首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of nutrient supply on nodule formation and competition between Rhizobium strains for nodulation ofLotus pedunculatus was studied. Limiting plant growth by decreasing the supply of nutrients in an otherwise nitrogen-free medium, increased the size but decreased the number and the nitrogenase activity of nodules formed by a fast-growing strain of Lotus Rhizobium (NZP2037). In contrast decreasing nutrient supply caused only a small decline in the size, number and nitrogenase activity of nodules formed by a slow-growing strain (CC814s). Providing small quantities of NH4NO3 (50 to 250 g N) to plants grown with a normal supply of other nutrients stimulated nodule development by both Rhizobium strains and increased the nitrogenase activity of the NZP2037 nodules. Differences in the level of effectiveness (nitrogen-fixing ability) of nodules formed by different Rhizobium strains on plants grown with a normal supply of nutrients were less apparent when the plants were grown with decreased nutrient supply or when the plants were supplied with low levels of inorganic N.Inter-strain competition for nodulation ofL. pedunculatus between the highly effective slow-growing strain CC814s and 7 other fast- and slow-growing strains, showed CC814s to form 42 to 100% of the nodules in all associations. The greater nodulating competitiveness of strain CC814s prevailed despite changes in the nutrient supply to the host plant. A tendency was observed for partially effective Lotus Rhizobium strains to become more competitive in nodule formation when plant growth was supplemented with low levels of inorganic nitrogen.  相似文献   

2.
Vance, C. P., Reibach, P. H. and Pankhurst, C. E. 1987. Symbiotic properties of Lotus pedunculatus root nodules induced by Rhizobium loti and Bradyrhizobium sp. ( Lotus ).
Symbiotic properties of root nodules were evaluated in glasshouse-grown Lotus pedunculatus Cav. cv. Maku inoculated with either a fast-growing Rhizobium loti strain NZP2037 or a slow-growing Bradyrhizobium sp. ( Lotus ) strain CC814s. Although the nodule mass of plants inoculated with NZP2037 was twice that of plants inoculated with CC814s, the yield of NZP2037 shoots and roots was 50% that of CC814s shoots and roots. Nodules induced by Bradyrhizobium fixed substantially more N than nodules induced by R. loti. Glucose requirements [mol glucose (mol N2 fixed)-1] of nodules induced by CC814s and NZP2037 were 7.1 and 16.6, respectively. Nodule enzymes of carbon and nitrogen assimilation reflected the disparity of the two sym-bioses. Xylem sap of the symbiosis with the higher yield contained a higher concentration of asparagine [9.86 μmol (ml xylem sap)'] than did the lower yielding symbiosis [5.80 umol (ml xylem sap)"']. Nodule CO2 fixation was directly linked to nodule N assimilation in both symbioses. The results indicate that the difference between the two symbioses extend to nodule N and C assimilation and whole plant N transport. The data support a role for host plant modulation of bacterial efficiency and assimilation of fixed N.  相似文献   

3.
Summary Cosmids containing a nodulation gene from Rhizobium loti NZP2037 were isolated using a 12.8 kb nod:: Tn5 EcoRI fragment from the Nod- mutant strain PN233, as a hybridisation probe. A physical map of the nod region was established using the enzymes EcoRI and HindIII and the site of insertion of Tn5 in PN233 determined. Site-specific exchange of the cloned nod:: Tn5 fragment demonstrated that Tn5, and not an indigenous insertion sequence, was responsible for the nod mutation in PN233. The nod cosmids isolated complemented the Nod- phenotype of strain PN233 but restoration of the Fix phenotype was variable suggesting a need for marker rescue to occur before nitrogen fixation occurred.Corresponding nod cosmids were isolated from a R. loti strain, NZP2213, that forms ineffective tumour-like structures on Lotus pedunculatus and from the slow-growing strain (Bradyrhizobium sp), CC814s, by in planta complementation of PN233. Hybridisation experiments suggested that the nod gene region of R. loti NZP2037 was more homologous to Bradyrhizobium strain CC814s than with a nod gene region of R. trifolii strain PN100. However, transfer of the R. trifolii nod cosmid into the R. loti Nod mutant PN233, restored the ability of this strain to initiate nodules on Lotus pedunculatus.  相似文献   

