首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flagellation of Salmonella typhimurium was found to require a functional pathway for ubiquinone biosynthesis as well as growth in the presence of appropriate carboxylic acids. Induction of flagellation by carboxylic acids was shown to induce incorporation of p-hydroxybenzoic acid into polyprenylphenol. Constitutive flagellation was found to correlate with constitutive incorporation of p-hydroxybenzoic acid into polyprenylphenol. A novel pathway for polyprenyl p-hydroxybenzoic acid decarboxylation to polyprenylphenol was implicated in flagellation of S. typhimurium.  相似文献   

2.
Activation of carboxylic acids was achieved via dialkyl pyrocarbonates (ROCO)2O, R = C2H5, i-C3H7, sec-C4H9, tert.-C4H9) in aprotic solvents in the presence tertiary amines. A convenient procedure for the preparation of carboxylic acid anhydrides from carboxylic acids and di-tert.-butyl pyrocarbonate in the presence of pyridine is reported. Analogously, di-isopropyl- or diethyl pyrocarbonate may be used in the presence of N-methylmorpholine (triethylamine). With pyridine, di-isopropyl- or diethyl pyrocarbonate carboxylic acids form isopropyl- or ethyl esters, respectively. A wide variety of esters were prepared in good yields in a one-pot procedure from carboxylic acids, including N-protected amino acids, and alcohols or from phenols by means of di-tert.-butyl pyrocarbonate in the presence of pyridine (Boc2O-pyridine system). t-Butyl esters of carboxylic acids were obtained by the same procedure with 4-dimethylaminopyridine. In the absence of carboxylic acid, with 4-dimethylaminopyridine Boc2O and alcohols generate alkyl tert.-butyl carbonates.  相似文献   

3.
Listeria monocytogenes, the causative agent of listeriosis, can build up to dangerous levels in refrigerated foods potentially leading to expensive product recalls. An important aspect of the bacterium's growth at low temperatures is its ability to increase the branched-chain fatty acid anteiso C15:0 content of its membrane at lower growth temperatures, which imparts greater membrane fluidity. Mutants in the branched-chain α-keto dehydrogenase (bkd) complex are deficient in branched-chain fatty acids (BCFAs,) but these can be restored by feeding C4 and C5 branched-chain carboxylic acids (BCCAs). This suggests the presence of an alternate pathway for production of acyl CoA precursors for fatty acid biosynthesis. We hypothesize that the alternate pathway is composed of butyrate kinase (buk) and phosphotransbutyrylase (ptb) encoded in the bkd complex which produce acyl CoA products by their sequential action through the metabolism of carboxylic acids. We determined the steady state kinetics of recombinant His-tagged Buk using 11 different straight-chain and BCCA substrates in the acyl phosphate forming direction. Buk demonstrated highest catalytic efficiency with pentanoate as the substrate. Low product formation observed with acetate (C2) and hexanoate (C6) as the substrates indicates that Buk is not involved in either acetate metabolism or long chain carboxylic acid activation. We were also able to show that Buk catalysis occurs through a ternary complex intermediate. Additionally, Buk demonstrates a strong preference for BCCAs at low temperatures. These results indicate that Buk may be involved in the activation and assimilation of exogenous carboxylic acids for membrane fatty acid biosynthesis.  相似文献   

4.
A comparison was made of water-soluble root exudates and extracts of Sorghum vulgare Pers. grown under two levels of P nutrition. An increase in P nutrition significantly decreased the concentration of carbohydrates, carboxylic acids, and amino acids in exudates, and decreased the concentration of carboxylic acids in extracts. Higher P did not affect the relative proportions of specific carboxylic acids and had little effect on proportions of specific amino acids in both extracts and exudates. Phosphorus amendment resulted in an increase in the relative proportion of arabinose and a decrease in the proportion of fructose in exudates, but did not have a large effect on the proportion of individual sugars in extracts. The proportions of specific carbohydrates, carboxylic acids, and amino acids varied between exudates and extracts. Therefore, the quantity and composition of root extracts may not be a reliable predictor of the availability of substrate for symbiotic vesicular-arbuscular mycorrhizal fungi. Comparisons of the rate of leakage of compounds from roots with the growth rate of vesicular-arbuscular mycorrhizal fungi suggest that the fungus must either be capable of using a variety of organic substrates for growth, or be capable of inducing a much higher rate of movement of specific organic compounds across root cell membranes than occurs through passive exudation as measured in this study.  相似文献   

