or (b) K+ increases the turnover rate by formation of a highly mobile potassium-carrier complex. A hypothetical scheme for the transport of noradrenaline is presented.  相似文献   

3.
To gain insights into the performance of poplar guard cells, we have measured stomatal conductance and aperture, guard cell K+ content and K+-channel activity of the guard cell plasma membrane in intact poplar leaves. In contrast to Arabidopsis, broad bean and tobacco grown under same conditions, poplar stomata operated just in the dynamic range - any change in conductance altered the rate of photosynthesis. In response to light, CO2 and abscisic acid (ABA), the stomatal opening velocity was two to five times faster than that measured for Arabidopsis thaliana, Nicotiana tabacum and Vicia faba. When stomata opened, the K+ content of guard cells increased almost twofold, indicating that the very fast stomatal opening in this species is mediated via potassium uptake. Following impalement of single guard cells embedded in their natural environment of intact leaves with triple-barrelled microelectrodes, time-dependent inward and outward-rectifying K+-channel-mediated currents of large amplitude were recorded. To analyse the molecular nature of genes encoding guard cell K+-uptake channels, we cloned K+-transporter Populustremula (KPT)1 and functionally expressed this potassium channel in a K+-uptake-deficient Escherichia coli mutant. In addition to guard cells, this K+-transporter gene was expressed in buds, where the KPT1 gene activity strongly correlated with bud break. Thus, KPT1 represents one of only few poplar genes associated with bud flush.  相似文献   

4.
Abstract Increasing growth medium NaCl concentration inhibited the growth of Thiocapsa roseopersicina OP-1 due to both an increase in the lag phase of the growth cycle and a reduction in specific growth rate. Addition of 0.05% w/v acetate to the growth medium stimulated growth at all NaCl concentrations, but this stimulation was greatest at supra-optimal NaCl concentrations. Optimal growth under all conditions tested in both batch and continuous culture was recorded at a salt concentration of 0.3 M NaCl. The intracellular concentrations of both K+ and sucrose increased linearly with increasing growth medium NaCl concentration indicating as osmoregulatory role for these solutes. Time courses of osmoadaptation in batch culture demonstrated a biphasic response to osmotic stress. The initial phase consisted of a rapid accumulation (within 30 min) of K+ from the growth medium. This was followed by a slower synthesis of sucrose which partially replaced intracellular K+ during the second phase of osmoadaptation.  相似文献   

5.
Growth and ionic relations were studied in six triticale cultivars of different geographical origins grown in a greenhouse in nutrient solution with or without the addition of 100 mM NaCl. In 21 d old plants of all the six cultivars growth was little affected in the salt treatment, whereas in the subsequent three harvests during vegetative phase (after 31, 38 and 45 d), growth reduction effects of salinity were progressively pronounced. Generally, shoots of all the six cultivars accumulated relatively more K+ as compared to Na+ or Cl-. Differential accumulation of K+, Na+ and Cl- by various cultivars was coupled with variable rates of Na+ and Cl- transport from root to shoot which were — to some extent- related to cultivar differences in growth in saline root media. Chloride content of shoots of the six cultivars was negatively correlated with the relative growth reduction due to salinity at the four harvests.  相似文献   

6.
Leaves regulate gas exchange through control of stomata in the epidermis. Stomatal aperture increases when the flanking guard cells accumulate K+ or other osmolytes. K+ accumulation is stoichiometric with H+ extrusion, which is compensated for by phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31)-mediated malate synthesis. Plant PEPCs are regulated allosterically and by phosphorylation. Aspects of the signal-transduction network that control the PEPC phosphorylation state in guard cells are reported here. Guard cells were preloaded with [32P]orthophosphate (32Pi); then stomata were incubated with fusicoccin (FC), which activates the guard-cell plasma membrane H+-ATPase. [32P]PEPC was assessed by immunoprecipitation, electrophoresis, immunoblotting, and autoradiography. In -FC controls, stomatal size, guard-cell malate, and [32P]PEPC were low; maximum values for these parameters were observed in the presence of FC after a 90-min incubation and persisted for an additional 90 min. This high steady-state phosphorylation status resulted from continuous phosphorylation and dephosphorylation, even after the malate-accumulation phase. PEPC phosphorylation was diminished by approximately 80% when K+ uptake was associated with Cl- uptake and was essentially abolished when stomatal opening was sucrose--rather than K+--dependent. Finally, alkalinization by NH4+ in the presence of K+ did not cause PEPC phosphorylation (as it does in C4 plants). As discussed, a role for cytoplasmic protons cannot be completely excluded by this result. In summary, activation of the plasma membrane H+-ATPase was essential, but not sufficient, to cause phosphorylation of guard-cell PEPC. Network components downstream of the H+-ATPase influence the phosphorylation state of this PEPC isoform.  相似文献   

