首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Cdc25 and Ras are two proteins required for cAMP signalling in the budding yeast Saccharomyces cerevisiae. Cdc25 is the guanine nucleotide exchange protein that activates Ras. Ras, in turn, activates adenylyl cyclase. Cdc25 has a Src homology 3 (SH3) domain near the N-terminus and a catalytic domain in the C-terminal region. We find that a point mutation in the SH3 domain attenuates cAMP signalling in response to glucose feeding. Furthermore, we demonstrate, by using recombinant adenylyl cyclase and Cdc25, that the SH3 domain of Cdc25 can bind directly to adenylyl cyclase. Binding was specific, because the SH3 domain of Abp1p (actin-binding protein 1), which binds the 70,000 Mr subunit of adenylyl cyclase, CAP/Srv2, failed to bind adenylyl cyclase. A binding site for Cdc25-SH3 localised to the C-terminal catalytic region of adenylyl cyclase. Finally, pre-incubation with Ras enhanced the SH3-bound adenylyl cyclase activity. These studies suggest that a direct interaction between Cdc25 and adenylyl cyclase promotes efficient assembly of the adenylyl cyclase complex.  相似文献   

2.
In the yeast, Saccharomyces cerevisiae, adenylyl cyclase consists of a 200-kDa catalytic subunit (CYR1) and a 70-kDa subunit (CAP/SRV2). CAP/Srv2p assists the small G protein Ras to activate adenylyl cyclase. CAP also regulates the cytoskeleton through an actin sequestering activity and is directed to cortical actin patches by a proline-rich SH3-binding site (P2). In this report we analyze the role of the actin cytoskeleton in Ras/cAMP signaling. Two alleles of CAP, L16P(Srv2) and R19T (SupC), first isolated in genetic screens for mutants that attenuate cAMP levels, reduced adenylyl cyclase binding, and cortical actin patch localization. A third mutation, L27F, also failed to localize but showed no loss of either cAMP signaling or adenylyl cyclase binding. However, all three N-terminal mutations reduced CAP-CAP multimer formation and SH3 domain binding, although the SH3-binding site is about 350 amino acids away. Finally, disruption of the actin cytoskeleton with latrunculin-A did not affect the cAMP phenotypes of the hyperactive Ras2(Val19) allele. These data identify a novel region of CAP that controls access to the SH3-binding site and demonstrate that cytoskeletal localization of CAP or an intact cytoskeleton per se is not necessary for cAMP signaling.  相似文献   

3.
In a variety of organisms, a number of proteins associated with the cortical actin cytoskeleton contain SH3 domains, suggesting that these domains may provide the physical basis for functional interactions among structural and regulatory proteins in the actin cytoskeleton. We present evidence that SH3 domains mediate at least two independent functions of the Saccharomyces cerevisiae actin-binding protein Abp1p in vivo. Abp1p contains a single SH3 domain that has recently been shown to bind in vitro to the adenylyl cyclase-associated protein Srv2p. Immunofluorescence analysis of Srv2p subcellular localization in strains carrying mutations in either ABP1 or SRV2 reveals that the Abp1p SH3 domain mediates the normal association of Srv2p with the cortical actin cytoskeleton. We also show that a site in Abp1p itself is specifically bound by the SH3 domain of the actin-associated protein Rvs167p. Genetic analysis provides evidence that Abp1p and Rvs167p have functions that are closely interrelated. Abp1 null mutations, like rvs167 mutations, result in defects in sporulation and reduced viability under certain suboptimal growth conditions. In addition, mutations in ABP1 and RVS167 yield similar profiles of genetic "synthetic lethal" interactions when combined with mutations in genes encoding other cytoskeletal components. Mutations which specifically disrupt the SH3 domain-mediated interaction between Abp1p and Srv2p, however, show none of the shared phenotypes of abp1 and rvs167 mutations. We conclude that the Abp1p SH3 domain mediates the association of Srv2p with the cortical actin cytoskeleton, and that Abp1p performs a distinct function that is likely to involve binding by the Rvs167p SH3 domain. Overall, work presented here illustrates how SH3 domains can integrate the activities of multiple actin cytoskeleton proteins in response to varying environmental conditions.  相似文献   

