首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The suitability of a 16S rRNA-based mycoplasma group-specific PCR for the detection of mycoplasma contamination in cell cultures was investigated. A total of 104 cell cultures were tested by using microbiological culture, DNA fluorochrome staining, DNA-rRNA hybridization, and PCR techniques. A comparison of the results obtained with these techniques revealed agreement for 95 cell cultures. Discrepant results, which were interpreted as false negative or false positive on the basis of a comparison with the results obtained with other methods, were observed with nine cell cultures. The microbiological culture technique produced false-negative results for four cell cultures. The hybridization technique produced false-negative results for two cell cultures, and for one of these cell cultures the DNA staining technique also produced a false-negative result. The PCR may have produced false-positive results for one cell culture. Ambiguous results were obtained with the remaining two cell cultures. Furthermore, the presence of contaminating bacteria interfered with the interpretation of the DNA staining results for 16 cell cultures. For the same reason the hybridization signals of nine cell cultures could not be interpreted. Our results demonstrate the drawbacks of each of the detection methods and the suitability of the PCR for the detection of mycoplasmas in cell cultures.  相似文献   

2.
Detection of mycoplasma contaminations by the polymerase chain reaction   总被引:4,自引:0,他引:4  
The polymerase chain reaction (PCR) has been used for the general detection ofMollicutes. 25Mycoplasma andAcholeplasma species were detected including important contaminants of cell cultures such asM. orale, M. arginini, M. hyorhinis, M. fermentans, A. laidlawii and additional human and animal mycoplasmas. PCR reactions were performed using a set of nested primers defined from conserved regions of the 16S rRNA gene. The detection limit was determined to be 1 fg mycoplasma DNA, which is equivalent to 1–2 genome copies of the 16S rRNA coding region. The identity of the amplification products was confirmed by agarose gel electrophoresis and restriction enzyme analysis. DNA from closely and distantly related micro-organisms did not give rise to specific amplification products. The method presented here offers a much more sensitive, specific and rapid assay for the detection of mycoplasmas than the existing ones.  相似文献   

3.
4.
细胞培养过程中的支原体污染相当普遍。如何快速、简便地检测支原体,并且采取有效措施去除支原体一直是细胞培养中急待解决的难题。本文就近年来有关支原体检测及去除方面的工作加以综述。  相似文献   

5.
A fast and simple method to detect bacterial and especially mycoplasma contamination in tissue culture by means of polymerase chain reaction (PCR) amplification is described. In a first step the universal primer pairs P1/P2 (190-bp fragment) and P3/P4 (120-bp fragment) directed to different conserved parts of the prokaryotic 16S rRNA gene are used. A positive signal after amplification on cell culture DNA with these primers provides an indication of bacterial infection. Using the internal primers IP1, IP3 and IP'3 complementary to a part of the V4 and V8 variable regions of the 16S rRNA gene, in combination with a universal primer, cultures contaminated with mycoplasma could be identified. Six mycoplasma species, typical contaminants in tissue cultures, were investigated: Mycoplasma orale, M. fermentans, M. arginini, M. hyorhinis, M. hominis and Aeromonas laidlawii. This mycoplasma test is an easy, specific and sensitive assay which should be extremely useful in any tissue culture setting.  相似文献   

6.
Summary The in situ staining method of Chen (1977) for the detection of mycoplasma contaminants in tissue cultures was tested in cultures of human skin fibroblasts after controlled contamination with Mycoplasma arginini. It is concluded that this method is reliable only at infection rates of 100% or higher, i.e., at one mycoplasma or more per tissue-culture cell.  相似文献   