7.
Ehrlich ascites cells were preincubated in hypotonic medium with subsequent restoration of tonicity. After the initial osmotic shrinkage the cells recovered their volume within 5 min with an associated KCl uptake. The volume recovery was inhibited when NO-3 was substituted for Cl-, and when Na+ was replaced by K+, or by choline (at 5 mM external K+). The volume recovery was strongly inhibited by furosemide and bumetanide, but essentially unaffected by DIDS. The net uptake of Cl- was much larger than the value predicted from the conductive Cl- permeability. The undirectional 36Cl flux, which was insensitive to bumetanide under steady-state conditions, was substantially increased during regulatory volume increase, and showed a large bumetanide-sensitive component. During volume recovery the Cl- flux ratio (influx/efflux) for the bumetanide-sensitive component was estimated at 1.85, compatible with a coupled uptake of Na+ and Cl-, or with an uptake via a K+,Na+,2Cl- cotransport system. The latter possibility is unlikely, however, because a net uptake of KCl was found even at low external K+, and because no K+ uptake was found in ouabain-poisoned cells. In the presence of ouabain a bumetanide-sensitive uptake during volume recovery of Na+ and Cl- in nearly equimolar amounts was demonstrated. It is proposed that the primary process during the regulatory volume increase is an activation of an otherwise quiescent, bumetanide-sensitive Na+,Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump, stimulated by the Na+ influx through the Na+,Cl- cotransport system.  相似文献   

8.
The effects of saline conditions on the K+ (86Rb), Na+ and Cl- uptake and growth of 6-day-old wheat (Triticum aestivum L. cv. GK Szeged) seedlings were studied in the absence and presence of Ca2+. It was found that on direct NaCl treatment the K+ uptake of the roots in the absence of Ca2+ declined significantly with increasing salinity. The reverse was true, however, in the case of NaCl pretreatment: seedlings grown under highly saline conditions (50 mM NaCl) absorbed more K+ than those pretreated with low levels of NaCl (1 or 10 mM NaCl). The data indicate a definite Na(+)-induced K+ uptake inhibition and/or feed-back regulation in the K+ uptake of roots under the above-mentioned growth conditions. As regards the Ca2+ effect, it was established that supplemental Ca2+ counteracts the unfavourable effect of saline conditions as concerns both the K+ uptake of the roots and the dry matter yield of the seedlings. The internal concentrations of Na+ and Cl- in the seedlings increased in proportion to increasing salinity. Marked differences were experienced, however, in the internal concentrations of Na+ and Cl- in the roots and shoots, respectively. It was concluded that under these experimental conditions the salt tolerance of wheat could be related to its capability of restricting the transport of Na+ at low and moderate levels to the shoots, where it is highly toxic.  相似文献   

9.
Green light reversal of blue light-stimulated stomatal opening was discovered in isolated stomata. The present study shows that the response also occurs in stomata from intact leaves. Arabidopsis thaliana plants were grown in a growth chamber under blue, red and green light. Removal of the green light opened the stomata and restoration of green light closed them to baseline values under experimental conditions that rule out a mesophyll-mediated effect. Assessment of the response to green light over a daily time course showed that the stomatal sensitivity to green light was observed only in the morning, which coincided with the use of potassium as a guard cell osmoticum. Sensitivity to green light was absent during the afternoon phase of stomatal movement, which was previously shown to be dominated by sucrose osmoregulation in Vicia faba. Hence, the shift away from potassium-based osmoregulation in guard cells is further postulated to entail a shift from blue light to photosynthesis as the primary component of the stomatal response to light. Stomata from intact leaves of the zeaxanthin-less, npq1 mutant of Arabidopsis failed to respond to the removal or restoration of green light in the growth chamber, or to short, high fluence pulses of blue or green light. These data confirm previous studies showing that npq1 stomata are devoid of a specific blue light response. In contrast, stomata from intact leaves of phot1 phot2 double mutant plants had a reduced but readily detectable response to the removal of green light and to blue and green pulses.  相似文献   