4.
Piccolo is a high molecular weight multi-domain protein shown to be a structural component of the presynaptic CAZ (cytoskeletal matrix assembled at active zones). These features indicate that Piccolo may act to scaffold proteins involved in synaptic vesicle endo- and exocytosis near their site of action. To test this hypothesis, we have utilized a functional cell-based endocytosis assay and identified the N-terminal proline-rich Q domain in Piccolo as a region that interferes with clathrin-mediated endocytosis. Utilizing the Piccolo Q domain as bait in a yeast two-hybrid screen, we have identified the F-actin-binding protein Abp1 (also called SH3P7 or HIP-55) as a potential binding partner for this domain. The physiological relevance of this interaction is supported by in vitro binding studies, colocalization in nerve terminals, in vivo recruitment studies, and immunoprecipitation experiments. Intriguingly, Abp1 binds to both F-actin and the GTPase dynamin and has been implicated in linking the actin cytoskeleton to clathrin-mediated endocytosis. Our results suggest that Piccolo, as a structural protein of the CAZ, may serve to localize Abp1 at active zones where it can actively participate in creating a functional connection between the dynamic actin cytoskeleton and synaptic vesicle recycling.  相似文献   

5.
The Wiskott-Aldrich syndrome protein (WASP) and its relative neural WASP (N-WASP) regulate the nucleation of actin filaments through their interaction with the Arp2/3 complex and are regulated in turn by binding to GTP-bound Cdc42 and phosphatidylinositol 4,5-bisphosphate. The Nck Src homology (SH) 2/3 adaptor binds via its SH3 domains to a proline-rich region on WASP and N-WASP and has been implicated in recruitment of these proteins to sites of tyrosine phosphorylation. We show here that Nck SH3 domains dramatically stimulate the rate of nucleation of actin filaments by purified N-WASP in the presence of Arp2/3 in vitro. All three Nck SH3 domains are required for maximal activation. Nck-stimulated actin nucleation by N-WASP.Arp2/3 complexes is further stimulated by phosphatidylinositol 4,5-bisphosphate, but not by GTP-Cdc42, suggesting that Nck and Cdc42 activate N-WASP by redundant mechanisms. These results suggest the existence of an Nck-dependent, Cdc42-independent mechanism to induce actin polymerization at tyrosine-phosphorylated Nck binding sites.  相似文献   

6.
Many protein-protein interaction domains bind to multiple targets. However, little is known about how the interactions of a single domain with many proteins are controlled and modulated under varying cellular conditions. In this study, we investigated the in vivo effects of Abp1p SH3 domain mutants that incrementally reduce target-binding affinity in four different yeast mutant backgrounds in which Abp1p activity is essential for growth. Although the severity of the phenotypic defects observed generally increased as binding affinity was reduced, some genetic backgrounds (prk1 Delta and sla1 Delta) tolerated large affinity reductions while others (sac6 Delta and sla2 Delta) were much more sensitive to these reductions. To elucidate the mechanisms behind these observations, we determined that Ark1p is the most important Abp1p SH3 domain interactor in prk1 Delta cells, but that interactions with multiple targets, including Ark1p and Scp1p, are required in the sac6 Delta background. We establish that the Abp1p SH3 domain makes different, functionally important interactions under different genetic conditions, and these changes in function are reflected by changes in the binding affinity requirement of the domain. These data provide the first evidence of biological relevance for any Abp1p SH3 domain-mediated interaction. We also find that considerable reductions in binding affinity are tolerated by the cell with little effect on growth rate, even when the actin cytoskeletal morphology is significantly perturbed.  相似文献   