4.
After 40 days of growth at 25°C, Lotus pedunculatus cav., cv. Maku plants infected with Rhizobium loti strain NZP2037 displayed similar relative growth rates but had twice the nodule mass and only one third the whole plant dry weight of plants infected with Bradyrhizobium sp. (Lotus) strain CC814s. In the NZP2037 symbiosis, the rate of CO2 evolution (per g dry weight of nodulated root) was 1.6 times as high as that in the CC814s symbiosis while the rate of C2H2 reduction (per g dry weight of nodule) was only 48% of that in the CC814s symbiosis. Studies of the effect of short term temperature changes on the gas exchange characteristics (CO2 and H2 evolution, C2H2 reduction) of these symbioses revealed wide differences in the optima for C2H2 reduction. Nodules infected with NZP2037 displayed maximal C2H2 reduction rates [157 μmol (g dry weight nodule)?1 h?1] at 12°C, whereas nodules infected with CC814s were optimal at 30°C [208 μmol (g dry weight nodule)?1 h?1]. These short term studies suggested that differences in temperature optima for N2 may have partially accounted for the poorer effectivity, at 25°C, of strain NZP2037 when compared with strain CC-814s. The relative efficiency [RE = 1 – (H2 evolution/C2H2 reduction)] of N2 fixation varied widely with temperature in the two symbioses, but there was a general trend toward higher RE with lower temperatures. The ratio of CO2 evolution: C2H2 reduction (mol/mol) in nodulated roots infected with CC814s was constant (ca 10 CO2/C2H2) between 5°C and 30°C, whereas in plants infected with NZP2037 it reached a minimal value of 3.3 CO2/C2H2 at 10°C and was 19 CO2/C2H2 at the growing temperature (25°C).  相似文献   

5.
Rhizobium loti NZP2037 and NZP2213, each cured of its single large indigenous plasmid, formed effective nodules on Lotus spp., suggesting that the symbiotic genes are carried on the chromosome of these strains. By using pSUP1011 as a vector for introducing transposon Tn5 into R. loti NZP2037, symbiotic mutants blocked in hair curling (Hac), nodule initiation (Noi), bacterial release (Bar), and nitrogen fixation (Nif/Cof) on Lotus pedunculatus were isolated. Cosmids complementing the Hac, Noi, and Bar mutants were isolated from a pLAFR1 gene library of NZP2037 DNA by in planta complementation and found to contain EcoRI fragments of identical sizes to those into which Tn5 had inserted in the mutants. The cosmids that complemented the mutants of these phenotypic classes did not share common fragments, nor did cosmids that complemented four mutants within the Noi class, suggesting that these symbiotically important regions are not tightly linked on the R. loti chromosome.  相似文献   

6.
By Tn5 mutagenesis of Rhizobium loti PN184 (NZP2037 str-1) and selection for nonfluorescence of colonies on Calcofluor agar, eight independently generated expolysaccharide (EPS) mutants (three smooth and five rough) were isolated. The parent strain, PN184, was found to produce an acidic EPS. This EPS was produced. with reduced O acetylation, by the smooth EPS mutants but not by the rough EPS mutants. Lipopolysaccharide was isolated from all mutants and was identical to that of PN184 as defined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All mutants were resistant to lysis by R. loti bacteriophage phi 2037/1. Cosmids that complemented the mutations in the rough EPS mutants were isolated from a pLAFR1 gene library of NZP2037 by complementation of the nonfluorescent phenotype. The genes identified were shown to be unlinked and located on the chromosome. All mutants were fully effective when inoculated onto Lotus pedunculatus, a determinate nodulating host, but were ineffective, inducing the formation of very small nodules or tumorlike growths, when inoculated onto Leucaena leucocephala, an indeterminate nodulating host. These results, obtained in an isogenic Rhizobium background, support suggestions that acidic EPS is required for effective nodulation of indeterminate nodulating legumes but is not required for effective nodulation of determinate nodulating legumes.  相似文献   