5.
Corynebacterium glutamicum is well-known as an industrial workhorse, most notably for its use in the bulk production of amino acids in the feed and food sector. Previous studies of the effect of gradients in scale-down reactors with complex media disclosed an accumulation of several carboxylic acids and a parallel decrease of growth and product accumulation. This study, therefore, addresses the impact of carboxylic acids, for example, acetate and l -lactate, on the cultivation of the cadaverine producing strain C. glutamicum DM1945Δact3:Ptuf-ldcCopt and their potential role in scale up related performance losses. A fluctuating power input in shake flask and stirred tank cultivations with mineral salt was applied to mimic discontinuous oxygen availability. Results demonstrate, whenever sufficient oxygen was available, C. glutamicum recovered from previously occurring stressful conditions like an oxygen limiting phase. Reassimilation of acids was detected simultaneously. In cultures, which were supplemented with either acetate or l -lactate, a rapid cometabolization of both acids in presence of glucose was observed, showing conversion rates of 7.8 and 3.8 mmol gcell dry weight−1 hr−1, respectively. Uptake of these acids was accompanied by increased oxygen consumption. Proteins related to oxidative stress response, glycogen synthesis, and the main carbon metabolism were found in altered concentrations under oscillatory cultivation conditions. (Proteomics data are available via ProteomeXchange with identifier PXD012760). Virtually no impact on growth or product formation was observed. We conclude that the reduced growth and product formation in scale-down cultivations when complex media was used is not caused by the accumulation of carboxylic acids.  相似文献   

6.
The role of three carboxylic acids with increasing alkyl-chain length, viz., formic, acetic and propionic acids in microtuberization was investigated in three potato (Solanum tuberosum L.) genotypes in vitro. Different concentrations of these carboxylic acids (0.0, 1.5, 3.0, 4.5 and 6.0 mM) were supplemented in microtuber induction medium, which was based on MS medium containing 8% sucrose, and their efficacy for induction, development and quality of microtubers was studied using single-node explants under continuous darkness at 20 °C. The carboxylic acids exhibited a strong stolon- and root-inhibiting effect on single-node explants with their increasing concentrations as well as alkyl-chain length (i.e., formic < acetic < propionic acids), and their mode of action was synonymous with antigibberellin substances. However, they did not have any significant inductive effect on microtuberization as compared to that under 8% sucrose medium. Rather they did show a detrimental effect on microtuber development in terms of average microtuber fresh weight with increasing concentrations as well as alkyl-chain length; both acetic and propionic acids at 6.0 mM induced the smallest microtubers in vitro. The carboxylic acids could, however, significantly increase the harvest indices suggesting their possible role in the regulation of source-sink co-ordination during microtuberization from single-node explants. But the most favourable effect of carboxylic acids on microtubers was apparent in terms of dry matter concomitant with higher starch synthesis and enhanced accumulation of reducing and total sugars. Acetic acid was the most effective in increasing the percentage of microtuber dry matter. The higher percentage of dry matter with higher carbohydrate reserves in microtubers induced by the carboxylic acids could be assumed to affect the quality of microtubers for subsequent storage, dormancy release and sprout growth.  相似文献   