7.
We previously identified human CAP, a homolog of the yeast adenylyl cyclase—associated protein. Previous studies suggest that the N-terminal and C-terminal domains of CAP have distinct functions. We have explored the interactions of human CAP with various proteins. First, by performing yeast two-hybrid screens, we have identified peptides from several proteins that interact with the C-terminal and/or the N-terminal domains of human CAP. These peptides include regions derived from CAP and BAT3, a protein with unknown function. We have further shown that MBP fusions with these peptides can associate in vitro with the N-terminal or C-terminal domains of CAP fused to GST. Our observations indicate that CAP contains regions in both the N-terminal and C-terminal domains that are capable of interacting with each other or with themselves. Furthermore, we found that myc-epitope-tagged CAP coimmunoprecipitates with HA-epitope-tagged CAP from either yeast or mammalian cell extracts. Similar results demonstrate that human CAP can also interact with human CAP2. We also show that human CAP interacts with actin, both by the yeast two-hybrid test and by coimmunoprecipitation of epitope-tagged CAP from yeast or mammalian cell extracts. This interaction requires the C-terminal domain of CAP, but not the N-terminal domain. Thus CAP appears to be capable of interacting in vivo with other CAP molecules, CAP2, and actin. We also show that actin co-immunoprecipitates with HA-CAP2 from mammalian cell extracts. © 1996 Wiley-Liss, Inc.  相似文献   

8.
The actin-related protein (Arp) 2/3 complex plays a central role in assembly of actin networks. Because distinct actin-based structures mediate diverse processes, many proteins are likely to make spatially and temporally regulated interactions with the Arp2/3 complex. We have isolated a new activator, Abp1p, which associates tightly with the yeast Arp2/3 complex. Abp1p contains two acidic sequences (DDW) similar to those found in SCAR/WASp proteins. We demonstrate that mutation of these sequences abolishes Arp2/3 complex activation in vitro. Genetic studies indicate that this activity is important for Abp1p functions in vivo. In contrast to SCAR/WASp proteins, Abp1p binds specifically to actin filaments, not monomers. Actin filament binding is mediated by the ADF/cofilin homology (ADF-H) domain of Abp1p and is required for Arp2/3 complex activation in vitro. We demonstrate that Abp1p recruits Arp2/3 complex to the sides of filaments, suggesting a novel mechanism of activation. Studies in yeast and mammalian cells indicate that Abp1p is involved functionally in endocytosis. Based on these results, we speculate that Abp1p may link Arp2/3-mediated actin assembly to a specific step in endocytosis.  相似文献   

9.
Cytokinesis in most eukaryotes requires the assembly and contraction of a ring of actin filaments and myosin II. The fission yeast Schizosaccharomyces pombe requires the formin Cdc12p and profilin (Cdc3p) early in the assembly of the contractile ring. The proline-rich formin homology (FH) 1 domain binds profilin, and the FH2 domain binds actin. Expression of a construct consisting of the Cdc12 FH1 and FH2 domains complements a conditional mutant of Cdc12 at the restrictive temperature, but arrests cells at the permissive temperature. Cells overexpressing Cdc12(FH1FH2)p stop growing with excessive actin cables but no contractile rings. Like capping protein, purified Cdc12(FH1FH2)p caps the barbed end of actin filaments, preventing subunit addition and dissociation, inhibits end to end annealing of filaments, and nucleates filaments that grow exclusively from their pointed ends. The maximum yield is one filament pointed end per six formin polypeptides. Profilins that bind both actin and poly-l-proline inhibit nucleation by Cdc12(FH1FH2)p, but polymerization of monomeric actin is faster, because the filaments grow from their barbed ends at the same rate as uncapped filaments. On the other hand, Cdc12(FH1FH2)p blocks annealing even in the presence of profilin. Thus, formins are profilin-gated barbed end capping proteins with the ability to initiate actin filaments from actin monomers bound to profilin. These properties explain why contractile ring assembly requires both formin and profilin and why viability depends on the ability of profilin to bind both actin and poly-l-proline.  相似文献   