10.
Stomatal movement is accomplished by changes in the ionic content within guard cells as well as in the cell wall of the surrounding stomatal pore. In this study, the sub-stomatal apoplastic activities of K+, Cl-, Ca2+ and H+ were continuously monitored by inserting ion-selective micro-electrodes through the open stomata of intact Vicia faba leaves. In light-adapted leaves, the mean activities were 2.59 mM (K+), 1.26 mM (Cl-), 64 microM (Ca2+) and 89 microM (H+). Stomatal closure was investigated through exposure to abscisic acid (ABA), sudden darkness or both. Feeding the leaves with ABA through the cut petiole initially resulted in peaks after 9-10 min, in which Ca2+ and H+ activities transiently decreased, and Cl- and K+ activities transiently increased. Thereafter, Ca2+, H+ and Cl- activities completely recovered, while K+ activity approached an elevated level of around 10 mM within 20 min. Similar responses were observed following sudden darkness, with the difference that Cl- and Ca2+ activities recovered more slowly. Addition of ABA to dark-adapted leaves evoked responses of Cl- and Ca2+ similar to those observed in the light. K+ activity, starting from its elevated level, responded to ABA with a transient increase peaking around 16 mM, but then returned to its dark level. During stomatal closure, membrane potential changes in mesophyll cells showed no correlation with the K+ kinetics in the sub-stomatal cavity. We thus conclude that the increase in K+ activity mainly resulted from K+ release by the guard cells, indicating apoplastic compartmentation. Based on the close correlation between Cl- and Ca2+ changes, we suggest that anion channels are activated by a rise in cytosolic free Ca2+, a process which activates depolarization-activated K+ release channels.  相似文献   

11.
Electrolyte transport across the basolateral membrane of the parietal cells   总被引:7,自引:0,他引:7  
The ion-transport properties of the basal lateral membranes of intact isolated parietal cells were studied at the cellular and subcellular level. The presence of an amiloride-sensitive Na+:H+ exchange was demonstrated in cells by proton gradient-driven Na+ uptake and by changes in cell pH as monitored by dimethylcarboxylfluorescein fluorescence both in a fluorimeter and on single isolated cells using a fluorescence microscope and an attached intensified photodiode array spectrophotometer. The presence of the Na+:H+ antiport in vesicles was shown both by intravesicular acidification monitored by acridine orange fluorescent quenching and by proton gradient-dependent Na+ uptake. The presence of Cl-:HCO-3 exchange was determined in intact cells by monitoring changes in cell pH due to Cl- uptake and was shown to be 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid- and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid-sensitive. In vesicles, Cl-:HCO-3 exchange was demonstrated by Cl- flux measurement. The apparent affinities for both Cl- and HCO-3 on either side of the membrane were determined to be Km Cli = 20 mM, Km Clout = 17.5 mM, Km HCO-3in = 2.5 mM, and Km HCO-3out = 7.5 mM. A K+ conductance in cells and vesicles was demonstrated by monitoring K+ gradient-dependent 86Rb uptake. No evidence was found for the presence of a Cl- conductance in either cells or vesicles but a H+ conductance was found to be present in vesicles but not in intact cells. In the latter, by determining the effect of either Na+ or Cl- gradients on cell pH and by flux calculations it was concluded that the Cl-:HCO-3 exchange was the major passive flux mechanism for pH regulation in this cell type.  相似文献   