7.
An enzyme which we call carboxylic acid reductase (aldehyde dehydrogenase) seems to be the first which is able to reduce non-activated carboxylic acids to aldehydes at the expense of reduced viologens. There is no further reduction of the aldehydes to the corresponding alcohols. In the presence of oxidized viologens aldehydes can be dehydrogenated to carboxylic acids roughly 20 times faster than the latter are reduced. The specific enzyme activity in crude extracts is about 100 times increased if 10 microM tungstate and a sulphur source in addition to sulphate is given to the growth medium of Clostridium thermoaceticum. Carboxylic acid reductase seems to be present in two forms. One has an apparent molecular mass of about 240 kDa and is bound to red-Sepharose, whereas, the other, a form of an apparent molecular mass of about 60 kDa, is not bound. SDS gel electrophoresis shows a higher complexity. The very labile enzyme has been enriched by a factor of about 145 by binding to octyl-Sepharose and further chromatographic separation by red-Sepharose and FPLC using Mono-Q and phenyl-Superose columns. After cell growth in the presence of [185W]tungstate, radioactivity coincides with the two forms of enzyme activity during all purification steps. This is also the case when the enzyme is electrophoretically separated on polyacrylamide slab gels.  相似文献   

8.
The ability of Pseudomonas putida to synthesize polyhydroxyalkanoate (PHA) from 36 different carboxylic acids containing various functional groups was examined. This bacterium did not utilize short carboxylic acids (C(4)-C(6)) containing bromine, methoxy, ethoxy, cyclohexyl, phenoxy, and olefin groups as the sole carbon substrate. No polymer was isolated from the cells grown with carboxylic acids bearing hydroxyl, amino, para-methoxyphenoxy, and para-ethoxyphenoxy groups regardless of the carbon substrate chain lengths used even when they were cofed with nonanoic acid. Of all the carbon substrates evaluated, only 6-para-methylphenoxyhexanoic acid, 8-para-methylphenoxyoctanoic acid, 8-meta-methylphenoxyoctanoic acid, 10-undecenoic acid, and 10-undecynoic acid supported both growth and the production of PHA containing the corresponding functional groups by P. putida. The present results indicate that the carbon availability of P. putida for growth and PHA production is significantly different from that of P. oleovorans.  相似文献   

9.
We recently reported that acrylic acid (AA) induces the MPT in vitro, which we suggested might be a critical event in the acute inflammatory and hyperplastic response of the olfactory epithelium. The purpose of the present investigation was to determine if induction of the MPT is a general response to short-chain carboxylic acids or if there are critical physical chemical parameters for this response. Freshly isolated rat liver mitochondria were incubated in the presence of varying concentrations of selected carboxylic acids. All of the acids that we tested caused a concentration-dependent induction of the MPT, which was blocked by cyclosporine A. Although the C4 carboxylic acids were slightly more potent than the C5 acids, there was no correlation with the degree of saturation, the octanol/water coefficient (log P), or the dissociation constant (pK(a)) of the acids that we tested. We conclude that induction of the MPT in vitro is a general response to short-chain carboxylic acids having a pK(a) of 4 to 5.  相似文献   

10.
When serum is made rate-limiting for clonal multiplication of human diploid fibroblasts, the presence of a 2-oxocarboxylic acid in the medium becomes essential. The requirement is independent of the 20 amino acids and glucose. Glyoxylic, pyruvic, 2-oxoglutaric, and oxalacetic acids are most effective. The types of 2-oxocarboxylic acids that support multiplication are oxidized substrates for several, pyridine nucleotide-linked intracellular oxidoreductases. The requirement is not satisfied by carboxylic acids, oxidized substrates for oxidoreductases that are not lniked to pyridine nucleotides, or by nonspecific electron acceptors. The quantitative requirement for 2-oxocarboxylic acids in cell multiplication is markedly affected by the concentration of serum proteins in the medium. Therefore, 2-oxocarboxylic acid metabolism may be related to the mechanism by which serum growth factors regulate cell multiplication.  相似文献   

11.
The growth of strains of Bacillus thiaminolyticus was found to be inhibited by many other bacteria in glucose-containing media. The properties of the substances responsible for the inhibition were such as to suggest that they could be carboxylic acids. Carboxylic acids were found to produce a similar inhibition of B. thiaminolyticus and another thiaminase type I-producing organism, Clostridium sporogenes .  相似文献   