10.
The Saccharomyces cerevisiae PAK (p21-activated kinase) family kinase Ste20 functions in several signal transduction pathways, including pheromone response, filamentous growth, and hyperosmotic resistance. The GTPase Cdc42 localizes and activates Ste20 by binding to an autoinhibitory motif within Ste20 called the CRIB domain. Another factor that functions with Ste20 and Cdc42 is the protein Bem1. Bem1 has two SH3 domains, but target ligands for these domains have not been described. Here we identify an evolutionarily conserved binding site for Bem1 between the CRIB and kinase domains of Ste20. Mutation of tandem proline-rich (PxxP) motifs in this region disrupts Bem1 binding, suggesting that it serves as a ligand for a Bem1 SH3 domain. These PxxP motif mutations affect signaling additively with CRIB domain mutations, indicating that Bem1 and Cdc42 make separable contributions to Ste20 function, which cooperate to promote optimal signaling. This PxxP region also binds another SH3 domain protein, Nbp2, but analysis of bem1Delta versus nbp2Delta strains shows that the signaling defects of PxxP mutants result from impaired binding to Bem1 rather than from impaired binding to Nbp2. Finally, the PxxP mutations also reduce signaling by constitutively active Ste20, suggesting that postactivation functions of PAKs can be promoted by SH3 domain proteins, possibly by colocalizing PAKs with their substrates. The overall results also illustrate how the final signaling function of a protein can be governed by combinatorial addition of multiple, independent protein-protein interaction modules.  相似文献   

11.
Proteins of the Wiskott-Aldrich Syndrome protein (WASp) family connect signaling pathways to the actin polymerization-driven cell motility. The ubiquitous homolog of WASp, N-WASp, is a multidomain protein that interacts with the Arp2/3 complex and G-actin via its C-terminal WA domain to stimulate actin polymerization. The activity of N-WASp is enhanced by the binding of effectors like Cdc42-guanosine 5'-3-O-(thio)triphosphate, phosphatidylinositol bisphosphate, or the Shigella IcsA protein. Here we show that the SH3-SH2-SH3 adaptor Grb2 is another activator of N-WASp that stimulates actin polymerization by increasing the amount of N-WASp. Arp2/3 complex. The concentration dependence of N-WASp activity, sedimentation velocity and cross-linking experiments together suggest that N-WASp is subject to self-association, and Grb2 enhances N-WASp activity by binding preferentially to its active monomeric form. Use of peptide inhibitors, mutated Grb2, and isolated SH3 domains demonstrate that the effect of Grb2 is mediated by the interaction of its C-terminal SH3 domain with the proline-rich region of N-WASp. Cdc42 and Grb2 bind simultaneously to N-WASp and enhance actin polymerization synergistically. Grb2 shortens the delay preceding the onset of Escherichia coli (IcsA) actin-based reconstituted movement. These results suggest that Grb2 may activate Arp2/3 complex-mediated actin polymerization downstream from the receptor tyrosine kinase signaling pathway.  相似文献   

12.
Intersectin 1L is a scaffolding protein involved in endocytosis that also has guanine nucleotide exchange activity for Cdc42. In the context of the full-length protein, the catalytic exchange activity of the DH domain is repressed. Here we use biochemical methods to dissect the mechanism for this inhibition. We demonstrate that the intersectin 1L SH3 domains, which bind endocytic proteins, directly inhibit the activity of the DH domain in assays for both binding and exchange of Cdc42. This inhibitory mechanism seems to act through steric hindrance of Cdc42 binding by an intramolecular interaction between the intersectin 1L SH3 domain region and the adjacent DH domain. Surprisingly, the mode of SH3 domain binding is other than through the proline peptide binding pocket. The dual role of the SH3 domains in endocytosis and repression of exchange activity suggests that the intersectin 1L exchange activity is regulated by endocytosis. We show that the endocytic protein, dynamin, competes for binding to the SH3 domains with the neural Wiskott-Aldrich Syndrome protein, an actin filament nucleation protein that is a substrate for activated Cdc42. Swapping of SH3 domain binding partners might act as a switch controlling the actin nucleation activity of intersectin 1L.  相似文献   