12.
In the light of stomatal opening: new insights into 'the Watergate'   总被引:1,自引:0,他引:1  
Stomata can be regarded as hydraulically driven valves in the leaf surface, which open to allow CO2 uptake and close to prevent excessive loss of water. Movement of these 'Watergates' is regulated by environmental conditions, such as light, CO2 and humidity. Guard cells can sense environmental conditions and function as motor cells within the stomatal complex. Stomatal movement results from the transport of K+ salts across the guard cell membranes. In this review, we discuss the biophysical principles and mechanisms of stomatal movement and relate these to ion transport at the plasma membrane and vacuolar membrane. Studies with isolated guard cells, combined with recordings on single guard cells in intact plants, revealed that light stimulates stomatal opening via blue light-specific and photosynthetic-active radiation-dependent pathways. In addition, guard cells sense changes in air humidity and the water status of distant tissues via the stress hormone abscisic acid (ABA). Guard cells thus provide an excellent system to study cross-talk, as multiple signaling pathways induce both short- and long-term responses in these sensory cells.  相似文献   

13.
The affinity and number of binding sites of [3H]ouabain to isolated transverse (T) tubules were determined in the absence and presence of deoxycholate. In both conditions the KD was approximately 53 nM while deoxycholate increased the number of binding sites from 3.5 to 37 pmol/mg protein. We concluded that the ouabain binding sites were located primarily on the inside of the isolated vesicle and that the vesicles were impermeable to ouabain. ATP induced a highly active Na+ accumulation by the T tubules which increased Na+ in the T tubular lumen by almost 200 nmol/mg protein. The accumulation had an initial fast phase lasting 2-3 min and a subsequent slow phase which continued for at least 40 min. The rate of the initial fast phase indicated a turnover number of 20 Na+/s. The Na+ accumulation was prevented by monensin but was unaffected by valinomycin. Ouabain did not influence Na+ uptake, but digitoxin inhibited it. At low K+ the accumulation of Na+ was reduced 3.7-fold below the value at 50 mM K+. 86Rb, employed as a tracer to detect K+, showed a first phase of K+ release while Na+ was accumulated. After 2-3 min, K+ was reaccumulated while Na+ continued to increase in the lumen. T tubules accumulated Cl- on addition of ATP. This suggested that ATP initiated an exchange of Na+ for K+ followed by uptake of Na+ and K+ accompanied by Cl-.  相似文献   

14.
Three independent mutants of the Madin-Darby canine kidney cell line (MDCK) have been isolated which were capable of growth in media containing low concentrations of potassium. All three mutants were deficient to varying extents in furosemide- and bumetanide-sensitive 22Na+, 86+b+, and 36Cl- uptake. The two mutants most resistant to low K+ media had lost essentially all of the 22Na+, 86Rb+, and 36Cl- uptake activities of this system. The third mutant was partially resistant to low K+ media and had reduced levels of bumetanide-sensitive uptake for all three ions. Extrapolated initial uptake rates for 22Na+, 86Rb+, and 36Cl- revealed that the partial mutant exhibited approximately 50% of the parental uptake rates for all three ions. The stoichiometries of bumetanide-sensitive uptake in both the parental cell line and the partial mutant approximated 1 Rb+:1 Na+:2 Cl-. The results of this study provide genetic evidence for a single tightly-coupled NaCl/KCl symporter in MDCK cells. The correlation between the ability to grow in low K+ media and decreased activity of the bumetanide-sensitive co-transport system suggests that the bumetanide-sensitive transport system catalyzes net K+ efflux from cells in low K+ media. The results of 86Rb+ efflux studies conducted on ouabain-pretreated mutant and parental cells are consistent with this interpretation. Cell volume measurements made on cells at different densities in media containing normal K+ concentrations showed that none of the mutants differed significantly in volume from the parental strain at a similar cell density. Furthermore, all three mutants were able to readjust their volume after suspension in hypotonic media. These results suggest that in the MDCK cell line, the bumetanide-sensitive NaCl/KCl symport system does not function in the regulation of cell volume under the conditions employed.  相似文献   

