首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
In the present work, the determination of the total protein concentration in hyperimmune serum samples was performed through a partial least-squares near-infrared (NIR-PLS) method. The method was based on the chemometric treatment of the NIR spectra of samples. The influences of spectra preprocessing and spectral window utilized in the construction of PLS model were studied. Models were built using reference data of 19 samples selected through the use of hierarchical cluster analysis (HCA) of NIR spectra of samples and another 24 samples were employed for external validation of the method. A model with better prediction capacity was obtained after whole spectra preprocessing by multiplicative scattering correction (MSC) algorithm and using data in the spectral range of 2158-2209 nm. Under optimized conditions a RMSEP of 0.21 g dl−1 and a quality coefficient value (QC) of only 5.8% were obtained for the prediction of total protein content in the samples used for external validation. Also, a determination coefficient, r2, of 0.97 was obtained in the correlation of predicted and reference data of samples situated in the validation set.  相似文献   

2.
文章采用反向区间偏最小二乘法结合连续投影算法,筛选南丰蜜桔近红外检测的多元线性回归变量。对南丰蜜桔近红外光谱进行多元散射校正后,利用反向间隔偏最小二乘法,从500~1750 nm中初选出7个光谱区间,用于多元线性回归变量筛选。利用通过遗传算法和连续投影算法筛选出的变量建立了多元线性回归模型。经比较发现,利用反向区间偏最小二乘法结合连续投影算法筛选出的变量建立的多元线性回归模型,预测结果最优,模型预测相关系数为0.937,模型预测均方根误差为0.613 oBrix。结果表明,反向区间偏最小二乘法结合连续投影算法,可以有效地筛选近红外光谱的多元线性回归变量,提高南丰蜜桔可溶性固形物模型的预测精度。  相似文献   

3.
The goal of this study was to assess the utility of near infrared (NIR) spectroscopy for the determination of content uniformity, tablet crushing strength (tablet hardness), and dissolution rate in sulfamethazine veterinary bolus dosage forms. A formulation containing sulfamethazine, corn starch, and magnesium stearate was employed. The formulations were wet granulated with a 10% (wt/vol) starch paste in a high shear granulator and dried at 60°C in a convection tray dryer. The tablets were compressed on a Stokes B2 rotary tablet press running at 30 rpm. Each sample was scanned in reflectance mode in the wavelengths of the NIR region. Principal component analysis (PCA) of the NIR tablet spectra and the neat raw materials indicated that the scores of the first 2 principal components were highly correlated with the chemical and physical attributes. Based on the PCA model, the significant wavelengths for sulfamethazine are 1514, (1660–1694), 2000, 2050, 2150, 2175, 2225, and 2275 nm; for corn starch are 1974, 2100, and 2325 nm; and for magnesium stearate are 2325 and 2375 nm. In addition, the loadings show large negative peaks around the water band regions (≈1420 and 1940 nm), indicating that the partial least squares (PLS) models could be affected by product water content. A simple linear regression model was able to predict content uniformity with a correlation coefficient of 0.986 at 1656 nm; the use of a PLS regression model, with 3 factors, had anr 2 of 0.9496 and a sandard error of calibration of 0.0316. The PLS validation set had anr 2 of 0.9662 and a standard error of 0.0354. PLS calibration models, based on tablet absorbance data, could successfully predict tablet crushing strength and dissolution in spite of varying active pharmaceutical ingredient (API) levels. Prediction plots based on these PLS models yielded correlation coefficients of 0.84 and 0.92 on independent validation sets for crushing strength and Q120 (percentage dissolved in 120 minutes), respectively. Published: September 20, 2005 The opinions expressed in this paper are of the authors' personal views. They do not necessarily reflect the views or policies of the FDA.  相似文献   

4.
This work presents the use of Raman spectroscopy and chemometrics for on‐line control of the fermentation process of glucose by Saccharomyces cerevisiae. In a first approach, an on‐line determination of glucose, ethanol, glycerol, and cells was accomplished using multivariate calibration based on partial least squares (PLS). The PLS models presented values of root mean square error of prediction (RMSEP) of 0.53, 0.25, and 0.02% for glucose, ethanol and glycerol, respectively, and RMSEP of 1.02 g L?1 for cells. In a second approach, multivariate control charts based on multiway principal component analysis (MPCA) were developed for detection of fermentation fault‐batch. Two multivariate control charts were developed, based on the squared prediction error (Q) and Hotelling's T2. The use of the Q control chart in on‐line monitoring was efficient for detection of the faults caused by temperature, type of substrate and contamination, but the T2 control chart was not able to monitor these faults. On‐line monitoring by Raman spectroscopy in conjunction with chemometric procedures allows control of the fermentative process with advantages in relation to reference methods, which require pretreatment, manipulation of samples and are time consuming. Also, the use of multivariate control charts made possible the detection of faults in a simple way, based only on the spectra of the system. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

5.
An automated sample preparation system has been applied to the chiral analysis of amphetamine and methamphetamine using derivatization with trifluoracetyl-L -prolyl chloride (L -TPC) and subsequent separation on a gas chromatography–mass spectrometry (GC-MS) system. Tasks automated were the dilution of standards and the off-line preparation of the diastereoisomer derivatives. Chromatographic performance, sensitivity, and reproducibility of the automated procedure were compared to the equivalent values obtained with two existing assays methods which employ manual derivatiation, either on-column or off-line. Chromatographic performance was unaffected by the derivatization procedure and sensitivity was better for both automated and manual off-line derivatization. Qualitative reproducibility as based on enantiomeric composition was equivalent for all three approaches, while quantitative reproducibility as based on peak areas was best for the automated procedure. Considering the fact that the diastereoisomer derivatives are unstable over time, automated sample preparation with “just-in-time” derivatization can increase the overall precision of the analytical method. The procedures described here are general enough in nature that they could be applied to other chiral or even achiral analytes. © 1994 Wiley-Liss, Inc.  相似文献   

6.
A gas chromatography–mass spectrometry (GC–MS) procedure was developed for the detection of 4-hydroxycoumarin anticoagulants and their metabolites in urine as part of a systematic toxicological analysis procedure for acidic drugs and poisons after extractive methylation. The part of the phase-transfer catalyst remaining in the organic phase was removed by solid-phase extraction on a diol phase. The compounds were separated by capillary GC and identified by computerized MS in the full scan mode. Using mass chromatography with the ions m/z 291, 294, 295, 309, 313, 322, 324, 336, 343 and 354, the possible presence of 4-hydroxycoumarin anticoagulants and/or their metabolites could be indicated. The identity of positive signals in such mass chromatograms was confirmed by comparison of the peaks underlying full mass spectra with the reference spectra recorded during this study. This method allowed the detection of therapeutic concentrations of phenprocoumon and warfarin in human urine samples. In absence of human urine, acenocoumarol, coumachlor, coumatetrayl, pyranocoumarin (cyclocumarol) could be detected only in rat urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号