13.
Control of cell shape and motility requires rearrangements of the actin cytoskeleton. One cytoskeletal protein that may regulate actin dynamics is CAP (cyclase associated protein; CAP/Srv2p; ASP-56). CAP was first isolated from yeast as an adenylyl cyclase associated protein required for RAS regulation of cAMP signaling. In addition, CAP also regulates the actin cytoskeleton primarily through an actin monomer binding activity. CAP homologs are found in many eukaryotes, including mammals where they also bind actin, but little is known about their biological function. We, therefore, designed experiments to address CAP1 regulation of the actin cytoskeleton. CAP1 localized to membrane ruffles and actin stress fibers in fixed cells of various types. To address localization in living cells, we constructed GFP-CAP1 fusion proteins and found that fusion proteins lacking the actin-binding region localized like the wild type protein. We also performed microinjection studies with affinity-purified anti-CAP1 antibodies in Swiss 3T3 fibroblasts and found that the antibodies attenuated serum stimulation of stress fibers. Finally, CAP1 purified from platelets through a monoclonal antibody affinity purification step stimulated the formation of stress fiber-like filaments when it was microinjected into serum-starved Swiss 3T3 cells. Taken together, these data suggest that CAP1 promotes assembly of the actin cytoskeleton.  相似文献   

14.
Membrane-associated guanylate kinase (MAGUK) proteins act as molecular scaffolds organizing multiprotein complexes at specialized regions of the plasma membrane. All MAGUKs contain a Src homology 3 (SH3) domain and a region homologous to yeast guanylate kinase (GUK). We showed previously that one MAGUK protein, human CASK (hCASK), is widely expressed and associated with epithelial basolateral plasma membranes. We now report that hCASK binds another MAGUK, human discs large (hDlg). Immunofluorescence microscopy demonstrates that hCASK and hDlg colocalize at basolateral membranes of epithelial cells in small and large intestine. These proteins co-precipitate from lysates of an intestinal cell line, Caco-2. The GUK domain of hCASK binds the SH3 domain of hDlg in both yeast two-hybrid and fusion protein binding assays, and it is required for interaction with hDlg in transfected HEK293 cells. In addition, the SH3 and GUK domains of each protein participate in intramolecular binding that in vitro predominates over intermolecular binding. The SH3 and GUK domains of human p55 display the same interactions in yeast two-hybrid assays as those of hCASK. Not all SH3-GUK interactions among these MAGUKs are permissible, however, implying specificity to SH3-GUK interactions in vivo. These results suggest MAGUK scaffold assembly may be regulated through effects on intramolecular SH3-GUK binding.  相似文献   

15.
CIN85 is an adaptor protein linking the ubiquitin ligase Cbl and clathrin-binding proteins in clathrin-mediated receptor endocytosis. The SH3 domains of CIN85 bind to a proline-rich region of Cbl. Here we show that all three SH3 domains of CIN85 bind to ubiquitin. We also present a data-based structural model of the CIN85 SH3-C domain in complex with ubiquitin. In this complex, ubiquitin binds to the canonical interaction surface of the SH3 domain for proline-rich ligands and mimics the PPII helix, and we provide evidence that ubiquitin competes with these ligands for binding. We demonstrate that disruption of ubiquitin binding results in constitutive ubiquitination of CIN85 and an increased level of ubiquitination of EGFR in the absence of EGF stimulation. These results suggest that competition between Cbl and ubiquitin binding to CIN85 regulates Cbl function and EGFR endocytosis.  相似文献   