15.
以低浓度(50 mmol.L-1)和高浓度(150 mmol.L-1)NaC l处理弗吉尼亚栎(Quercus virginiana)2年生扦插苗,研究了弗吉尼亚栎生长和根系形态学参数变化以及Na+、K+、Ca2+、Mg2+、NO3-等矿质离子在不同器官的吸收、运输和分配。结果表明,盐胁迫不同程度促进了地上部和根系生长,地上部和根系干重、根长、表面积和体积在低浓度盐胁迫下明显增加(P0.05),而在高浓度盐胁迫下变化不大。随着根系对Na+和C l-吸收的增加,K+、Ca2+、Mg2+在根部和茎部的积累明显降低,矿质离子由根部向茎部运输的能力在低浓度盐胁迫增加而高浓度下受到抑制。叶片在低浓度和高浓度盐胁迫下对K+、NO3-具有很强的选择吸收能力,这对于维持叶片离子平衡和正常的光合作用及代谢过程具有重要意义。Na+和C l-在根部的浓度远远大于地上部,说明弗吉尼亚栎根系对盐离子具有较高的耐受性,而减少盐离子在地上部的积累,对于维持地上部的正常生长具有重要意义,这也是弗吉尼亚栎对盐胁迫的适应机制之一。  相似文献   

16.
Z M Pei  J M Ward  J F Harper    J I Schroeder 《The EMBO journal》1996,15(23):6564-6574
Calcium-Dependent Protein Kinases (CDPKs) in higher plants contain a C-terminal calmodulin-like regulatory domain. Little is known regarding physiological CDPK targets. Both kinase activity and multiple Ca2+-dependent signaling pathways have been implicated in the control of stomatal guard cell movements. To determine whether CDPK or other protein kinases could have a role in guard cell signaling, purified and recombinant kinases were applied to Vicia faba guard cell vacuoles during patch-clamp experiments. CDPK activated novel vacuolar chloride (VCL) and malate conductances in guard cells. Activation was dependent on both Ca2+ and ATP. Furthermore, VCL activation occurred in the absence of Ca2+ using a Ca2+-independent, constitutively active, CDPK* mutant. Protein kinase A showed weaker activation (22% as compared with CDPK). Current reversals in whole vacuole recordings shifted with the Nernst potential for Cl-and vanished in glutamate. Single channel recordings showed a CDPK-activated 34 +/- 5 pS Cl- channel. VCL channels were activated at physiological potentials enabling Cl- uptake into vacuoles. VCL channels may provide a previously unidentified, but necessary, pathway for anion uptake into vacuoles required for stomatal opening. CDPK-activated VCL currents were also observed in red beet vacuoles suggesting that these channels may provide a more general mechanism for kinase-dependent anion uptake.  相似文献   

17.
X-ray microanalysis was used to study the patterns of K+, Na+ and Cl- accumulation in salinized (25 mm NaCl) and non-salinized grapevine (Vitis) roots. The aim was to determine whether NaCl affects patterns of Cl- accumulation differentially in the roots of a Cl--excluding genotype and a non-excluding genotype. Two regions of fibrous roots were analysed: (1) a region 2-3 mm basipetal to the root tip; and (2) a region of the root 10-12 mm basipetal to the root tip where the outermost layer is the hypodermis. The ion contents of the hypodermis, cortex, endodermis and pericycle vacuoles were analysed. Data were also collected from the cytoplasm of the endodermal and pericycle cells. The analyses showed that the ion profiles of the hypodermis and the endodermis were significantly different from those of the cortex and pericycle. The hypodermis and endodermis had higher K+ and lower Na+ and Cl- than surrounding cells. Some changes due to salinity such as increased K+ concentrations in the hypodermis were also noted. Chloride concentrations did not differ between the genotypes in the hypodermis, across the cortex or in the endodermis, but were higher in the pericycle of the excluder in comparison with the non-excluding genotype. However, K+/Na+ ratios of the cortex and endodermis were higher in the excluder. The pericycle cells exhibited the greatest ability to sequester Na+ and Cl- in vacuoles. Overall the data show cell-type-specific ion accumulation patterns and small but significant differences were found between genotypes. The possibility that these accumulation patterns arise from differences in uptake properties of cell types and/or result from the spatial distribution of the cell types along the competing symplastic and apoplastic ion transport pathways across the root is discussed.  相似文献   