12.
A tyrosinase-modified Pt electrode, based on physical entrapment of the enzyme in agar–agar gel, was constructed and used to investigate the inhibitory effect of six carboxylic acids. At an applied potential of −50 mV versus saturated calomel electrode (SCE), the bioelectrode develops a fast, steady state response, linearly correlated with the phenol concentration up to 10 mg/l, with a sensitivity of 3.7 nA l/mg. A kinetic analysis of the amperometric response to phenol, recorded in the absence and in the presence of carboxylic acids (benzoic, 3-bromobenzoic, 4-ethylbenzoic, acetic, phenylacetic, 2-naphthylacetic acids), revealed that for the first four compounds the inhibition process corresponds to an uncompetitive one. Using the Lineweaver–Burk linearization the inhibition constants as well as the inhibition coefficients were calculated for the strong inhibitors: benzoic, 3-bromobenzoic, 4-ethylbenzoic and acetic acids.  相似文献   

13.
While in the absence of glucose, proline is not a required amino acid, in the presence of glucose the growth of Micrococcus pyogenes var. aureus in amino acid medium is proportional to the concentration of proline when all other amino acids and growth factors are present in amounts adequate for optimal growth. The data presented here and the ideas prevailing in the literature indicate that glutamic acid is a precursor of proline. Glucose inhibits the conversion of glutamic acid into proline, which in turn causes failure of growth. Thus, 1 μg. and 10 μg. glucose/ ml. cause 50% and 100% inhibition, respectively, of the growth dependent on the synthesis of proline. One μg. proline antagonizes completely the inhibition in the presence of 5,000 μg. glucose/ml.One μg. glycerol, 100 μg. pyruvate, 250 μg. lactate, or 100 μg. α-glycerophosphate/ml., individually, cause from 25 to 50% inhibition of the growth dependent on the synthesis of proline from glutamic acid. Five thousand μg./ml. either of malic, succinic, fumaric, α-keto-glutaric, cis-aconitic acid, or dihydroxyacetone, or 500 μg. citric acid/ml. fails to cause inhibition.Pyrrolidone carboxylic acid was found to substitute for glutamic acid but not for proline in tests with M. pyogenes var. aureus. Also, seven proline-less mutant strains of Escherichia coli were unable to utilize pyrrolidone carboxylic acid in place of proline. No evidence was obtained to indicate that pyrrolidone carboxylic acid could serve as a direct precursor of proline.  相似文献   

14.
In this report, highly efficient oxidative decarboxylation of carboxylic acids with sodium periodate catalyzed by a supported manganese(III) porphyrin is described. In the presence of manganese(III) tetra(4-pyridyl)porphyrin supported on cross-linked chloromethylated polystyrene, [Mn(T4PyP)-CMP], as catalyst, carboxylic acids were converted to their corresponding carbonyl compounds via oxidative decarboxylation with sodium periodate using imidazole as axial ligand. The oxidation of anti-inflammatory drugs such Indomethacin and Ibuprofen was carried out successfully and the decarboxylated products were obtained. This catalyst can be reused several times without loss of its catalytic activity in the oxidation reactions.  相似文献   

15.
Various bacteria which can grow on biotin as a sole carbon source were isolated from soil samples. These bacteria were classified into three groups according to the biotin-degrading pattern. Cell-free extracts from all these bacteria grown on biotin possessed high biotinyl-CoA synthetase activities. Cultural conditions for strain No. 166, the highest biotinyl-CoA synthetase producer, were examined. Biotinyl-CoA synthetase was induced in the presence of biotin, but not in the presence of any other carboxylic acids or biotin intermediates. The addition of lactose and yeast extract to the medium enhanced both the growth and the enzyme activity. The enzyme reaction for biotinyl-CoA synthesis required ATP, CoA and Mg2+ as well as biotin. From taxonomical studies, bacterium No. 166 was identified as a strain of Mycoplana.  相似文献   