16.
In Saccharomyces cerevisiae, the Rho-type small GTPase Cdc42 is activated by its guanine-nucleotide exchange factor Cdc24 to polarize the cell for budding and mating. A multidomain protein Bem1 interacts not only with Cdc42 but also with Cdc24 and the effectors of Cdc42, including the p21-activated kinase Ste20, to function as a scaffold for cell polarity establishment. Although Bem1 interacts with Cdc24 and Ste20 via its PB1 and the second SH3 domains (SH3b), respectively, it is unclear how Bem1 binds Cdc42. Here we show that a region comprising the SH3b and its C-terminal flanking segment termed CI (SH3b-CI) directly interacts with Cdc42. A dual-bait reverse two-hybrid approach revealed that the CI is critical to the interaction: N253D substitution in the CI abolishes the binding of the SH3b-CI to Cdc42 but not to the proline-rich region of Ste20, whereas W192K substitution in the SH3b has the opposite effect. Nevertheless, the SH3b-CI interacts with Ste20 proline-rich region and Cdc42 in a mutually exclusive manner. The N253D substitution renders cellular growth temperature-sensitive and suppresses mating. The W192K-induced mating defect is exacerbated by the N253D substitution and suppressed by increasing the dosage of Ste20 provided that the CI is intact. Intriguingly, Cdc42 can mediate an indirect interaction of the SH3b-CI to the CRIB domain of Ste20. These results suggest that the SH3b and the CI collaborate in tethering of Ste20 to Bem1 to ensure efficient mating pheromone signaling.  相似文献   

17.
Cbl-interacting protein of 85 kDa (CIN85) is a recently identified adaptor protein involved in the endocytic process of several receptor tyrosine kinases. Here we have identified a novel RhoGAP, CIN85 associated multi-domain containing Rho1 (CAMGAP1) as a binding protein for CIN85. CAMGAP1 is composed of an Src homology 3 (SH3) domain, multiple WW domains, a proline-rich region, a PH domain and a RhoGAP domain, and has the domain architecture similar to ARHGAP9 and ARHGAP12. CAMGAP1 mRNA is widely distributed in murine tissues. Biochemical assays showed its GAP activity toward Rac1 and Cdc42. Protein binding and expression studies indicated that the second SH3 domain of CIN85 binds to a proline-rich region of CAMGAP1. Overexpression of a truncated form of CAMGAP1 interferes with the internalization of transferrin receptors, suggesting that CAMGAP1 may play a role in clathrin-mediated endocytosis.  相似文献   

18.
Cofilin is an essential component of the yeast cortical cytoskeleton   总被引:30,自引:17,他引:13       下载免费PDF全文
We have biochemically identified the Saccharomyces cerevisiae homologue of the mammalian actin binding protein cofilin. Cofilin and related proteins isolated from diverse organisms are low molecular weight proteins (15-20 kD) that possess several activities in vitro. All bind to monomeric actin and sever filaments, and some can stably associate with filaments. In this study, we demonstrate using viscosity, sedimentation, and actin assembly rate assays that yeast cofilin (16 kD) possesses all of these properties. Cloning and sequencing of the S. cerevisiae cofilin gene (COF1) revealed that yeast cofilin is 41% identical in amino acid sequence to mammalian cofilin and, surprisingly, has homology to a protein outside the family of cofilin- like proteins. The NH2-terminal 16kD of Abp1p, a 65-kD yeast protein identified by its ability to bind to actin filaments, is 23% identical to yeast cofilin. Immunofluorescence experiments showed that, like Abp1p, cofilin is associated with the membrane actin cytoskeleton. A complete disruption of the COF1 gene was created in diploid cells. Sporulation and tetrad analysis revealed that yeast cofilin has an essential function in vivo. Although Abp1p shares sequence similarity with cofilin and has the same distribution as cofilin in the cell, multiple copies of the ABP1 gene cannot compensate for the loss of cofilin. Thus, cofilin and Abp1p are structurally related but functionally distinct components of the yeast membrane cytoskeleton.  相似文献   