7.
Two nodule-specific Rhizobium loti compounds were identified in Lotus tenuis and Lotus pedunculatus nodules induced by strain NZP2037. One, a silver nitrate-positive cation called rhizolotine, has been characterized as the riboside of a novel alpha-hydroxyimino acid containing a 1,4,5,6-tetrahydropyrimidine ring (G. J. Shaw, R. D. Wilson, G. A. Lane, L. D. Kennedy, D. B. Scott, and G. J. Gainsford, J. Chem. Soc. Chem. Commun., p. 180-181, 1986), and the other, yellow-1, stains yellow with ninhydrin. Both compounds were degraded by R. loti NZP2037 but not by strains of Rhizobium meliloti, Rhizobium trifolii, or Agrobacterium tumefaciens. Under the conditions tested neither compound was able to serve as a sole source of C or N for growth of R. loti NZP2037. Rhizolotine and yellow-1 were found in nodules from a range of different legumes inoculated with NZP2037, suggesting that the Rhizobium and not the host plant determines their synthesis. Neither compound was found in nodulelike structures of L. pedunculatus induced by transposon Tn5-induced noninfectious (Inf-) mutants of NZP2037 or in similar structures induced by a transconjugant of NZP2037 containing the symbiotic (Sym) cointegrate plasmid pPN1 of R. trifolii. Both compounds were also absent in the ineffective nodules induced by the bacterial-release-negative (Bar-) mutant, strain PN239. However, both compounds were present in nodules induced by the fixation-negative (Fix-) mutant PN235 and in Fix+ nodules formed by a plasmid-cured derivative of NZP2037. These results would suggest that infection and bacterial release from the infection thread are necessary for nodule (symbiotic) synthesis of these compounds.  相似文献   

8.
Rhizobium loti strains NZP2037 and NZP2213 were each found to contain a single large plasmid: pRlo2037a (240 MDal) and pRlo2213a (120 MDal), respectively. Plasmid DNA present in crude cell lysates of each strain and purified pRlo2037a DNA did not hybridize with pID1, a recombinant plasmid containing part of the nitrogen fixation (nif) region of R. meliloti, indicating that nif genes were not present on these plasmids. The transposon Tn5 was inserted into pRlo2037a and this plasmid was then transferred into R. leguminosarum, R. meliloti and Agrobacterium tumefaciens. All transconjugants failed to nodulate Lotus pedunculatus, suggesting that the ability to nodulate this legume was also not carried on pRlo2037a. Transfer of pRlo2037a to R. loti strain NZP2213 did not alter the Nod+ Fix- phenotype of this strain for L. pedunculatus. Determinants for flavolan resistance, believed to be necessary for effective nodulation of L. pedunculatus, were not carried on pRlo2037a. These data suggest that nodulation, nitrogen fixation and flavolan resistance genes are not present on the large plasmid in R. loti strain NZP2037.  相似文献   

9.
The morphology of root nodules formed on Lotus pedunculatusby two fast-growing strains of Rhizobium, NZP2037 which formseffective (nitrogen-fixing) nodules and NZP2213 which formsineffective (non-nitrogen-fixing) nodules, has been studied.The nodules formed by NZP2037 contained a central zone of bacteroid-filledplant cells surrounded by a cortex. In contrast the nodulesformed by NZP2213 contained no Rhizoblum-infected plant cells,but rhizobia were found in localized areas on the nodule surfaceand between the outer two or three cell layers of the nodule.Electron-dense osmiophilic deposits identified as flavolans(condensed tannins) were present in the vacuoles of many uninfectedplant cells in the nodules formed by both Rhizobium strains.This is the first time that flavolans have been positively identifiedin legume root nodules. In the NZP2037 nodule flavolans werepresent in the outer cortical and epidermal cells. In the ineffecitveNZP2213 nodule fiavolans were present in many of the centralnodule cells. The concentration of flavolan in the NZP2213 nodulewas 12 times higher than in the NZP2037 nodule.  相似文献   