7.
In contrast to contamination by microbes and mycoplasma, which can be relatively easily detected, viral contamination present a serious threat because of the difficulty in detecting some viruses and the lack of effective methods of treating infected cell cultures. While some viruses are capable of causing morphological changes to infected cells (e.g. cytopathic effect) which are detectable by microscopy some viral contaminations result in the integration of the viral genome as provirus, this causes no visual evidence, by means of modification of the cellular morphology. Virus production from such cell lines, are potentially dangerous for other cell cultures (in research labs)by cross contaminations, or for operators and patients (in the case of the production of injectable biologicals) because of potential infection. The only way to keep cell cultures for research, development, and the biotech industry virus-free is the prevention of such contaminations. Cell cultures can become contaminated by the following means: firstly, they may already be contaminated as primary cultures (because the source of the cells was already infected), secondly, they were contaminated due to the use of contaminated raw materials, or thirdly, they were contaminated via an animal passage. This overview describes the problems and risks associated with viral contaminations in animal cell culture, describes the origins of these contaminations as well as the most important virsuses associated with viral contaminations in cell culture. In addition, ways to prevent viral contaminations as well as measures undertaken to avoid and assess risks for viral contaminations as performed in the biotech industry are briefly described. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Mycoplasma contamination of cell lines is one of the major problems in cell culturing. About 15-35% of all cell lines are infected with a limited number of mycoplasma species of predominantly human, swine, or bovine origin. We examined the mycoplasma contamination status in 495 cell cultures by polymerase chain reaction (PCR) assay, microbiological culture method, and deoxyribonucleic acid-ribonucleic acid (DNA-RNA) hybridization, and in 103 cell cultures by PCR and DNA-RNA hybridization, in order to determine the sensitivity and specificity of the PCR assay in routine cell culture. For those two cohorts, results for the three or two assays were concordant in 92 and 91% of the cases, respectively. The sensitivity (detection of true positives) of this PCR detection assay was 86%, and the specificity (detection of true negatives) was 93%, with positive and negative predictive values (probability of correct results) of 73 and 97%, respectively. PCR defined the mycoplasma status with 92% accuracy (detection of true positives and true negatives). The mycoplasma contaminants were speciated by analyzing the PCR amplification fragment using several restriction enzymes. Most of the cultures (47%) were infected with Mycoplasma fermentans, followed by M. hyorhinis (19%), M. orale (10%), M. arginini (9%), Acholeplasma laidlawii (6%), and M. hominis (3%). To sum up, PCR represents a sensitive, specific, accurate, inexpensive, and quick mycoplasma detection assay that is suitable for the routine screening of cell cultures.  相似文献   

9.
Elimination of mycoplasma from various cell cultures   总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
K W Lanks  N W Chin 《In vitro》1979,15(7):503-506
Hamster BHK cells or secondary cultures of mouse embryo fibroblasts are not iodinated by lactoperoxidase in the absence of hydrogen peroxide. When such cell cultures are infected with a noncultivable strain of M. hyorhinis, endogenous peroxide generation is sufficient to permit nearly maximal iodination. The SDS-polyacrylamide gel pattern of iodinated cell surface polypeptides is essentially the same regardless of the source of peroxide and whether or not the cultures are infected with mycoplasma.  相似文献   

12.
Summary Hamster BHK cells or secondary cultures of mouse embryo fibroblasts are not iodinated by lactoperoxidase in the absence of hydrogen peroxide. When such cell cultures are infected with a noncultivable strain ofM. hyorhinis, endogenous peroxide generation is sufficient to permit nearly maximal iodination. The SDS-polyacrylamide gel pattern of iodinated cell surface polypeptides is essentially the same regardless of the source of peroxide and whether or not the cultures are infected with mycoplasma.  相似文献   

13.
A quantitative real-time polymerase chain reaction (PCR) procedure followed by melting curve analysis, using the green fluorescence dye SYBR Green I, was developed for rapid detection and differentiation of mycoplasma contaminants in cell cultures. This method showed that the detection of the target sequence was linear over a range from 10(4) to 10 colony-forming units (CFU) of the mycoplasma cells. Analysis of the melting temperature of the PCR products allowed differentiation of the major mycoplasma contaminants. These results demonstrate that the protocol described in the present study can decrease the time to obtain reproducible results by simultaneous detection and differentiation of the Mycoplasma species contaminating cell cultures.  相似文献   

14.
Transmission electron microscopy has been employed for the rapid detection of mycoplasma in sera and cell cultures. High speed centrifugation of sera or low speed centrifugation of cell debris, followed by negative staining of the resuspended pellet, detected mycoplasma contamination more frequently than a culture method followed by direct fluorescence (DAPI), which was used as a control procedure. The appearance of the mycoplasma cell border and content gives some information about particle viability.  相似文献   

15.
16.
A simple, fast, and easily reproducible routine laboratory technique for detecting mycoplasma contamination in cell cultures is reported. Cells grown on a coverslip are fixed directly with Carnoy's, air-dried, stained with DNA-specific fluorescent Hoechst 33258, and examined microscopically. All cultures that were infected with mycoplasmas had readily discernible, small, morphologically uniform, bright fluorescent bodies in the extranuclear and intercellular space in contrast to the non-contaminated control cultures in which the extra-nuclear background appeared uniformly dark. To probe the degree of sensitivity to detect mycoplasmas, control cultures were infected with aliquots from serially diluted cells or media collected from Mycoplasma hyorhinus infected cultures. The lowest infection rate (0.40% by sampling 1 000 cells in average per culture 4–24 h after infection) scored presently, however, can easily be lowered by increasing sample size since a cell infected with even one mycoplasma can be discerned. These mycoplasmas resisted centrifugation at 2 500 rpm for 30 min and easily filtered through 0.22 μm pore-size filter membrane. Amazingly infection rate of 0.63% scored from 24 h post-infection incubation attained 100% contamination with several hundreds of mycoplasmas per host cell within 120 h.  相似文献   