18.
The Na+ transport pathways of normal rat thymocytes were investigated. Na+ conductance was found to be lower than K+ conductance, which is consistent with reported values of membrane potential. In contrast, the isotopically measured Na+ permeability was greater than 10-fold higher than that of K+, which indicates that most of the flux is electroneutral. Cotransport with Cl- (or K+ and Cl-) and countertransport with Ca2+ were ruled out by ion substitution experiments and use of inhibitors. Countertransport for Na+ or H+ through the amiloride-sensitive antiport accounts for only 15-20% of the resting influx. In the presence of amiloride, 22Na+ uptake was increased in Na+-loaded cells, which suggests the existence of Na+/Na+ countertransport. Cytoplasmic pH determinations using fluorescent probes indicated that under certain conditions this amiloride-resistant system will also exchange Na+ for H+, as evidenced by an internal Na+- dependent acidification is proportional to internal [Na+] but inversely related to extracellular [Na+]. Moreover, 22Na+ uptake is inhibited by increasing external [H+]. The results support the existence of a substantial amiloride-insensitive, electroneutral cation exchange system capable of transporting Na+ and H+.  相似文献   

19.
To probe the mechanism by which intracellular ATP, Na+, and Cl- influence the activity of the NaK2Cl cotransporter, we measured bumetanide-sensitive (BS) 86Rb fluxes in the osteosarcoma cell line UMR- 106-01. Under physiological gradients of Na+, K+, and Cl-, depleting cellular ATP by incubation with deoxyglucose and antimycin A (DOG/AA) for 20 min at 37 degrees C reduced BS 86Rb uptake from 6 to 1 nmol/mg protein per min. Similar incubation with 0.5 mM ouabain to inhibit the Na+ pump had no effect on the uptake, excluding the possibility that DOG/AA inhibited the uptake by modifying the cellular Na+ and K+ gradients. Loading the cells with Na+ and depleting them of K+ by a 2-3- h incubation with ouabain or DOG/AA increased the rate of BS 86Rb uptake to approximately 12 nmol/mg protein per min. The unidirectional BS 86Rb influx into control cells was approximately 10 times faster than the unidirectional BS 86Rb efflux. On the other hand, at steady state the unidirectional BS 86Rb influx and efflux in ouabain-treated cells were similar, suggesting that most of the BS 86Rb uptake into the ouabain-treated cells is due to K+/K+ exchange. The entire BS 86Rb uptake into ouabain-treated cells was insensitive to depletion of cellular ATP. However, the influx could be converted to ATP-sensitive influx by reducing cellular Cl- and/or Na+ in ouabain-treated cells to impose conditions for net uptake of the ions. The BS 86Rb uptake in ouabain-treated cells required the presence of Na+, K+, and Cl- in the extracellular medium. Thus, loading the cells with Na+ induced rapid 86Rb (K+) influx and efflux which, unlike net uptake, were insensitive to cellular ATP. Therefore, we suggest that ATP regulates a step in the turnover cycle of the cotransporter that is required for net but not K+/K+ exchange fluxes. Depleting control cells of Cl- increased BS 86Rb uptake from medium-containing physiological Na+ and K+ concentrations from 6 to approximately 15 nmol/mg protein per min. The uptake was blocked by depletion of cellular ATP with DOG/AA and required the presence of all three ions in the external medium. Thus, intracellular Cl- appears to influence net uptake by the cotransporter. Depletion of intracellular Na+ was as effective as depletion of Cl- in stimulating BS 86Rb uptake.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Stomata of growth chamber-grown Vicia faba leaves have an enhanced CO(2) response, measured as change in stomatal aperture, compared to stomata of greenhouse-grown leaves. Reciprocal transfer experiments showed that the stomatal response to CO(2) acclimated to the growing environment. Stomata of growth chamber-grown leaves transferred to a greenhouse lost their high CO(2) sensitivity within 2-3 d while stomata of greenhouse-grown leaves transferred to a growth chamber acquired a high CO(2) sensitivity within 5-7 d. Experiments measuring the CO(2) responses of stomata in detached epidermis showed that growth chamber and greenhouse-grown stomata have the same contrasting CO(2) sensitivity observed in the intact leaf, indicating that the responses reflect intrinsic guard cell properties. The acclimation properties of the CO(2) response of guard cells have implications for the understanding of stomatal function under the predicted increases in atmospheric CO(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号