19.
Garcia B  Stollar EJ  Davidson AR 《Genetics》2012,191(4):1199-1211
Saccharomyces cerevisiae Actin-Binding Protein 1 (Abp1p) is a member of the Abp1 family of proteins, which are in diverse organisms including fungi, nematodes, flies, and mammals. All proteins in this family possess an N-terminal Actin Depolymerizing Factor Homology (ADF-H) domain, a central Proline-Rich Region (PRR), and a C-terminal SH3 domain. In this study, we employed sequence analysis to identify additional conserved features of the family, including sequences rich in proline, glutamic acid, serine, and threonine amino acids (PEST), which are found in all family members examined, and two motifs, Conserved Fungal Motifs 1 and 2 (CFM1 and CFM2), that are conserved in fungi. We also discovered that, similar to its mammalian homologs, Abp1p is phosphorylated in its PRR. This phosphorylation is mediated by the Cdc28p and Pho85p kinases, and it protects Abp1p from proteolysis mediated by the conserved PEST sequences. We provide evidence for an intramolecular interaction between the PRR region and SH3 domain that may be affected by phosphorylation. Although deletion of CFM1 alone caused no detectable phenotype in any genetic backgrounds or conditions tested, deletion of this motif resulted in a significant reduction of growth when it was combined with a deletion of the ADF-H domain. Importantly, this result demonstrates that deletion of highly conserved domains on its own may produce no phenotype unless the domains are assayed in conjunction with deletions of other functionally important elements within the same protein. Detection of this type of intragenic synthetic lethality provides an important approach for understanding the function of individual protein domains or motifs.  相似文献   

20.
The budding yeast contains two type I myosins, Myo3p and Myo5p, with redundant functions. Deletion of both myosins results in growth defects, loss of actin polarity and polarized cell surface growth, and accumulation of intracellular membranes. Expression of myc-tagged Myo5p in myo3Δ myo5Δ cells fully restores wild-type characteristics. Myo5p is localized as punctate, cortical structures enriched at sites of polarized cell growth. We find that latrunculin-A–induced depolymerization of F-actin results in loss of Myo5p patches. Moreover, incubation of yeast cells at 37°C results in transient depolarization of both Myo5p patches and the actin cytoskeleton. Mutant Myo5 proteins with deletions in nonmotor domains were expressed in myo3Δ myo5Δ cells and the resulting strains were analyzed for Myo5p function. Deletion of the tail homology 2 (TH2) domain, previously implicated in ATP-insensitive actin binding, has no detectable effect on Myo5p function. In contrast, myo3Δ myo5Δ cells expressing mutant Myo5 proteins with deletions of the src homology domain 3 (SH3) or both TH2 and SH3 domains display defects including Myo5p patch depolarization, actin disorganization, and phenotypes associated with actin dysfunction. These findings support a role for the SH3 domain in Myo5p localization and function in budding yeast. The proline-rich protein verprolin (Vrp1p) binds to the SH3 domain of Myo3p or Myo5p in two-hybrid tests, coimmunoprecipitates with Myo5p, and colocalizes with Myo5p. Immunolocalization of the myc-tagged SH3 domain of Myo5p reveals diffuse cytoplasmic staining. Thus, the SH3 domain of Myo5p contributes to but is not sufficient for localization of Myo5p either to patches or to sites of polarized cell growth. Consistent with this, Myo5p patches assemble but do not localize to sites of polarized cell surface growth in a VRP1 deletion mutant. Our studies support a multistep model for Myo5p targeting in yeast. The first step, assembly of Myo5p patches, is dependent upon F-actin, and the second step, polarization of actin patches, requiresVrp1p and the SH3 domain of Myo5p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号