10.
Sharma  Shashi B.  Sakadevan  K.  Sharma  Sunila 《Plant and Soil》1997,189(2):221-229
Azide-resistant (AzR) mutants of Rhizobium loti strain NZP2037 were isolated. Mutations conferring azide resistance (azi) appeared at a frequency of 0.5 × 10-7. Nine AzR mutants of R. loti were characterised for their symbiotic behaviour with Lotus pedunculatus plants. In comparison to the wild type parent strain, AzR mutants exhibited either similar or higher symbiotic effectiveness. The azi mutations which enhanced nitrogen fixation as well as improving shoot dry weight of the inoculated plants also increased nodulation. Unlike several azi mutations in Escherichia coli, these azi mutations did not alter sensitivity of R. loti to phenethyl alcohol. One of the AzR mutants exhibited higher micro-aerobic, N, N, N, N-tetramethyl-p-phenylenediamine (TMPD) oxidase activity.  相似文献   

11.
An extract from the roots of Lotus pedunculatus plants was foundto contain a compound toxic towards fast-growing Lotus rhizobia.This compound was identified as a flavolan, which has a prodeiphinidin:procyanidin ratio of 75:25. A fast-growing strain of Rhizobium(NZP2213) which forms ineffective root nodules on L. pedunculatuswas four times more sensitive to this flavolan (ED50 = 25 ?gml–1) than another strain (NZP2037, ED50 = 100 ?g ml–1)which forms effective root nodules on this species. The rootsof another Lotus species, L. tenuis, on which both strains ofRhizobium form effective root nodules, also contained a flavolan( 95% procyanidin) but both strains were relatively insensitiveto this flavolan (EDED50 = 350 to 500 ?g ml–1) L. pedunculatusplants bearing ineffective root nodules contained two to threetimes more flavolan in their roots (5–7 mg g–1 fr.wt.)than uninoculated control plants. Experiments with seven otherLotus species and with hybrid plants developed between L. pedunculatusand L. tenuis showed a relationship between the prodeiphinidin:procyanidin ratio of the flavolan in their roots and the effectivenessof root nodules formed on these plants by NZP2213. Quantitativebinding studies of the flavolan from L. pedunculatus to NZP2037and NZP2213 indicated that, while the affinity constants forbinding were similar for both strains, the surface of strainNZP2037 contained four times more binding sites than NZP2213,possibly correlating with this strain's ability to toleratehigher concentrations of this flavolan. It is suggested thatthe differential sensitivity of these two strains of Rhizobiumto flavolans is related to their ability to form effective rootnodules on Lotus species.  相似文献   

12.
13.
Rhizobium loti strain PN4115 (NZP2213 str-1) ineffectively nodulates Leucaena leucocephala, i.e., strain PN4115 induces nodulation (Nod+) and is able to invade these nodules (Inv+), but fails to fix nitrogen (Fix). Strain PN4115 does not synthesize a flavolan-binding polysaccharide (FBP), which is synthesized by the fully effective (Nod+Inv+Fix+) R. loti strain PN184 (NZP2037 str-1). The FBP may offer protection from prodelphinidin-rich flavolans synthesized by Lc. leucocephala. In this work, we show that exopolysaccharide (EPS)-negative mutants derived from strain PN4115 have a more severe ineffective phenotype (Nod+InvFix) on Lc. leucocephala than strain PN4115. This suggests that EPS from strain PN4115 is functional during invasion of Lc. leucocephala and that the requirement for EPS precedes the requirement for FBP. Received: 8 October 1996 / Accepted: 11 December 1996  相似文献   

14.
A Rhizobium loti gene required for effective invasion of the host Lotus pedunculatus has been identified by transposon Tn5 mutagenesis. Cosmids that complemented a previously isolated mutation (239) at this invasion (inv) locus were identified by in planta complementation and used to construct a physical map of the gene region. The insertion site of Tn5 in PN239 was mapped to a 7.5-kb EcoRI fragment, which complemented the mutation when subcloned into pLAFR1. Further Tn5 mutagenesis of the 7.5-kb fragment was carried out in Escherichia coli using bacteriophage lambda 467, and the mutations homogenotized into R. loti NZP2037. Three additional Fix- mutations were isolated, and these were found to map adjacent to the position of the original mutation in strain PN239. All the other Tn5 insertions isolated in the 7.5-kb fragment gave a Fix+ phenotype on L. pedunculatus. Electron microscopic examination of the L. pedunculatus nodules induced by the isolated Fix- mutants showed that bacteria were either blocked in release from the infection threads or were unable to undergo normal bacteroid development. The inv locus as defined by the Tn5 insertions was sequenced, and a single open-reading frame (ORF) of 576 bp, corresponding to a polypeptide of 21.3 kDa, was identified. The position and orientation of this ORF were consistent with those of the isolated Tn5 Fix- insertions.  相似文献   