16.
In laboratory experiments, 11 selected carboxylic acids were tested to determine which part of the sinapic acid molecule is responsible for deterring cabbage root fly from laying its eggs on otherwise-acceptable cauliflower host-plants. The deterrent effect was only obtained with compounds containing at least one carboxylic group in the molecule. Hence, the aliphatic acids were as deterrent as the aromatic acids to the fly and all the carboxylic acids were as deterrent as sinapic acid, reducing oviposition by > 50%. The inclusion of two carboxylic groups in the molecule, (e.g. phthalic acid and oxalic acid) did not increase the deterrent effect observed with sinapic acid. Some of the long chain fatty acids, with low volatility, low water solubility and thus greater persistence, offer practical opportunities for deterring Delia radicurn from laying its eggs on plants in the field.  相似文献   

17.
In order to know the substrate specificity in a hydrocarbon utilizing bacterium, the following materials were examined: n-alkanes, n-alkenes, monohydric alcohols, aldehydes, monobasic carboxylic acids, dihydric alcohols and dibasic carboxylic acids.

It was found that dibasic carboxylic acids were well utilized, and a great deal of l-glutamic acid was accumulated from them. Then suberic acid, which is C8 dibasic carboxylic acid, was compared with n-dodecane in the effects of thiamine, penicillin, C/N ratio and substrate concentration on l-glutamic acid accumulation and cell growth.  相似文献   

18.
A bacterium that is able to utilize a number of halogenated short-chain hydrocarbons and halogenated carboxylic acids as sole carbon source for growth was identified as a strain of Xanthobacter autotrophicus. The organism constitutively produces two different dehalogenases. One enzyme is specific for halogenated alkanes, whereas the other, which is more heat stable and has a higher pH optimum, is specific for halogenated carboxylic acids. Haloalkanes were hydrolyzed in cell extracts to produce alcohols and halide ions, and a route for the metabolism of 1,2-dichlorethane is proposed. Both dehalogenases show a broad substrate specificity, allowing the degradation of bromine- and chlorine-substituted organic compounds. The results show that X. autotrophicus may play a role in the degradation of organochlorine compounds and that hydrolytic dehalogenases may be involved in the microbial metabolism of short-chain halogenated hydrocarbons in microorganisms.  相似文献   

19.
A bacterium that is able to utilize a number of halogenated short-chain hydrocarbons and halogenated carboxylic acids as sole carbon source for growth was identified as a strain of Xanthobacter autotrophicus. The organism constitutively produces two different dehalogenases. One enzyme is specific for halogenated alkanes, whereas the other, which is more heat stable and has a higher pH optimum, is specific for halogenated carboxylic acids. Haloalkanes were hydrolyzed in cell extracts to produce alcohols and halide ions, and a route for the metabolism of 1,2-dichlorethane is proposed. Both dehalogenases show a broad substrate specificity, allowing the degradation of bromine- and chlorine-substituted organic compounds. The results show that X. autotrophicus may play a role in the degradation of organochlorine compounds and that hydrolytic dehalogenases may be involved in the microbial metabolism of short-chain halogenated hydrocarbons in microorganisms.  相似文献   

20.
A test of root growth inhibition of spruce and beech roots, according to Lynch's procedure (1977), shows the inhibitory effects of soil solution extracted from the holorganic layers (Of2-Oh) under beech and spruce. Molecular gel filtration of soil solutions shows that the molecular weights vary over a wide range, from less than 100 to over 40,000 daltons. Chemical analysis, using CGC, HPLC and sometimes MS shows only negligible concentrations of simple aliphatic (C1-C5) and aromatic acids in the free state. Using the fraction scheme of Forsyth (1977) and the carbazole procedure, it is shown that uronic acids represent only a small percentage of the carboxylic acids, and have no inhibitory effects on root growth. By analogy with results of other authors, the presence of polycarboxylic acids in the soil solution are considered to be the main cause of root growth inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号