17.
18.
Summary Mycoplasmal contamination remains a significant impediment to the culture of eukaryotic cells. For certain cultures, attempts to eliminate the infection are feasible alternatives to the normally recommended disposal of the contaminated culture. Here, three antibiotic regimens for mycoplasmal decontamination were compared in a large panel of naturally infected cultures: a 1-wk treatment with the fluoroquinolone mycoplasma removal agent (MRA), a 2-wk treatment with the fluoroquinolone ciprofloxacin, and three rounds of a sequential 1-wk treatment with BM-Cyclin containing tiamulin and minocyclin. These antibiotic treatments had a high efficiency of permanent cure: MRA 69%, ciprofloxacin 75%, BM-Cyclin 87%. Resistance to mycoplasma eradication was observed in some cell cultures: BM-Cyclin 0%, MRA 20%, ciprofloxacin 20%. Nearly all resistant contaminants that could be identified belonged to the speciesMycoplasma arginini andM. orale. Detrimental effects of the antibiotics were seen in the form of culture death caused by cytotoxicity (in 5 to 13% of the cultures). Alterations of the cellular phenotypic features or selective clonal outgrowth might represent further untoward side effects of exposure to these antibiotics. Overall, antibiotic decontamination of mycoplasmas is an efficient, inexpensive, reliable, and simple method: 150/200 (75%) chronically and heavily contaminated cultures were cured and 50/200 (25%) cultures could not be cleansed and were either lost or remained infected. It is concluded that eukaryotic cell cultures containing mycoplasmas are amenable to antibiotic treatment and that a cure rate of three-quarters is a reasonable expectation.  相似文献   

19.
Mycoplasma contamination events in biomanufacturing facilities can result in loss of production and costly cleanups. Mycoplasma may survive in mammalian cell cultures with only subtle changes to the culture and may penetrate the 0.2 µm filters often used in the primary clarification of harvested cell culture fluid. Culture cell-based and indicator cell-based assays that are used to detect mycoplasma are highly sensitive but can take up to 28 days to complete and cannot be used for real-time decision making during the biomanufacturing process. To support real-time measurements of mycoplasma contamination, there is a push to explore nucleic acid testing. However, cell-based methods measure growth or colony forming units and nucleic acid testing measures genome copy number; this has led to ambiguity regarding how to compare the sensitivity of the methods. In addition, the high risk of conducting experiments wherein one deliberately spikes mycoplasma into bioreactors has dissuaded commercial groups from performing studies to explore the multiple variables associated with the upstream effects of a mycoplasma contamination in a manufacturing setting. Here we studied the ability of Mycoplasma arginini to persist in a single-use, perfusion rocking bioreactor system containing a Chinese hamster ovary (CHO) DG44 cell line expressing a model monoclonal immunoglobulin G1 (IgG1) antibody. We examined M. arginini growth and detection by culture methods, as well as the effects of M. arginini on mammalian cell health, metabolism, and productivity. We compared process parameters and controls normally measured in bioreactors including dissolved oxygen, gas mix, and base addition to maintain pH, to examine parameter changes as potential indicators of contamination. Our work showed that M. arginini affects CHO cell growth profile, viability, nutrient consumption, oxygen use, and waste production at varying timepoints after M. arginini introduction to the culture. Importantly, how the M. arginini contamination impacts the CHO cells is influenced by the concentration of CHO cells and rate of perfusion at the time of M. arginini spike. Careful evaluation of dissolved oxygen, pH control parameters, ammonia, and arginine over time may be used to indicate mycoplasma contamination in CHO cell cultures in a bioreactor before a read-out from a traditional method.  相似文献   

20.
Elimination of mycoplasma contaminants from cell cultures with animal serum   总被引:1,自引:0,他引:1  
Repeated treatment with guinea pig or rabbit serum, but not with human serum, was found to eliminate mycoplasma contaminants from mammalian cell cultures as judged by staining with the fluorescent dye Hoechst 33258. Following treatment with rabbit serum and several passages, M. hyorhinis could not be detected by staining, isolation on agar, or specific immunofluorescence in a human prostate carcinoma cell line heavily contaminated with this organism. There was no evidence for the involvement of antimycoplasma antibodies in the bactericidal activity of rabbit serum. Mycoplasmacidal activity of rabbit serum was associated with a heat-labile component(s) which could be inactivated by incubation of the serum with goat antirabbit complement component C3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号