15.
Rhizobium loti is a fast-growing Rhizobium species that has been described as a microsymbiont of plants of the genus Lotus. Nodulation studies show that Lotus plants are nodulated by R loti, but not by most other Rhizobium strains, indicating that R. loti produces specific lipo-chitin oligosaccharides (LCOs) which are necessary for the nodulation of Lotus plants. The LCOs produced by five different Rhizobium ioti strains have been purified and were shown to be N-acetylglucosamine pentasaccharides of which the non-reducing residue is N-methylated and N-acylated with c/s-vaccenic acid (C18:1) or stearic acid (C18:O) and carries a carbamoyl group. In one R. loti strain, NZP2037, an additional carbamoyl group is present on the non-reducing terminal residue. The major class of LCO molecules is substituted on the reducing terminal residue with 4-O-acetylfucose. Addition of LCOs to the roots of Lotus plants results in abundant distortion, swelling and branching of the root hairs, whereas spot inoculation leads to the formation of nodule primordia.  相似文献   

16.
When grown in a nutrient solution containing combined nitrogen(NH4NO3), Lotus pedunculatus and L. tenuis seedlings inoculatedwith a fast-growing strain of Rhizoblum (NZP2037) did neitherdevelop root nodules nor develop flavolans in their roots. Incontrast, the roots of nodulated seedlings growing in a nitrogen-freenutrient solution contained flavolans. Flavolan synthesis coincidedwith root nodule development on these plants. When added as a single dose, high concentrations of NH4NO3 (5and 10 mg N per plant) stimulated the growth of L. pedunculatusplants but suppressed nodulation and nitrogen fixation. In contrastthe continued supply of a low concentration of NH4NO3 (1?0 mgN d–1 per plant) stimulated nitrogen fixation by up to500%. This large increase in nitrogen fixation was associatedwith a large increase in nodule fresh weight per plant, a doublingof nodule nitrogenase activity, and a lowering of the flavolancontent of the plant roots. The close relationship between nitrogendeficiency, nodule development, and flavolan synthesis in L.pedunculatus meant that it was not possible (by nitrogen pretreatmentof plants) to alter the ineffective nodule response of a Rhizobiumstrain (NZP2213) sensitive to the flavolan present in the rootsof this plant.  相似文献   

17.
The major adhesin of Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, has been previously identified as lipopolysaccharide (LPS). The purpose of the present study was to isolate and characterize A. pleuropneumoniae LPS mutants. Screening of LPS mutants was performed with colony dot and sensitivity to novobiocin. One mutant obtained by colony dot (F19) and one mutant selected for its increased sensitivity to novobiocin (33.1) did not react with a monoclonal antibody against A. pleuropneumoniae serotype 1 O-antigen compared with the parent strain. Mutants F19 and 33.1 did not express high-molecular-mass LPS bands as determined in silver-stained SDS-PAGE gels. The core-lipid A region of mutant 33.1 and of the parent strain had similar relative mobilities and reacted with serum from a pig experimentally infected with the serotype 1 reference strain of A. pleuropneumoniae, while the same region in mutant F19 showed faster migration and did not react with this serum. Use of piglet tracheal frozen sections indicated that mutant F19 was able to adhere to piglet trachea as well as the parent strain, while mutant 33.1 adhered [half as much as] the parent strain. Finally, both LPS mutants were markedly less virulent in mice than the parent strain. Taken together, our observations support the idea that LPS is an important virulence factor of A. pleuropneumoniae. Received: 23 December 1996 / Accepted: 19 February 1997  相似文献   

18.
Bacillus subtilis RP24, a promising plant growth-promoting rhizobacterium and a potent biocontrol agent isolated from pigeonpea rhizosphere was mutagenized with ethyl methanesulphonate to study the possible mechanism/s involved in the potential antagonistic properties of the strain. Over 10,000 mutants were screened against the phytopathogenic fungus Macrophomina phaseolina on potato dextrose agar plates to select ten mutants showing partial antagonism as compared to the parent strain and one negative mutant showing no antagonism. The parent strain RP24 was compared with its mutants for the presence of different possible mechanisms behind antagonism. Production of hydrogen cyanide, ammonia, siderophores, and hydrolytic enzymes like lipase, amylase, and protease were detected in all the mutants as well as the parent strain, whereas fungal cell-wall-degrading enzymes, β-1, 3-glucanase and chitosanase were not detected in any of the mutants and the parent strain, indicating that none of these mechanisms was involved in the antagonistic trait of the strain. Two possible mechanisms detected behind the antifungal trait of the strain RP24 were production of antifungal volatiles and extra-cellular diffusible antibiotics. An attempt was made for extraction, partial characterization of the extra-cellular diffusible antifungal metabolite/s by thin layer chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS–PAGE). The extracellular, methanol soluble, hydrophobic, ninhydrin-negative, thermostable and pH-stable antifungal metabolites were characterized as cyclic lipopeptides belonging to the iturin group of peptide antibiotics.  相似文献   

19.
Pseudomonas tolaasii strain PT814 produces extracellular toxins, tolaasins, and a volatile toxin, tovsin, that are responsible for the induction of brown blotch and rotting, respectively, in a cultivated mushroom,Pleurotus ostreatus. Insertions of single transposon mini-Tn5Km 1 into the chromosome ofP. tolaasii strain PT814 generated mutants that are pleiotropically defective in tolaasin and protease production, and altered in colony morphology. The mutants, however, produce tovsin at the level of wild-type. Variants phenotypically similar to the pleiotropic mutants ofP. tolaasii strain PT814 spontaneously occurred inP. tolaasii strain S8501 at 22–30°C in vitro. The occurrence of variants was significantly reduced in the presence of extracts ofP ostreatus or at a temperature of 15–20°C. ThertpA gene (rtpA=regulator gene of tolaasin production and other pleiotropic traits) isolated from aP. tolaasii strain PT814 gene library restored the wild-type phenotype in both the mini-Tn5km 1 insertion and spontaneous mutants. mini-Tn5km 1 insertions were also located in the allele ofrtpA. Nucleotide sequencing of thertpA DNA revealed an open reading frame of 2,751 bp predicted to encode a protein consisting of 917 amino acid residues with a molecular mass of 100.6 kDa and displaying the conserved amino acid sequence of both sensor, and receiver domains of “bacterial two-component regulators”. The data suggest that the machinery responding to environmental stimuli is essential for the pathogenic interaction ofP. tolaasii with the mushroom.  相似文献   

20.

Root nodule (RN) symbiosis is a mutualistic interaction observed between nitrogen-fixing soil bacteria and nodulating plants, which are scattered in only four orders of angiosperms called nitrogen-fixing clade. Most of legumes engage in RN symbiosis with rhizobia. Molecular genetic analyses with legumes and non-leguminous nodulating plants revealed that RN symbiosis utilizes early signalling components that are required for symbiosis with arbuscular mycorrhizal (AM) fungi. However detailed evolutionary processes are still largely unknown. Comparative analyses with non-nodulating species phylogenetically related to legumes could be better strategies to study the evolution of RN symbiosis in legumes. Polygala paniculata is a non-leguminous species that belongs to a family different from legumes but that is classified into the same order, Fabales. It has appropriate characteristics for cultivation in laboratories: small body size, high fertility and short lifecycles. Therefore, we further assessed whether this species is suitable as a model species for comparative studies with legumes. We first validated that the plant we obtained in Palau was truly P. paniculata by molecular phylogenetic analysis using rbcL sequences. The estimated genome size of this species was less than those of two model legumes, Lotus japonicus and Medicago truncatula. We determined conditions for cultivation in vitro and for hairy root formation from P. paniculata seedlings. It would facilitate to investigate gene functions in this species. The ability of P. paniculata to interact with AM fungi was confirmed by inoculation with Rhizophagus irregularis, suggesting the presence of early signalling factors that might be involved in RN symbiosis. Unexpectedly, branching of root hairs was observed when inoculated with Mesorhizobium loti broad host range strain NZP2037, indicating that P. paniculata has the biological potential to respond to rhizobia. We propose that P. paniculata is used as a model plant for the evolutionary study of RN symbiosis.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号